JPH0357859A - Air-fuel ratio controller of internal combustion engine - Google Patents

Air-fuel ratio controller of internal combustion engine

Info

Publication number
JPH0357859A
JPH0357859A JP1192227A JP19222789A JPH0357859A JP H0357859 A JPH0357859 A JP H0357859A JP 1192227 A JP1192227 A JP 1192227A JP 19222789 A JP19222789 A JP 19222789A JP H0357859 A JPH0357859 A JP H0357859A
Authority
JP
Japan
Prior art keywords
cylinder
wall temperature
air
fuel ratio
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1192227A
Other languages
Japanese (ja)
Inventor
Hitoshi Shimonosono
均 下野園
Satoru Imabetsupu
今別府 悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1192227A priority Critical patent/JPH0357859A/en
Publication of JPH0357859A publication Critical patent/JPH0357859A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent thermal deformation of an internal combustion engine or abnormal increase of the highest wall temperature by compensating the air-fuel ratio of cylinders of the engine, respectively based on the wall temperature in the cylinders, and thereby equalizing a real air-fuel ratio or wall temperature distribution. CONSTITUTION:In an internal combustion engine, respective fuel injection valves 1 are arranged at every cylinder. In this case, wall temperature in the vicinity of a combustion chamber at every cylinder is detected by a means 2. Based fuel injection is set by a means 3 on an operation condition of the engine. Compensation coefficient of the respective cylinders is set by a means 4 based on detected wall temperature by the means 2 under specified operation conditions in the engine. The basic fuel injection set by the means 3 is compensated by a means 5 at every cylinder in response to the compensation coefficient set by a means 4. Consequently, a real air-fuel ratio or wall temperature distribution are respectively equalized at every cylinder, and thermal deformation of the engine or abnormal increase of the highest wall temperature are prevented.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は内燃機関の空燃比制御装置とりわけ各気筒毎
に空燃比を制御するようにした空燃比制御装置に関する
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to an air-fuel ratio control device for an internal combustion engine, and more particularly to an air-fuel ratio control device that controls the air-fuel ratio for each cylinder.

従来の技術 内燃機関の燃料供給系として各気筒毎に燃料噴射弁を備
えたものがある。また従来の空燃比制御装置として、機
関の回転数と吸入空気量等から必要な燃料噴射量を演算
したり、あるいはO,センナを用いた残存酸素濃度の検
出に基づき更にフィードバック制御を行うもの等が知ら
れているが、いずれの場合でも、各気筒の燃料噴射量は
同一に制御され、基本的には各気筒で同一空燃比に保た
れるようになっている(例えば特開昭58−51242
号公報等)。
2. Description of the Related Art Some fuel supply systems for internal combustion engines include fuel injection valves for each cylinder. In addition, conventional air-fuel ratio control devices include those that calculate the required fuel injection amount from engine speed and intake air amount, etc., or perform feedback control based on detection of residual oxygen concentration using O, Senna, etc. is known, but in either case, the fuel injection amount in each cylinder is controlled to be the same, and basically the same air-fuel ratio is maintained in each cylinder (for example, in Japanese Patent Laid-Open No. 1983-1989). 51242
Publications, etc.).

発明が解決しようとする課題 しかしながら、このように各気筒で同一空燃比を目標と
して制御を行っても、各気筒で吸排気系のレイアウトが
異なり、かつ燃料噴射弁の個体差もあるので、実際には
各気筒でかなり空燃比が異なってしまう。そのため、燃
費を低減すべく空燃比をリーン化しようとした際に、気
筒間のばらつきにより最も希薄な気筒でリーン限界が制
限されてしまい、機関全体として十分にリーン化するこ
とができない。つまり機関全体のリーン化に伴い極端に
希薄な気筒が存在することになり、燃焼が不安定化し易
い。
Problems to be Solved by the Invention However, even if control is performed with the aim of achieving the same air-fuel ratio in each cylinder, the layout of the intake and exhaust system is different for each cylinder, and there are also individual differences in the fuel injection valves, so in practice In this case, the air-fuel ratio in each cylinder differs considerably. Therefore, when an attempt is made to make the air-fuel ratio lean in order to reduce fuel consumption, the lean limit is limited at the leanest cylinder due to variations between cylinders, making it impossible to make the engine as a whole lean enough. In other words, as the engine as a whole becomes leaner, there will be extremely lean cylinders, making combustion more likely to become unstable.

また燃焼室の壁温は空燃比に大きく影響を受けるため、
高負荷時等では空燃比のばらつきによって壁温分布が不
均一となり、機関の熱変形や部分的な最高壁温の上昇が
問題となる。
In addition, the wall temperature of the combustion chamber is greatly affected by the air-fuel ratio, so
At high loads, etc., the wall temperature distribution becomes uneven due to variations in the air-fuel ratio, causing problems such as thermal deformation of the engine and local increases in maximum wall temperature.

