JPH0357924A - Method and apparatus for measuring transmission function for acoustic system - Google Patents

Method and apparatus for measuring transmission function for acoustic system

Info

Publication number
JPH0357924A
JPH0357924A JP19265689A JP19265689A JPH0357924A JP H0357924 A JPH0357924 A JP H0357924A JP 19265689 A JP19265689 A JP 19265689A JP 19265689 A JP19265689 A JP 19265689A JP H0357924 A JPH0357924 A JP H0357924A
Authority
JP
Japan
Prior art keywords
sound
transfer function
frequency
frequency components
frequency component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19265689A
Other languages
Japanese (ja)
Inventor
Seiichiro Suzuki
成一郎 鈴木
Yasuyuki Sekiguchi
関口 康幸
Susumu Saruta
猿田 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19265689A priority Critical patent/JPH0357924A/en
Publication of JPH0357924A publication Critical patent/JPH0357924A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable the outputting of a signal component with a better S/N ratio by detecting a frequency component with a higher correlation in transmission function between a sound source and a sound receiver to make an interpolation between frequency components high in correlation detected. CONSTITUTION:A measuring device is made up of two microphones 2a and 2b to detect sounds generated from a rotary machine 1 such as compressor as sound source, a frequency analyzer 3, a rotation synchronous component detector 4 as a frequency component detector, an interpolator 5, a transmission function resynthesizer 6 and an arithmetic device 7. Then, as it is difficult to extract a frequency component with a higher correlation only from results of measurement obtained with the analyzer 3, a frequency component with a higher correlation is detected with a detector 4 based ona signal outputted from the analyzer 3. After the detection of the frequency component with a higher correlation with the detector 4, a linear interpolation is made between adjacent frequency components higher in correlation with an interpolator 5. The frequency component interpolated linearly with the interpolator 5 is synthe sized with a resynthesizer 6 to be outputted as transmission function.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、音源と空間とで形威される音響系の伝達関数
測定方法及びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method and apparatus for measuring a transfer function of an acoustic system formed by a sound source and a space.

(従来の技術) 従来、音源と空間とで形成される音響系の伝達関数を測
定する場合、例えば第6図に示すように、音源であるス
ピーカ10の前面側に受音器として2本のマイクロホン
lla,llbを所定間隔で配置し、信号発生器(不図
示)から周波数特性が明らかな信号Sをスピーカ10に
入力して、スビーカ10とマイクロホンlla,llb
間の伝達関数L,,L2を、それぞれマイクロホン1l
a,llbで電気的な信号M,,M2に変換していた。
(Prior Art) Conventionally, when measuring the transfer function of an acoustic system formed by a sound source and a space, two sound receivers are placed in front of a speaker 10, which is a sound source, as shown in FIG. Microphones lla and llb are arranged at a predetermined interval, a signal S with clear frequency characteristics is input from a signal generator (not shown) to the speaker 10, and the speaker 10 and the microphones lla and llb are connected.
Transfer functions L, , L2 between microphones 1l and 1l
a, llb were converted into electrical signals M, , M2.

マイクロホンllaで変換される信号M.は周波数をf
とすると、 M+  (f)−S (f)  ◆L+  (f)・・
・(1)となり、同様にマイクロホンllbで変換され
る信号M2は、 M2  (f)−S (f)  ・L2  (f)・・
・(2)となる。尚、このt,+  (f),L2  
(f)にはスピーカ10の特性が含まれている。
The signal M. which is converted by the microphone lla. is the frequency f
Then, M+ (f)-S (f) ◆L+ (f)...
・(1), and the signal M2 similarly converted by microphone llb is M2 (f)-S (f) ・L2 (f)...
・(2) becomes. Furthermore, this t, + (f), L2
(f) includes the characteristics of the speaker 10.

