JPH0584384B2 - - Google Patents

Info

Publication number
JPH0584384B2
JPH0584384B2 JP6948985A JP6948985A JPH0584384B2 JP H0584384 B2 JPH0584384 B2 JP H0584384B2 JP 6948985 A JP6948985 A JP 6948985A JP 6948985 A JP6948985 A JP 6948985A JP H0584384 B2 JPH0584384 B2 JP H0584384B2
Authority
JP
Japan
Prior art keywords
cylinder
air
fuel ratio
fuel
roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6948985A
Other languages
Japanese (ja)
Other versions
JPS61229936A (en
Inventor
Masakimi Kono
Koji Oonishi
Hirobumi Nishimura
Seiji Oochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP6948985A priority Critical patent/JPS61229936A/en
Publication of JPS61229936A publication Critical patent/JPS61229936A/en
Publication of JPH0584384B2 publication Critical patent/JPH0584384B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多気筒エンジンの空燃比制御装置に
関し、特に各気筒毎の燃焼状態に基づき各気筒毎
に空燃比をリーン側のラフネス許容限界値に制御
するようにしたものにおける加速時の失火防止対
策に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an air-fuel ratio control device for a multi-cylinder engine, and in particular, the air-fuel ratio is adjusted to the lean side roughness allowable limit for each cylinder based on the combustion state of each cylinder. This invention relates to measures to prevent misfires during acceleration in a device that is controlled to a certain value.

(従来の技術) 従来、多気筒エンジンの空燃比制御装置とし
て、特開昭59−46352号公報に開示されるように、
各気筒毎に燃焼状態(各気筒毎の図示平均有効圧
のサイクル間変動及び図示平均有効圧の気筒間較
差など)を検出する燃焼状態検出手段を設け、該
各燃焼状態検出手段の出力つまりサイクル間変動
及び気筒間較差などに基づき各気筒毎に各気筒に
供給される混合気の空燃比を制御することによ
り、空燃比を可及的にリーン側のラフネス許容限
界値にして燃費率を低く維持しながら、エンジン
ラフネスの発生を精緻に抑制するようにしたもの
が提案されている。
(Prior Art) Conventionally, as an air-fuel ratio control device for a multi-cylinder engine, as disclosed in Japanese Patent Application Laid-Open No. 59-46352,
Combustion state detection means for detecting the combustion state (cycle-to-cycle variation in indicated mean effective pressure for each cylinder, inter-cylinder difference in indicated mean effective pressure, etc.) is provided for each cylinder, and the output of each combustion state detection means, that is, the cycle By controlling the air-fuel ratio of the air-fuel mixture supplied to each cylinder based on inter-cylinder fluctuations and inter-cylinder differences, the air-fuel ratio is kept as close to the allowable roughness limit as possible on the lean side to lower the fuel efficiency. It has been proposed to precisely suppress the occurrence of engine roughness while maintaining the same level of roughness.

(発明が解決しようとする問題点) ところで、このような空燃比制御において、各
気筒の製作誤差等のバラツキにより各気筒毎にリ
ーン側空燃比のラフネス許容限界値(エンジンラ
フネスが生じない範囲での空燃比のリーン側の
値)が異なつていて、燃焼安定性に劣る気筒では
リーン側ラフネス許容限界値が小さいものとなつ
ている。それ故、エンジンの加速を行う際、その
加速時(加速瞬間)には、アクセルペダルの踏込
みに伴うスロツトル弁の間作動により各気筒への
吸入空気量は直ちに増加するものの、この増加し
た吸入空気量に対して燃料供給量を増量する空燃
比制御は直ちにはなされないため、そのときの各
気筒の空燃比のリーン側ラフネス許容限界値が急
激に悪くなつてこの限界値を越えてしまい、その
ため特にリーン側ラフネス許容限界値の小さい気
筒では失火を生じることになる。
(Problem to be Solved by the Invention) By the way, in such air-fuel ratio control, due to variations in manufacturing errors etc. of each cylinder, the allowable roughness limit value of the lean side air-fuel ratio (within a range where engine roughness does not occur) is determined for each cylinder. For cylinders in which the air-fuel ratio (value on the lean side) is different and the combustion stability is poor, the allowable lean-side roughness limit value is small. Therefore, when accelerating the engine, at the time of acceleration (at the moment of acceleration), the amount of intake air to each cylinder increases immediately due to the throttle valve operation accompanying the depression of the accelerator pedal, but this increased intake air Since the air-fuel ratio control to increase the amount of fuel supplied is not performed immediately, the allowable lean-side roughness limit value of the air-fuel ratio of each cylinder at that time suddenly deteriorates and exceeds this limit value. Particularly in cylinders with a small allowable lean roughness limit value, misfires will occur.