課題を解決するための手段 そこで、この発明は、燃焼室の壁温と空燃比との相関関
係に着目し、上記壁温に基づいて各気筒毎に空燃比を制
御するようにしたものである。すなわち、この発.明に
係る内燃機関の空燃比制御装置は、第1図に示すように
各気筒毎に燃料噴射弁lが配設されてなる内燃機関にお
いて、各気筒の燃焼室近傍の壁温を検出する温度検出手
段2と、機関の運転条件に基づいて基本的な燃料噴射量
を設定する基本燃料噴射量設定手段3と、所定の運転条
件下で各気筒の補正係数を上記温度検出手段2による各
検出壁温に基づいて設定する補正係数設定手段4と、こ
の補正係数を用いて上記基本燃料噴射量を気筒別に補正
する補正手段5とを備えて構成されている。
Means for Solving the Problems Therefore, the present invention focuses on the correlation between the wall temperature of the combustion chamber and the air-fuel ratio, and controls the air-fuel ratio for each cylinder based on the wall temperature. . In other words, this issue. The air-fuel ratio control device for an internal combustion engine according to the present invention detects the wall temperature near the combustion chamber of each cylinder in an internal combustion engine in which a fuel injection valve l is arranged for each cylinder as shown in FIG. A detection means 2, a basic fuel injection amount setting means 3 for setting a basic fuel injection amount based on engine operating conditions, and a temperature detection means 2 that detects a correction coefficient for each cylinder under predetermined operating conditions. It is comprised of a correction coefficient setting means 4 that sets based on the wall temperature, and a correction means 5 that corrects the basic fuel injection amount for each cylinder using this correction coefficient.

作用 」二記基本燃料噴射量設定千段3では、機関の吸入空気
徂やOtセンサの検出信号等に基づいて基本燃料噴射量
が設定される。また各気筒で検出される壁温は、第2図
に示すように実際の各気筒の空燃比によって大きく変化
し、かつ空燃比l3近傍で最高となる。この検出壁温の
ばらつきから各気筒に必要な補正係数が求められ、かつ
これによって各気筒の燃料噴射量が補正制御される。尚
、リーン限界が問題となる低中負荷域では各気筒の空燃
比が均一になるように補正し、熱歪みや最高壁温が問題
となる高負荷域では壁温そのものが均一になるように補
正すると良い。
2. Basic fuel injection amount setting At stage 3, the basic fuel injection amount is set based on the intake air range of the engine, the detection signal of the Ot sensor, etc. Furthermore, the wall temperature detected in each cylinder varies greatly depending on the actual air-fuel ratio of each cylinder, as shown in FIG. 2, and reaches its maximum near the air-fuel ratio 13. A necessary correction coefficient for each cylinder is determined from the variation in the detected wall temperature, and the fuel injection amount for each cylinder is corrected and controlled based on this coefficient. In addition, in the low and medium load range where the lean limit is an issue, the air-fuel ratio of each cylinder is corrected to be uniform, and in the high load range where thermal distortion and maximum wall temperature are issues, the wall temperature itself is made to be uniform. It is good to correct it.

実施例 以下、この発明の一実施例を図面に基づいて詳細に説明
する。
EXAMPLE Hereinafter, an example of the present invention will be described in detail based on the drawings.

第3図はこの発明を直列6気筒内燃機関に適用したー実
施例を示している。
FIG. 3 shows an embodiment in which the present invention is applied to an in-line six-cylinder internal combustion engine.

6個の燃焼室11を備えた内燃機関本体l2には吸気ボ
ートI3と排気ボート14とがクロスフロー形式に設け
られており、かつそれぞれに吸気マニホルドl5および
排気マニホルドl6が接続されている。そして、各吸気
ボートl3に、電磁式燃料噴射弁!7が臨設され、各気
筒に個々に燃料供給を行っている。この燃料噴射弁l7
には、周知のように吸気ボート13内に対し所定圧力差
に調圧された燃料が導入されており、その間弁時間つま
り駆動パルス信号のON時間に略比例した形で燃料噴射
量が得られるようになっている。
An internal combustion engine main body l2 having six combustion chambers 11 is provided with an intake boat I3 and an exhaust boat 14 in a cross-flow manner, and an intake manifold l5 and an exhaust manifold l6 are connected to each of them. And an electromagnetic fuel injection valve in each intake boat l3! 7 is installed, and supplies fuel to each cylinder individually. This fuel injection valve l7
As is well known, fuel regulated to a predetermined pressure difference is introduced into the intake boat 13, during which time the fuel injection amount is obtained in a form approximately proportional to the valve time, that is, the ON time of the drive pulse signal. It looks like this.