ところで、前記した場合は音源としてスピーカを用いた
が、実際の音響系では、音源として例えば騒音を発生す
るコンプレッサや送風機等の回転機が用いられるので、
前記した信号発生器(不図示)から出力される周波数特
性が明らかな信号Sに相当する信号成分は抽出できない
。そこで、下記の(3)式に示すように、(1)式を(
2)式で除算してSの項を消去し、音源(回転機)とマ
イクロホンlla,11.b間の伝達特性LIL2とし
て代表させる。
By the way, in the above case, a speaker was used as the sound source, but in an actual acoustic system, a rotating machine such as a compressor or blower that generates noise is used as the sound source.
A signal component corresponding to the signal S with clear frequency characteristics output from the signal generator (not shown) described above cannot be extracted. Therefore, as shown in equation (3) below, equation (1) can be changed to (
2) Eliminate the term S by dividing by the equation, and calculate the sound source (rotating machine) and microphone lla, 11. It is represented by the transfer characteristic LIL2 between b.

即ち、回転機を運転させた時に、マイクロホン11a,
llbで変換された信号Ml ,M2で互いに除算を行
えばよい。
That is, when the rotating machine is operated, the microphones 11a,
The signals Ml and M2 converted by llb may be divided by each other.

しかしながら、(3)式によって得られる桔果は、騒音
を発生する回転機を用いたので、音源(回転機)と各マ
イクロホンlla,llb間の信号成分のうち、相関の
高い周波数成分は信頼性の高いデータとして得られるが
、無相関の部分は非常にS/N比の悪い桔果しか得られ
ない。例えば、コンプレッサから発生する音は、第4図
に示すコヒーレンス関数のように回転周波数、電源周波
数及びその倍調波では相関が高いが、その他の周波数成
分はほとんど無相関になってしまう。そして、このよう
なコヒーレンス関数を用いて、例えば加減乗除等を行う
と無相関の成分が圧倒的に多いために、非常に細かい変
動を持ったいわゆる雑音の多い伝達関数しか得られない
(第5図(a)(b)参照)。尚、第5図(a)は周波
数領域上の振幅を示したものであり、第5図(b)は位
相(アークタンゼント)で示したものである。
However, since the result obtained by equation (3) uses a rotating machine that generates noise, the frequency components with high correlation among the signal components between the sound source (rotating machine) and each microphone lla, llb are not reliable. However, in the uncorrelated part, only a very poor signal-to-noise ratio can be obtained. For example, as shown in the coherence function shown in FIG. 4, the sound generated by a compressor has a high correlation at the rotational frequency, the power supply frequency, and its harmonics, but other frequency components have almost no correlation. When such a coherence function is used to perform addition, subtraction, multiplication, division, etc., there are overwhelmingly many uncorrelated components, so only a so-called noisy transfer function with very fine fluctuations is obtained (fifth (See Figures (a) and (b)). Note that FIG. 5(a) shows the amplitude in the frequency domain, and FIG. 5(b) shows the phase (arctanzent).

従って、このようにして得られた伝達関数を逆フーリエ
変換して時間領域の信号に戻した場合、真の信号が完全
に雑音に埋もれてしまい、S/N比の悪い信号成分しか
出力できなかった。
Therefore, if the transfer function obtained in this way is inversely Fourier transformed back to a time domain signal, the true signal will be completely buried in noise, and only signal components with a poor S/N ratio will be output. Ta.

(発明が解決しようとする課題) 前記したように、従来は音(騒音)を発生するコンブレ
ッサ等の回転機が設置された空間の伝達関数を測定する
時に、出力される信号成分はS/N比が悪いので、例え
ばこの出力信号を用いて演算を行っても信頼性の高い結
果を得ることができなかった。
(Problem to be Solved by the Invention) As mentioned above, conventionally, when measuring the transfer function of a space in which a rotating machine such as a compressor that generates sound (noise) is installed, the output signal component is S/N. Because of the poor ratio, it was not possible to obtain highly reliable results even if calculations were performed using this output signal, for example.