本発明はかかる点に鑑みてなされたものであ
り、その目的とするところは、加速時、各気筒毎
に空燃比をリツチ比すべく燃料供給量を増量制御
するとともに、この燃料供給量の増量制御を、各
気筒毎にリーン側空燃比のラフネス許容限界値に
応じて変えることにより、燃費の低減を図りつ
つ、加速時の失火を確実に防止することにある。
The present invention has been made in view of the above, and its purpose is to control the amount of fuel supplied to increase the air-fuel ratio for each cylinder during acceleration, and to increase the amount of fuel supplied. The purpose of this invention is to reliably prevent misfires during acceleration while reducing fuel consumption by changing the control for each cylinder according to the roughness tolerance limit value of the lean side air-fuel ratio.

(問題点を解決するための手段) 上記の目的を達成するため、本発明の解決手段
は、第1図に示すように、各気筒毎に燃焼状態を
検出する燃焼状態検出手段8a〜8dを設け、該
各燃焼状態検出手段8a〜8dの出力に基づいて
各気筒毎に各気筒に供給される混合気の空燃比を
リーン側のラフネス許容限界値に制御するように
した多気筒エンジンの空燃比制御装置において、
エンジン1の加速時を検出する加速時検出手段1
4と、該加速時検出手段14の出力を受け、加速
時、各気筒毎にリーン側空燃比のラフネス許容限
界値に応じてリーン側ラフネス許容限界値が小さ
い程燃料供給量を増量するように制御する制御手
段15とを設ける構成としたものである。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention includes combustion state detection means 8a to 8d for detecting the combustion state for each cylinder, as shown in FIG. The air-fuel ratio of the air-fuel mixture supplied to each cylinder is controlled to the allowable roughness limit value on the lean side for each cylinder based on the output of the combustion state detection means 8a to 8d. In the fuel ratio control device,
Acceleration detection means 1 for detecting acceleration of the engine 1
4, and upon receiving the output of the acceleration detecting means 14, during acceleration, the fuel supply amount is increased for each cylinder according to the roughness allowable limit value of the lean side air-fuel ratio, the smaller the lean side roughness allowable limit value is. This configuration is provided with a control means 15 for controlling.

(作用) 上記の構成により、本発明では、各気筒毎に空
燃比をリーン側ラフネス許容限界値に制御するに
おいて、加速時には、制御手段15により、各気
筒毎にリーン側空燃比のラフネス許容限界値に応
じてリーン側ラフネス許容限界値が小さい程燃料
供給量を増量するように制御されるので、加速時
での各気筒のリーン側ラフネス許容限界値の急激
な悪化が燃料供給量の増量制御による空燃比のリ
ツチ化により補償防止され、かつその悪化の程度
に応じた燃料供給量の増量制御により補償される
ことになり、エンジンラフネス抑制のもとで燃費
率を低く維持しながら、加速時の失火が有効にか
つ確実に防止されることになる。
(Function) With the above configuration, in the present invention, when the air-fuel ratio is controlled to the lean-side roughness allowable limit value for each cylinder, during acceleration, the control means 15 controls the lean-side air-fuel ratio roughness allowable limit value for each cylinder. Since the fuel supply amount is controlled to increase as the lean side roughness allowable limit value decreases according to the value, the sudden deterioration of the lean side roughness allowable limit value of each cylinder during acceleration is controlled to increase the fuel supply amount. Compensation is prevented by enriching the air-fuel ratio due to deterioration, and compensation is made by controlling the increase in fuel supply amount according to the degree of deterioration. This will effectively and reliably prevent misfires.

(実施例) 以下、本発明の実施例を第2図以下の図面に基
づいて説明する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 2 onwards.