また上記吸気,マニホルドl5のコレクタ部に、スロッ
トル弁l8下流側の吸気圧(Pb)を検出する吸気圧セ
ンサl9が装着されているとともに、スロットル弁18
上流側には、吸入空気流fiGaが検出する例えばホッ
トワイヤ式のエアフロメータ20が装着されている。そ
して、排気マニホルドl6の集合部には、残存酸素濃度
に関連した検出信号を出力するO,センサ2lが装着さ
れている。
Further, an intake pressure sensor 19 for detecting the intake pressure (Pb) on the downstream side of the throttle valve 18 is attached to the collector portion of the intake manifold 15.
For example, a hot wire type air flow meter 20 for detecting the intake air flow fiGa is installed on the upstream side. Further, an O sensor 2l is installed at the gathering part of the exhaust manifold l6 to output a detection signal related to the residual oxygen concentration.

更に、上記内燃機関の回転速度Neを検出する回転速度
センサ22と、冷却水温TWを検出する水温センサ23
が設けられている。
Further, a rotational speed sensor 22 detects the rotational speed Ne of the internal combustion engine, and a water temperature sensor 23 detects the cooling water temperature TW.
is provided.

また上記燃焼室11近傍の壁温Tを検出する熱電対もし
くはサーミスタ等からなる壁温センサ24が、各気筒毎
に個別に設けられている。詳しくは、第4図に示すよう
に、シリンダヘッド25の壁部に挿入され、先端の測温
点が燃焼室!lの極く近傍に位置している。尚、第4図
において、26は点火栓、27は排気バルブ、28はシ
リンダブロック、29はピストン、30はウオータジャ
ケットである。
Further, a wall temperature sensor 24 consisting of a thermocouple, a thermistor, or the like that detects the wall temperature T in the vicinity of the combustion chamber 11 is individually provided for each cylinder. In detail, as shown in Fig. 4, it is inserted into the wall of the cylinder head 25, and the temperature measurement point at the tip is the combustion chamber! It is located very close to l. In FIG. 4, 26 is a spark plug, 27 is an exhaust valve, 28 is a cylinder block, 29 is a piston, and 30 is a water jacket.

上記の各燃料噴射弁l7の燃料噴射重は、マイクロコン
ピュータシステムを用いた制御ユニット3lによって個
々に制御される。この制御ユニット31には、上記のセ
ンサ類の検出信号が入力されており、後述するように、
運転条件に応じて基本燃料噴射量を設定するとともに、
各気筒の壁温のばらつきを検出して実際の噴射量の補正
を気筒別に行うようになっている。
The fuel injection weight of each fuel injection valve 17 described above is individually controlled by a control unit 3l using a microcomputer system. The control unit 31 receives detection signals from the sensors mentioned above, and as described later,
In addition to setting the basic fuel injection amount according to driving conditions,
The system detects variations in the wall temperature of each cylinder and corrects the actual injection amount for each cylinder.

次に、この空燃比制御の詳細を第5図〜第7図に示すフ
ローチャートに従って説明する。
Next, details of this air-fuel ratio control will be explained according to the flowcharts shown in FIGS. 5 to 7.

第5図は空燃比制御のメインルーチンを示すフローチャ
ートであり、これは各気筒の噴射の度に実行される。ま
た第6図は、中低負荷時に必要な各気筒の補正係数を決
定する中低負荷時補正係数決定ルーチン(ステップ4)
の詳細を示すフローチャート、第7図は、高負荷時に必
要な各気筒の補正係数を決定する高負荷時補正係数決定
ルーチン(ステップ6)の詳細を示すフローチャートで
ある。尚、これらのフローチャートにおいて、Ti等の
iは気筒番号(i=1.2・・・6)を示している。
FIG. 5 is a flowchart showing the main routine of air-fuel ratio control, which is executed every time there is an injection in each cylinder. FIG. 6 shows the correction coefficient determination routine for medium and low loads (step 4), which determines the correction coefficients for each cylinder required during medium and low loads.
FIG. 7 is a flowchart showing details of the high-load correction coefficient determination routine (step 6) that determines the correction coefficient for each cylinder required at high load. In these flowcharts, i such as Ti indicates the cylinder number (i=1.2...6).