本発明は上記した課題を解決する目的でなされ、S/N
比の良好な信号成分を出力することができる音響系の伝
達関数側定方法及びその装置を提供しようとするもので
ある。
The present invention was made for the purpose of solving the above-mentioned problems, and the S/N
The present invention aims to provide a method and apparatus for determining the transfer function of an acoustic system that can output signal components with a good ratio.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 前記した課題を解決するために本発明は、音源と空間と
で形成される音響系の伝達関数を測定する方法において
、少なくとも2つ以上の受音器で前記音源から発生する
音を取り込んで、前記音源と受音器間の相関の高い周波
数成分を検出し、検出された相関の高い周波数成分間を
補間することを特徴とする。
(Means for Solving the Problems) In order to solve the problems described above, the present invention provides a method for measuring the transfer function of an acoustic system formed by a sound source and a space, in which at least two or more sound receivers It is characterized in that it captures sound generated from a sound source, detects frequency components with a high correlation between the sound source and a sound receiver, and interpolates between the detected frequency components with a high correlation.

また、本発明に係る測定装置は、音源から発生する音を
取り込む少なくとも2つ以上の受音器と、該受音器から
入力される信号に基づいて前記受音器間の伝達関数を計
測する周波数分析器と、該周波数分析器から入力される
信号に基づいて相関の高い周波数成分を検出する周波数
成分検出器と、該周波数成分検出器で検出された相関の
高い周波数成分間を補間する補間器と、該補間器で補間
された周波数成分を伝達関数に再合成する伝達関数再合
戊器とを具備したことを特徴とする。
Further, the measuring device according to the present invention includes at least two or more sound receivers that take in sound generated from a sound source, and measures a transfer function between the sound receivers based on a signal input from the sound receivers. A frequency analyzer, a frequency component detector that detects highly correlated frequency components based on a signal input from the frequency analyzer, and interpolation that interpolates between the highly correlated frequency components detected by the frequency component detector. and a transfer function recombiner that resynthesizes the frequency components interpolated by the interpolator into a transfer function.

(作用) 本発明によれば、音源と受音器間の伝達関数の相関が高
い周波数成分を検出して、検出された相関の高い周波数
成分間を補間することにより、細かい変動がなくなって
S/N比の良い信号成分が出力される。
(Operation) According to the present invention, by detecting frequency components with high correlation in the transfer function between the sound source and the sound receiver and interpolating between the detected frequency components with high correlation, small fluctuations are eliminated and S A signal component with a good /N ratio is output.

(実施例) 以下、本発明を図示の一実施列に基づいて詳細に説明す
る。
(Example) Hereinafter, the present invention will be described in detail based on one embodiment shown in the drawings.

第1図は、本発明に係る伝達関数側定装置を示す構成図
である。この図に示すように、本発明に係る伝達関数測
定装置は、音源であるコンブレッサ等の回転機1から発
生する音(運転音)を検出する2本のマイクロホン2a
,2bs周波数分析器3、周波数成分検出器としての回
転同期成分検出器4、補間器5、伝達関数再合成器6及
び演算器7とで構成されている。
FIG. 1 is a block diagram showing a transfer function determining device according to the present invention. As shown in this figure, the transfer function measuring device according to the present invention includes two microphones 2a that detect sound (operating sound) generated from a rotating machine 1 such as a compressor, which is a sound source.
, 2bs frequency analyzer 3, a rotation synchronization component detector 4 as a frequency component detector, an interpolator 5, a transfer function resynthesizer 6, and an arithmetic unit 7.

受音器である2本のマイクロホン2a,2bは、回転器
1が設置されている空間内の所定位置に配置されており
、回転機1から発生する音を電気的な信号に変換し、そ
の出力信号を周波数分析器3に入力にする。周波数分析
器3は、入力される信号に基づいてマイクロホン2a,
2b間の伝達関数を測定する(第5図(a),(b)参
照)。回転機1から発生する音は、主に回転音と電磁音
が支配的であるために回転音についてはその基本周波数
と倍調波が、電磁音については電源の基本周波数の2倍
の成分を基調波とした倍1凋波が支配的である。
The two microphones 2a and 2b, which are sound receivers, are placed at predetermined positions in the space where the rotary machine 1 is installed, and convert the sound generated from the rotary machine 1 into electrical signals. The output signal is input to the frequency analyzer 3. The frequency analyzer 3 selects the microphones 2a, 2a and 2a based on the input signal.
2b (see Figures 5(a) and (b)). The sound generated from the rotating machine 1 is mainly composed of rotational sound and electromagnetic sound, so the rotational sound consists of its fundamental frequency and its harmonics, and the electromagnetic sound consists of components twice the fundamental frequency of the power supply. The fundamental wave, the 1-fold wave, is dominant.