第2図は本発明を燃焼噴射式4気筒エンジンに
適用した実施例を示す。同図において、1は直列
に配列された4つの気筒を有するエンジン、2は
上流端がエアクリーナ3を介して大気に開口して
エンジン1に吸気を供給するための吸気通路であ
つて、該吸気通路2には吸入空気量を制御するス
ロツトル弁7が配設されているとともに、吸気通
路2の下流側には吸気拡大室4が設けられ、該吸
気拡大室4からは各気筒に対応して4つの独立し
た独立吸気通路2a〜2dに分岐されて各々対応
する各気筒に連通されている。上記各独立吸気通
路2a〜2dにはそれぞれ燃焼噴射弁5a〜5d
が配設されており、各燃料噴射弁5a〜5dは燃
料供給通路6に接続されていて、該燃料供給通路
6から供給される燃料を各燃料噴射弁5a〜5d
から所定のタイミングで各独立吸気通路2a〜2
dに噴射供給して、各気筒に所定空燃比の混合気
を供給するようになされている。
FIG. 2 shows an embodiment in which the present invention is applied to a combustion injection type four-cylinder engine. In the figure, 1 is an engine having four cylinders arranged in series, and 2 is an intake passage whose upstream end opens to the atmosphere via an air cleaner 3 to supply intake air to the engine 1. A throttle valve 7 for controlling the amount of intake air is disposed in the passage 2, and an intake expansion chamber 4 is provided on the downstream side of the intake passage 2. The intake passages are branched into four independent intake passages 2a to 2d, each communicating with a corresponding cylinder. Each of the independent intake passages 2a to 2d has combustion injection valves 5a to 5d, respectively.
are arranged, each of the fuel injection valves 5a to 5d is connected to a fuel supply passage 6, and the fuel supplied from the fuel supply passage 6 is delivered to each of the fuel injection valves 5a to 5d.
Each independent intake passage 2a to 2 at a predetermined timing from
d is injected and supplied to each cylinder to supply a mixture having a predetermined air-fuel ratio.

そして、8a〜8dは各気筒毎に設けられ、各
気筒の最大燃焼圧力Pmaxにより各気筒の燃焼状
態を検出する燃焼状態検出手段としての筒内圧力
センサ、9は吸入空気量を検出するエアフローセ
ンサ、10はクランク角によりエンジン回転数を
検出する回転数センサであつて、これら各センサ
8a〜8d,9,10の出力は上記各燃料噴射弁
5a〜5dを駆動制御するCPUよりなるコント
ロールユニツト11に入力されている。また、該
コントロール11には、スロツトル弁7の開度を
検出したスロツトル開度信号(エンジン負荷信
号)θTVおよび排気ガス還流を制御するEGR弁の
開弁信号VEGR等が入力されている。
Further, 8a to 8d are cylinder pressure sensors provided for each cylinder and serve as combustion state detection means for detecting the combustion state of each cylinder based on the maximum combustion pressure Pmax of each cylinder, and 9 is an air flow sensor that detects the amount of intake air. , 10 is a rotation speed sensor that detects the engine rotation speed based on the crank angle, and the output of each of these sensors 8a to 8d, 9, and 10 is sent to a control unit 11 comprising a CPU that drives and controls each of the fuel injection valves 5a to 5d. has been entered. Further, the control 11 receives a throttle opening signal (engine load signal) θ TV that detects the opening of the throttle valve 7, a valve opening signal V EGR of the EGR valve that controls exhaust gas recirculation, and the like.

上記コントロールユニツト11は、上記各筒内
圧力センサ8a〜8dの出力に基づいて各気筒毎
に各気筒に供給される混合気の空燃比がリーン側
のラフネス許容限界値(エンジンラフネスが生じ
ない範囲での空燃比のリーン側の値)になるよう
に各気筒毎の目標燃料噴射量を判定するととも
に、スロツトル開度信号に基づいて加速時(加速
瞬間)を判定し、かつこの加速時には上記各気筒
毎の目標燃料噴射量を補正する判定回路12と、
該判定回路12の出力を受け、各燃料噴射弁5a
〜5dからの燃料噴射量を制御する制御回路13
とを備えている。
The control unit 11 sets the air-fuel ratio of the air-fuel mixture supplied to each cylinder to a lean roughness tolerance limit (a range in which engine roughness does not occur) based on the outputs of the cylinder pressure sensors 8a to 8d. In addition to determining the target fuel injection amount for each cylinder so that the air-fuel ratio is on the lean side at a determination circuit 12 that corrects the target fuel injection amount for each cylinder;
Upon receiving the output of the determination circuit 12, each fuel injection valve 5a
Control circuit 13 that controls the fuel injection amount from ~5d
It is equipped with