初めにメインルーチンの流れを説明すると、ステップl
でそのときの機関運転条件を示す種々の検出信号、具体
的には、吸入空気流量Gax冷却水温TW、回転速度N
e、吸気圧PbおよびO,センサ信号の各信号を読み込
む。次いでステップ2で冷却水温TWを所定の暖機完了
水温、例えば80℃と比較する。ここで80℃以下の場
合は、気筒別の空燃比補正は行わない。すなわち、吸入
空気流量Ga、冷却水温TW、吸気圧Pb.Otセンサ
信号に堰づいて演算された基本燃料噴射量G ro(ス
テップ!4)を、そのまま最終的な各気f?liの燃料
噴射QGf(i)とし(ステップl5)、これに沿って
燃料噴射を実行する(ステップ+6)。
First, to explain the flow of the main routine, step l
Various detection signals indicating the engine operating conditions at that time, specifically, intake air flow rate Gax cooling water temperature TW, rotation speed N
Read each signal: e, intake pressure Pb and O, and sensor signal. Next, in step 2, the cooling water temperature TW is compared with a predetermined warm-up completion water temperature, for example, 80°C. Here, if the temperature is 80° C. or lower, air-fuel ratio correction for each cylinder is not performed. That is, intake air flow rate Ga, cooling water temperature TW, intake pressure Pb. The basic fuel injection amount Gro (step! 4) calculated based on the Ot sensor signal is used as is for the final fuel injection amount. li fuel injection QGf(i) (step 15), and fuel injection is performed in accordance with this (step +6).

これに対し、80℃以上の場合は、更に、所定の中低負
荷領域(Ne≦2000rpmでかつI】b≦−400
svHgの領域)と所定の高負荷領域(Ne≧300O
rpmでかつPb≧−100in+H gの領域)と他
の領域との3通りに分類し(ステップ7,IOLそれぞ
れに応じた空燃比制御を行う。
On the other hand, if the temperature is 80°C or higher, further
svHg region) and a predetermined high load region (Ne≧300O
rpm and Pb≧-100in+Hg) and other regions (Step 7, perform air-fuel ratio control according to each IOL).

所定の中低負荷領域では、後述する中低負荷時浦正係数
決定ルーチン(ステップ4)において求められた各気筒
iの中低負荷時補正係数KQ (+)を補正係数K(i
)とし(ステップ8)、これを用いて基本燃料噴射fl
IGfoの補正を行う。すなわち、 G f ( + ) = G f o X ( 1 +
 K ( t ) )として該当する気筒iの噴射量G
f(+)を演算する(ステップ15)。尚、この中低負
荷領域における基本燃料噴射量Gf.は、吸入空気流量
Gaと冷却水温TWと吸気圧pbとに基づいて求められ
る(ステップ9)。つまり、この領域では、0,センナ
信号に依存しない才一プンループ制御となる。
In a predetermined medium-low load region, the correction coefficient K(i
) (step 8) and use this to set the basic fuel injection fl
Perform IGfo correction. That is, G f (+) = G f o X (1 +
K(t)) is the injection amount G of the corresponding cylinder i.
f(+) is calculated (step 15). Note that the basic fuel injection amount Gf. is determined based on the intake air flow rate Ga, the cooling water temperature TW, and the intake pressure pb (step 9). In other words, in this region, it is a simple loop control that does not depend on the 0, senna signal.

所定の高負荷領域では、後述する高負荷時補正係数決定
ルーチン(ステップ6)において求められた各気筒iの
高負荷時補正係数Kh(i)を補正係数K(i)とし(
ステップll)、これを用いて基本燃料噴射ffiGf
.の補正を行い、該当する気筒iの噴射ffiGf(i
)を求める(ステップ15)。尚、この高負荷領域にお
ける基本燃料噴射ffiGf.の設定(ステップ!2)
に際しては、O,センサ信号が加味され、クローズドル
ープ制御となる。すなわち、機関全体の燃料供給量とし
ては排気浄化性能が良好となるようにクローズドルーブ
制御がなされ、その中で、各気筒への燃料分配が上記補
正係数K(i)に従って補正される形となる。
In a predetermined high load region, the high load correction coefficient Kh(i) for each cylinder i obtained in the high load correction coefficient determination routine (step 6) described later is set as the correction coefficient K(i).
Step ll), using this, the basic fuel injection ffiGf
.. is corrected, and the injection ffiGf(i
) is determined (step 15). Note that the basic fuel injection ffiGf. Settings (Step! 2)
In this case, O and sensor signals are taken into consideration, resulting in closed loop control. In other words, closed loop control is performed so that the amount of fuel supplied to the entire engine has good exhaust purification performance, and within this, the fuel distribution to each cylinder is corrected according to the above correction coefficient K(i). .

また、上記の中低負荷領域および高負荷領域以外の領域
では、補正係数K(i)がOに保たれ(ステップl3)
、冷間時と同様、気筒別の補正は行わない。
In addition, the correction coefficient K(i) is kept at O in areas other than the above-mentioned medium-low load area and high load area (step l3).
, as in the case of cold conditions, no correction is made for each cylinder.