そして、周波数分析器3で得られた計瀾拮果(第5図(
a).(b)参照)だけでは相関の高い周波数成分を抽
出することが困難なので、回転四期成分検出器4により
、周波数分析器3から入力される信号に基づいて相関の
高い周波数成分を検出する。回転同期成分検出器4で相
関の高い周波数成分を検出する際、マイクロホン2a,
2b間のコヒーレンス関数を評価に用いる(第4図参照
)。この際、コヒーレンス関数値が、例えば09以上に
なる周波数成分を全て抽出して周波数テーブルとして蓄
え、また、その伝達関数の値もテーブルに蓄える。これ
により、回転機1から発生する音のうち回転音、電磁音
以外で相関の高い高の成分、例えば共振により発生する
騒音や変調により発生する相関の高い騒音威分も抽出で
きる。
Then, the result obtained by the frequency analyzer 3 (Fig. 5 (
a). Since it is difficult to extract frequency components with high correlation using only the method (see (b)), the frequency components with high correlation are detected by the rotational quarter component detector 4 based on the signal input from the frequency analyzer 3. When detecting highly correlated frequency components with the rotation synchronization component detector 4, the microphones 2a,
The coherence function between 2b is used for evaluation (see Figure 4). At this time, all frequency components whose coherence function value is, for example, 09 or more are extracted and stored as a frequency table, and the value of the transfer function is also stored in the table. As a result, it is possible to extract highly correlated high-frequency components other than rotational sound and electromagnetic sound among sounds generated from the rotating machine 1, such as noise generated by resonance and highly correlated noise intensity generated by modulation.

そして、回転同期成分検出器4で相関の高い周波数成分
を検出した後、補間器5により相関の高い隣接した周波
数成分間を直線補間する。補間器5で直線補間された周
波数成分は伝達関数再合成器6で合威され、第2図(a
),(b)に示すような伝達関数として出力される。第
2図(a)は周波数領域上の振幅を示したものであり、
第2図(b)は位相(アークタンゼント)で示したもの
である。このように、相関のある周波数成分だけを選ん
で、隣接した周波数成分間を直線補間した後に伝達関数
再合成器6で伝達関数を合成することにより、細かい変
動のない即ち雑音の少ない、S/N比の良好な信号成分
を得ることができる。
After the rotation synchronization component detector 4 detects frequency components with high correlation, the interpolator 5 linearly interpolates between adjacent frequency components with high correlation. The frequency components linearly interpolated by the interpolator 5 are combined by the transfer function resynthesizer 6, and the frequency components are combined by the transfer function resynthesizer 6.
) and (b). Figure 2(a) shows the amplitude in the frequency domain,
FIG. 2(b) shows the phase (arctangent). In this way, by selecting only correlated frequency components, performing linear interpolation between adjacent frequency components, and then synthesizing the transfer function in the transfer function resynthesizer 6, an S/ A signal component with a good N ratio can be obtained.

そして、伝達関数再合成器6で得られたS/N比の良好
な伝達関数を、演算器7で逆フーリエ変換して時間領域
の信号に戻してインパルス応答を求めることにより、例
えばデジタル・フィルターを用いた実時間の信号処理、
例えば能動消音制御に適用した場合、良好な消音制御を
行うことができる。
Then, the transfer function with a good S/N ratio obtained by the transfer function resynthesizer 6 is inversely Fourier-transformed by the arithmetic unit 7 and returned to a time domain signal to obtain an impulse response. real-time signal processing using
For example, when applied to active silencing control, good silencing control can be performed.

また、前記した実施例では、相関の高い隣接した周波数
成分間を直線補間したが、第3図に示すように、相関の
ある周波数成分(at,a2)間を、その間にある相関
の少い信号成分(b+t)2+  b.,,b4,b5
)の平均値を通るような曲線で結んで補間しても良い。
In addition, in the above embodiment, linear interpolation was performed between adjacent frequency components with high correlation, but as shown in FIG. Signal component (b+t)2+ b. ,,b4,b5
) may be interpolated by connecting them with a curve that passes through the average value.

即ち、al,a2を結ぶ曲線は、al とbl  b+
 とb2 、b2とb3 、b3とb4、b4とb5 
、b5とa2のそれぞれの平均値を通るようにして定め
る。
That is, the curve connecting al and a2 is al and bl b+
and b2 , b2 and b3 , b3 and b4 , b4 and b5
, b5 and a2, respectively.

〔発明の効果〕〔Effect of the invention〕

以上、実施例に基づいて具体的に説明したように本発明
によれば、相関の高い成分だけを抽出して、その相関の
高い成分間を補間することにより、S/N比の良い伝達
関数を得ることができる。
As described above in detail based on the embodiments, according to the present invention, by extracting only highly correlated components and interpolating between the highly correlated components, a transfer function with a good S/N ratio can be obtained. can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る音響系の伝達関数δp1定装置
を示す構成図、第2図(a),(b)は、それぞれ補間
器で直線補間して伝達関数再合或器で合成した伝達関数
を示す図、第3図は、本発明の他の実施例に係る補間方
法を示す説明図、第4図は、コヒーレンス関数の一例を
示す図、第5図(a),(b)は、それぞれ周波数分析
器で計測された伝達関数を示す図、第6図は、従来の伝
達関数測定装置を示す構或図である。 1・・・回転機 2a,2b・・・マイクロホン 3・・・周波数分析器 4・・・回転同期成分検出器(周波数成分検出器)5・
・・補間器 6・・・伝達関数再合成器 7・・・演算器 印υ、弁理士三好秀和 第1図
Fig. 1 is a block diagram showing a device for determining the transfer function δp1 of an acoustic system according to the present invention, and Figs. 2 (a) and (b) show linear interpolation using an interpolator and synthesis using a transfer function recombiner. FIG. 3 is an explanatory diagram showing an interpolation method according to another embodiment of the present invention, FIG. 4 is a diagram showing an example of a coherence function, and FIGS. 5(a) and (b) ) are diagrams showing transfer functions measured by a frequency analyzer, respectively, and FIG. 6 is a diagram showing the configuration of a conventional transfer function measuring device. 1... Rotating machine 2a, 2b... Microphone 3... Frequency analyzer 4... Rotation synchronous component detector (frequency component detector) 5...
...Interpolator 6...Transfer function resynthesizer 7...Arithmetic unit υ, patent attorney Hidekazu Miyoshi Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)音源と空間とで形成される音響系の伝達関数を測
定する方法において、少なくとも2つ以上の受音器で前
記音源から発生する音を取り込んで、前記音源と受音器
間の相関の高い周波数成分を検出し、検出された相関の
高い周波数成分間を補間することを特徴とする音響系の
伝達関数測定方法。
(1) In a method for measuring the transfer function of an acoustic system formed by a sound source and a space, at least two or more sound receivers capture the sound generated from the sound source, and the correlation between the sound source and the sound receiver is determined. A method for measuring a transfer function of an acoustic system, characterized by detecting a high frequency component of and interpolating between the detected frequency components with high correlation.
(2)前記補間を行う部分は、相関のある周波数成分間
に存在する相関の少ない周波数成分の平均値を通るよう
に定めたことを特徴とする請求項1記載の音響系の伝達
関数測定方法。
(2) The method for measuring a transfer function of an acoustic system according to claim 1, wherein the interpolation section is determined to pass through an average value of frequency components with little correlation existing between correlated frequency components. .
(3)音源から発生する音を取り込む少なくとも2つ以
上の受音器と、該受音器から入力される信号に基づいて
前記受音器間の伝達関数を計測する周波数分析器と、該
周波数分析器から入力される信号に基づいて相関の高い
周波数成分を検出する周波数成分検出器と、該周波数成
分検出器で検出された相関の高い周波数成分間を補間す
る補間器と、該補間器で補間された周波数成分を伝達関
数に再合成する伝達関数再合成器とを具備したことを特
徴とする音響系の伝達関数測定装置。
(3) at least two or more sound receivers that capture sound generated from a sound source; a frequency analyzer that measures a transfer function between the sound receivers based on a signal input from the sound receiver; a frequency component detector that detects highly correlated frequency components based on a signal input from an analyzer; an interpolator that interpolates between the highly correlated frequency components detected by the frequency component detector; 1. A transfer function measurement device for an acoustic system, comprising a transfer function resynthesizer that resynthesizes interpolated frequency components into a transfer function.
JP19265689A 1989-07-27 1989-07-27 Method and apparatus for measuring transmission function for acoustic system Pending JPH0357924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19265689A JPH0357924A (en) 1989-07-27 1989-07-27 Method and apparatus for measuring transmission function for acoustic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19265689A JPH0357924A (en) 1989-07-27 1989-07-27 Method and apparatus for measuring transmission function for acoustic system