一方、上記の中低負荷領域の中でも特定の運転領域にあ
るとき、具体的にはNe=1500±100rpmでか
つPb=−300±]OxxHg(ステップ3)の範囲
内にあるときに、ステップ3からステップ4へ進み、各
気筒iの中低負荷時補正係数Kl2(+)を順次決定す
る。ここで決定された補正係数Kff(i)は、メモリ
内に記憶され、かつ逐次更新される。上記の領域は、通
常の運転態様で比較的頻繁に生じ、かつ空燃比が13付
近となる領域を選択してある。
On the other hand, when the operation is in a specific operating range within the above-mentioned medium and low load range, specifically when Ne=1500±100 rpm and Pb=-300±]OxxHg (Step 3), Step 3 The process then proceeds to step 4, in which the medium/low load correction coefficient Kl2(+) for each cylinder i is determined in sequence. The correction coefficient Kff(i) determined here is stored in the memory and updated sequentially. The above-mentioned region is selected as a region that occurs relatively frequently in normal driving conditions and in which the air-fuel ratio is around 13.

また、上記の高負荷領域の中でも特定の運転領域にある
とき、具体的にはNe=3600±100rpmでかつ
Pb=−60±10xmlg(ステップ5)の範囲内に
あるときに、ステップ5からステップ6へ進み、各気筒
iの高負荷時補正係数Kh(+)を順次決定する。ここ
で決定された補正係数Kh(i)はやはりメモリ内に記
憶され、かつ逐次更新される。
In addition, when the operating range is in a specific range among the high load ranges mentioned above, specifically, when Ne=3600±100 rpm and Pb=−60±10xmlg (step 5), the steps from step 5 to 6, the high load correction coefficient Kh(+) for each cylinder i is determined in sequence. The correction coefficient Kh(i) determined here is also stored in the memory and updated sequentially.

次に第6図に示す中低負荷時補正係数決定ルーチンの流
れを説明する。尚、これは前述したように暖機後でかつ
特定運転条件のときにのみ実行される。先ず、ステップ
2lで、各壁温センサ24によって検出された各気f2
iの壁温Tiが読み込まれる。この壁温Tiは、そのと
きの冷却水温TWの高低によって影響を受けているので
、ステップ22で、基準8温度(80℃)との差(TW
−80)だけ付加して補正する。そして、ステップ23
で、#l〜#6気筒の壁温Tから、平均壁温Tav,最
低壁温Tmin,その温度幅ΔT(ΔT=Tav−Tm
in)を求め、かつ最低壁温の気筒番号をNCとする。
Next, the flow of the medium/low load correction coefficient determination routine shown in FIG. 6 will be explained. Note that, as described above, this is executed only after warm-up and under specific operating conditions. First, in step 2l, each temperature f2 detected by each wall temperature sensor 24 is
The wall temperature Ti of i is read. Since this wall temperature Ti is influenced by the height of the cooling water temperature TW at that time, in step 22, the difference (TW
-80) is added and corrected. And step 23
From the wall temperature T of cylinders #l to #6, the average wall temperature Tav, the minimum wall temperature Tmin, and the temperature range ΔT (ΔT=Tav−Tm
in), and the cylinder number with the lowest wall temperature is set as NC.

上記の温度幅ΔTが所定量、例えばlO℃以下であった
ならば、補正係数K(2(i)の更新は行わない(ステ
ップ24)が、それが10℃以上であった場合には、最
低壁温TmLnの気筒NQの中低負荷時補正係数KI2
(Nuを0.1だけ増加させてみる(ステップ26)。
If the above temperature range ΔT is below a predetermined amount, for example 10°C, the correction coefficient K(2(i) is not updated (step 24), but if it is above 10°C, Medium and low load correction coefficient KI2 for cylinder NQ with minimum wall temperature TmLn
(Try increasing Nu by 0.1 (step 26).

尚、ステップ26のrsignJは単に正負の方向つま
り0.1づつの増加もしくは減少の方向を示す係数であ
る。
Note that rsignJ in step 26 is simply a coefficient indicating the positive and negative directions, that is, the direction of increase or decrease by 0.1.

また、今回の温度幅ΔTと最低壁温気筒Neをそれぞれ
ΔT o , NQ oとして記憶し(ステップ27)
、今回の中低負荷時補正係数決定ルーチンを終了する。
In addition, the current temperature range ΔT and the lowest wall temperature cylinder Ne are stored as ΔT o and NQ o, respectively (step 27).
, the current medium-low load correction coefficient determination routine ends.