Publications (1)

Publication Number Publication Date
JPH0357924A true JPH0357924A (en) 1991-03-13

Family

ID=16294865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19265689A Pending JPH0357924A (en) 1989-07-27 1989-07-27 Method and apparatus for measuring transmission function for acoustic system

Country Status (1)

Country Link
JP (1) JPH0357924A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989649A (en) * 1995-09-25 1997-04-04 Nec Corp Measuring apparatus for head transmission characteristic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989649A (en) * 1995-09-25 1997-04-04 Nec Corp Measuring apparatus for head transmission characteristic

Similar Documents

Publication Publication Date Title
CA1110768A (en) Method and apparatus for removing room reverberation
US5651071A (en) Noise reduction system for binaural hearing aid
JP6138015B2 (en) Sound field measuring device, sound field measuring method, and sound field measuring program
Lopatinskaia et al. Monitoring varying speed machinery vibrations—II recursive filters and angle domain
Müller Measuring transfer-functions and impulse responses
CN111856401A (en) Time delay estimation method based on cross-spectrum phase fitting
JP2007096384A (en) Noise elimination apparatus and noise elimination program
Kristoffersen et al. A time-shared ultrasound Doppler measurement and 2-D imaging system
JPH0357924A (en) Method and apparatus for measuring transmission function for acoustic system
CN108344501A (en) Resonance identification and removing method and device in a kind of application of signal correlation
JPH09243679A (en) Anharmonic frequency analytical method using arbitrary section waveform
JP2830276B2 (en) Signal processing device
TWI582420B (en) Device and method for detecting performance of ultrasonic transducer
Kuntz et al. Limitations in the extrapolation of wave fields from circular measurements
JPH06317654A (en) Radio wave receiving device
JP2928873B2 (en) Signal processing device
JPH1194642A (en) Diagnostic device for contribution of source of sound or vibration
TW201510986A (en) Method and apparatus for detecting a watermark symbol in a section of a received version of a watermarked audio signal
JP3858784B2 (en) Audio signal time axis companding device, method and program
JP2000097759A (en) Sound field measuring device, its method, and computer readable record medium storing sound field analysis program
JPH08184488A (en) Acoustic characteristic measuring instrument
Wyber The application of digital processing to acoustic testing
JPH11344408A (en) Sound source probing device
Raczyński Elimination of the Phase Mismatch Error in PP Probe Using Synchronous Measurement Technique
Ferreira A new frequency domain approach to time-scale expansion of audio signals