そして、次にこのルーチンが実行されたときには、今回
の最低壁温気筒NCが前回の気筒NQoと同一であるか
どうか判別し(ステップ25)、同一であった場合には
、更に今回の温度幅ΔTが前回の温度幅ΔT0よりも縮
小しているか拡大しているかを判別する(ステップ28
)。ここで前回と同一気筒でしかも温度幅ΔTが縮小し
ていた場合には、ステップ26へ進んで、該当する気筒
NQの中低負荷時補正係数KI2  (NI2 ’)を
更に0,1だけ増加させる。また温度幅ΔTが拡大して
いた場合には、係数「sign」の正負の向きを反転さ
せ(ステップ29)、該当気筒Nf2の中低負荷時補正
係数KI2  (N( )を逆に0.1だけ減少させて
みる。尚、最低壁温気筒NQが前回から変化していたら
、その気筒NI2の中低負荷時補正係数について同様に
0.1づつの増加もしくは減少が試みられる。
Then, the next time this routine is executed, it is determined whether the current lowest wall temperature cylinder NC is the same as the previous cylinder NQo (step 25), and if they are the same, the current temperature range is further increased. Determine whether ΔT is smaller or larger than the previous temperature width ΔT0 (step 28
). Here, if it is the same cylinder as the previous time and the temperature width ΔT has decreased, proceed to step 26 and further increase the mid-low load correction coefficient KI2 (NI2') of the corresponding cylinder NQ by 0.1. . Furthermore, if the temperature range ΔT has expanded, the positive/negative direction of the coefficient "sign" is reversed (step 29), and the mid-low load correction coefficient KI2 (N( ) of the corresponding cylinder Nf2 is reversed to 0.1 Incidentally, if the lowest wall temperature cylinder NQ has changed from the previous time, an attempt is made to similarly increase or decrease the mid-low load correction coefficient of that cylinder NI2 by 0.1.

すなわち、このルーチンが実行されるときの運転条件に
おいては、平均的な空燃比は略I3付近にある。従って
第2図から明らかなように、その平均的な空燃比よりも
リッチな場合もしくはリーンな場合の何れでも、壁温は
低下することになるが、最低壁温の気筒Neの空燃比が
リーンであったとすれば、上記のように補正係数KQ 
(N+! )を増加させることによって壁温は上昇傾向
となる。
That is, under the operating conditions when this routine is executed, the average air-fuel ratio is approximately around I3. Therefore, as is clear from Figure 2, the wall temperature decreases when the air-fuel ratio is richer or leaner than the average air-fuel ratio, but the air-fuel ratio of the cylinder Ne with the lowest wall temperature is lean. If so, the correction coefficient KQ is
By increasing (N+!), the wall temperature tends to rise.

そのため、上記の中低負荷時補正係数決定ルーチンが繰
り返されて補正係数In(Nl2)が徐々に増大すると
、その最低壁温Tmtnが平均壁iuTaVに接近し、
やがてΔT<10℃の範囲内となる。これにより、その
ときのNl2気筒に必要な補正係数1n(+)が決定さ
れる。
Therefore, when the correction coefficient determination routine for medium and low loads is repeated and the correction coefficient In(Nl2) gradually increases, the lowest wall temperature Tmtn approaches the average wall iuTaV,
Eventually, the temperature becomes within the range of ΔT<10°C. As a result, the correction coefficient 1n(+) required for the Nl2 cylinder at that time is determined.

また最低壁温の気筒NCの空燃比がリッチであったとす
れば、補正係数Ki2  CNQ )の増加によっで更
に壁温が低下してしまう。そのため、前回の温度幅ΔT
oとの比較(ステップ28)によって、空燃比を道にリ
ーン化すべきことが直ちに判定され、以後、Δ’r<1
0℃となるまで補正係数In(In )が徐々に減少す
ることになる。
Furthermore, if the air-fuel ratio of the cylinder NC with the lowest wall temperature is rich, the wall temperature will further decrease due to an increase in the correction coefficient Ki2 CNQ ). Therefore, the previous temperature range ΔT
By comparison with o (step 28), it is immediately determined that the air-fuel ratio should be leaner, and from then on, Δ'r<1
The correction coefficient In (In 2 ) gradually decreases until it reaches 0°C.

そして、補正の結果、最低壁温気筒NQが前回と異なっ
ていれば、同様の手順で、今同の気筒Neについて必要
な補正係数K+2(i)が決定される。
Then, as a result of the correction, if the lowest wall temperature cylinder NQ is different from the previous one, the correction coefficient K+2(i) now necessary for the same cylinder Ne is determined in the same procedure.

従って、この中低負荷時補正係敗Kff(1)が用N)
られる中低負荷領域においては、各気筒の壁温か比較的
高温側で略均一に揃うように補正制御され、かつ同時に
、実際の空燃比がl3付近に略均一に保たれる。従って
、一部希薄気筒における燃焼の不安定化を防止できると
ともに、壁温をできるだけ高温に保つことで燃焼の改善
や燃費の改善が図れる。
Therefore, this correction loss Kff(1) at medium and low load is used (N)
In the medium and low load range, correction control is performed so that the wall temperature of each cylinder and the relatively high temperature side are substantially uniform, and at the same time, the actual air-fuel ratio is maintained substantially uniform around l3. Therefore, combustion instability in some lean cylinders can be prevented, and by keeping the wall temperature as high as possible, combustion and fuel efficiency can be improved.

次に第7図に示す高負荷時補正係数決定ルーチンの流れ
を説明する。先ず、ステップ31で、各気筒iの壁温T
iを読み込み、かつステップ32で、90℃を基準温度
として水温補正を行った後に、ステップ33で、平均壁
温Tav、最低壁温Tmin,最高壁温Tmax,温度
幅ΔTh(ΔTh=Tav−Tmin)、および温度幅
ΔTQ(ΔTQ =Tma x−T a v )を求め
、かつ最低壁温の気筒番号をMh、最低壁温の気筒番号
をMQとする。
Next, the flow of the high load correction coefficient determination routine shown in FIG. 7 will be explained. First, in step 31, the wall temperature T of each cylinder i
i is read, and in step 32, the water temperature is corrected using 90°C as the reference temperature. In step 33, the average wall temperature Tav, the minimum wall temperature Tmin, the maximum wall temperature Tmax, and the temperature range ΔTh (ΔTh=Tav−Tmin ), and the temperature range ΔTQ (ΔTQ = Tmax-T av ), and the cylinder number with the lowest wall temperature is Mh, and the cylinder number with the lowest wall temperature is MQ.

上記の最低壁温気筒MQについては、ステップ34〜3
6およびステップ40,41.42によって、前述した
・中低負荷時補正係数決定ルーチンと同様の処理が行わ
れる。これによって最低壁温Tminと平均壁温Tav
との温度差ΔTQがlO℃以下となるように、最低壁温
気筒MI2の高負荷時補正係数Kh (Ml2 )が決
定される。
For the above minimum wall temperature cylinder MQ, steps 34 to 3
6 and steps 40, 41, and 42, the same processing as the above-mentioned medium/low load correction coefficient determination routine is performed. As a result, the minimum wall temperature Tmin and the average wall temperature Tav
The high load correction coefficient Kh (Ml2) of the cylinder MI2 with the lowest wall temperature is determined so that the temperature difference ΔTQ between the cylinder MI2 and the cylinder MI2 is 10° C. or less.

また最高壁温気筒Mhについては、ステップ37〜40
およびステップ43.44によって同様の処理が行われ
る。これによって最高壁温T m aXと平均壁温T 
a vとの温度差ΔThが10℃以下となるように、最
高壁温気筒Mhの高負荷時補正決定Kh (Mh)が決
定される。
For the highest wall temperature cylinder Mh, steps 37 to 40
Similar processing is performed by steps 43 and 44. As a result, the maximum wall temperature T m aX and the average wall temperature T
The high load correction determination Kh (Mh) for the maximum wall temperature cylinder Mh is determined so that the temperature difference ΔTh with respect to av is 10° C. or less.

従って、この高負荷時補正係数Kh(Dが用いられる高
負荷域においては、各気筒の壁温か中間的な壁温に揃う
ように補正制御される。そのため、機関全体の温度分布
が均一化するとともに、高負荷域で問題となる最高聖温
を低く抑制でき、耐久性の向上が図れる。
Therefore, in a high load range where this high load correction coefficient Kh (D) is used, correction control is performed so that the wall temperature of each cylinder is equalized to an intermediate wall temperature.As a result, the temperature distribution of the entire engine is made uniform. At the same time, the maximum sacred temperature, which is a problem in high load areas, can be suppressed to a low level, and durability can be improved.

発明の効果 以上の説明で明らかなように、この発明に係る内燃機関
の空燃比制御装置においては、各気筒の燃焼室の壁温に
基づいて各気筒の空燃比を個別に補正するようにしたの
で、各気筒の実際の空燃比の均一化や温度分布の均一化
が図れる。
Effects of the Invention As is clear from the above explanation, in the air-fuel ratio control device for an internal combustion engine according to the present invention, the air-fuel ratio of each cylinder is individually corrected based on the wall temperature of the combustion chamber of each cylinder. Therefore, it is possible to equalize the actual air-fuel ratio and temperature distribution of each cylinder.

【図面の簡単な説明】[Brief explanation of drawings]

第I図はこの発明の構成を示すクレーム対応図、第2図
は空燃比と壁温との関係を示す特性図、第3図はこの発
明の一実施例を示す構成説明図、第4図は機関要部の断
面図、第5図.第6図および第7図はこの実施例におけ
る空燃比制御の処理の流れを示すフローチャートである
。 l・・・燃料噴射弁、2・・・温度検出手段、3・・・
基本燃料噴射量設定手段、 4 ・・補正係数設定手段、 5 ・・・補正手段。 第 1 図 第 2 図 第 4 図
Fig. I is a claim correspondence diagram showing the configuration of this invention, Fig. 2 is a characteristic diagram showing the relationship between air-fuel ratio and wall temperature, Fig. 3 is a configuration explanatory diagram showing one embodiment of this invention, and Fig. 4 Figure 5 is a sectional view of the main parts of the engine. FIGS. 6 and 7 are flowcharts showing the flow of air-fuel ratio control processing in this embodiment. l...Fuel injection valve, 2...Temperature detection means, 3...
Basic fuel injection amount setting means, 4...correction coefficient setting means, 5...correction means. Figure 1 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)各気筒毎に燃料噴射弁が配設されてなる内燃機関
において、各気筒の燃焼室近傍の壁温を検出する温度検
出手段と、機関の運転条件に基づいて基本的な燃料噴射
量を設定する基本燃料噴射量設定手段と、所定の運転条
件下で各気筒の補正係数を上記温度検出手段による各検
出壁温に基づいて設定する補正係数設定手段と、この補
正係数を用いて上記基本燃料噴射量を気筒別に補正する
補正手段とを備えてなる内燃機関の空燃比制御装置。
(1) In an internal combustion engine in which a fuel injection valve is arranged for each cylinder, there is a temperature detection means for detecting the wall temperature near the combustion chamber of each cylinder, and a basic fuel injection amount based on the engine operating conditions. a basic fuel injection amount setting means for setting a correction coefficient for each cylinder under predetermined operating conditions, a correction coefficient setting means for setting a correction coefficient for each cylinder based on each wall temperature detected by the temperature detection means; An air-fuel ratio control device for an internal combustion engine, comprising a correction means for correcting a basic fuel injection amount for each cylinder.
JP1192227A 1989-07-25 1989-07-25 Air-fuel ratio controller of internal combustion engine Pending JPH0357859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1192227A JPH0357859A (en) 1989-07-25 1989-07-25 Air-fuel ratio controller of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1192227A JPH0357859A (en) 1989-07-25 1989-07-25 Air-fuel ratio controller of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0357859A true JPH0357859A (en) 1991-03-13

Family

ID=16287777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1192227A Pending JPH0357859A (en) 1989-07-25 1989-07-25 Air-fuel ratio controller of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0357859A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096400A (en) * 2011-11-07 2013-05-20 Toyota Motor Corp Control device of internal combustion engine
WO2020170652A1 (en) * 2019-02-22 2020-08-27 株式会社デンソー Control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096400A (en) * 2011-11-07 2013-05-20 Toyota Motor Corp Control device of internal combustion engine
WO2020170652A1 (en) * 2019-02-22 2020-08-27 株式会社デンソー Control device

Similar Documents

Publication Publication Date Title
EP0364959B1 (en) Multi-cylinder engine control method and electronic control apparatus therefor
EP0937887B1 (en) Control system for an engine
US4508075A (en) Method and apparatus for controlling internal combustion engines
US6390081B1 (en) Method and device for determining temperature values in a combustion engine
US5099817A (en) Process and apparatus for learning and controlling air/fuel ratio in internal combustion engine
US6397820B1 (en) Method and device for controlling a combustion engine
US5343700A (en) Air-fuel ratio control system for internal combustion engines
US5127225A (en) Air-fuel ratio feedback control system having a single air-fuel ratio sensor downstream of a three-way catalyst converter
JPH0357859A (en) Air-fuel ratio controller of internal combustion engine
JPH039295B2 (en)
JPS6217335A (en) Engine fuel injection controller
JPH0735016A (en) Fuel controller for multiple cylinder engine
JP2987675B2 (en) Intake control device for internal combustion engine
JPH06323200A (en) Exhaust gas recirculation control device for diesel engine
JPH0713503B2 (en) Exhaust gas recirculation control device for internal combustion engine
KR840000828B1 (en) Apparatus for controlling carburetor type internal combustion engine
JPH0584384B2 (en)
JPH0229852B2 (en)
JPH07133735A (en) Control device for internal combustion engine
JPS61229937A (en) Air-fuel ratio controller for multiple cylinder engine
JP2940916B2 (en) Air-fuel ratio control device for internal combustion engine
JPH06272601A (en) Control of engine
JPH034738B2 (en)
JPH0436046A (en) Air-fuel ratio control device of engine
JPH0754744A (en) Correcting method for idle stabilizing ignition timing