次に、上記コントロールユニツト11の判定回
路12の作動を第3図に示すフローチヤートによ
り説明する。先ず、ステツプS1で空燃比のリーン
限界移行に適した運転状態を判断するべく定常運
転状態であるか否かを判別し、定常運転状態であ
るYESの場合には、ステツプS2において各気筒
毎に最大燃焼圧力Pmaxのサイクル間変動σiを下
記式 σi=(1/n)・Σ(Pmax−) (ここでn:サイクル数(例えば100サイク
ル)、:nサイクルでの最大燃焼圧力の平
均値) より計算したのち、ステツプS3でこのサイクル間
変動σiが許容値σ0以下であるか否かを判別する。
この判別がσi≦σ0のときには、サイクル間変動σi
が小さくて空燃比のリーン化がさらに可能である
と判断して、ステツプS4でその気筒に対する燃料
の補正噴射量Q0iをΔQだけ減量した値(Q0i
ΔQ)に更新する一方、上記判別がσi>σ0のとき
には、サイクル間変動σiが大きくて空燃比がリー
ン限界に達していると判断して、ステツプS5でそ
の気筒に対する補正噴射量Q0iをΔQだけ増量した
値(Q0i+ΔQ)に更新する。
Next, the operation of the determination circuit 12 of the control unit 11 will be explained with reference to the flowchart shown in FIG. First, in step S1 , it is determined whether or not the operating state is a steady operating state in order to determine the operating state suitable for shifting the air-fuel ratio to the lean limit.If YES is the steady operating state, in step S2 , each cylinder is The cycle-to-cycle fluctuation σi of the maximum combustion pressure Pmax for each cycle is determined by the following formula: σi = (1/n)・Σ(Pmax−) (where n: number of cycles (for example, 100 cycles), : average of maximum combustion pressure over n cycles value), and then in step S3 it is determined whether this inter-cycle variation σi is less than or equal to the allowable value σ0 .
When this discrimination is σi≦σ 0 , the inter-cycle variation σi
is small and it is possible to make the air-fuel ratio leaner, and in step S4 , the corrected fuel injection amount Q 0i for that cylinder is reduced by ΔQ (Q 0i
On the other hand, if the above determination is σi > σ 0 , it is determined that the inter-cycle fluctuation σi is large and the air-fuel ratio has reached the lean limit, and the corrected injection amount Q 0i for that cylinder is updated in step S5 . is updated to a value increased by ΔQ (Q 0i +ΔQ).

次いで、各気筒の最大燃焼圧力Pmaxiの気筒
間較差を求めるべく、ステツプS6で各気筒の最大
燃焼圧力の平均値を下記の4気筒の場合の式 =(1/4)・ Ζi Pmaxi より計算したのち、ステツプS7で気筒間較差(
−Pmaxi)が許容値ΔP以下であるか否かを判別
する。この判別が(−Pmaxi)≦ΔPのときには
気筒間較差が小さいと判断してそのままステツプ
S11に進む一方、(−Pmaxi)>ΔPのときには気
筒間較差が大きいと判断して燃料を増量すべく、
ステツプS8で補正噴射量Q0iをΔQ′だけ増量した
値(Q0i+ΔQ′)に更新したのちステツプS11に移
る。尚、上記ステツプS1の判別が定常運転状態で
ないNOのときには、直ちにステツプS9に移つて
非定常判定回路により加速時か減速時、あるいは
冷間時等を判定し、ステツプS10でそのときの基
本噴射量Q0を決定してステツプS11に進む。そし
て、ステツプS11で各気筒毎に基本噴射等Q0に上
記の補正噴射量Q0iを加算して各気筒毎の燃料噴
射量Qiを求める。
Next, in order to find the inter-cylinder difference in the maximum combustion pressure Pmaxi of each cylinder, in step S6 , the average value of the maximum combustion pressure of each cylinder is calculated from the following formula for 4 cylinders = (1/4) · Ζ i Pmaxi After calculating, step S7 calculates the inter-cylinder difference (
−Pmaxi) is less than or equal to the allowable value ΔP. If this judgment is (-Pmaxi)≦∆P, it is determined that the difference between the cylinders is small and the step continues.
While proceeding to S 11 , if (-Pmaxi) > ΔP, it is determined that the difference between the cylinders is large, and in order to increase the amount of fuel,
In step S8 , the corrected injection amount Q 0i is updated to a value increased by ΔQ' (Q 0i +ΔQ'), and then the process moves to step S11 . If the determination in step S1 above is NO, indicating that the operation is not in a steady state, the process immediately moves to step S9 , where the unsteady state determination circuit determines whether the vehicle is accelerating, decelerating, or cold, and then in step S10 The basic injection amount Q0 is determined and the process proceeds to step S11 . Then, in step S11 , the above-mentioned corrected injection amount Q0i is added to the basic injection etc. Q0 for each cylinder to obtain the fuel injection amount Qi for each cylinder.

しかる後、ステツプS12においてスロツトル開
度信号θTVにより加速時(加速瞬間)か否かを判
別し、加速時でないNOの場合にはそのままステ
ツプS15に移つて上記ステツプS11の燃料噴射量Qi
の信号を制御回路13に出力する。一方、加速時
であるYESの場合には、燃料を増量補正すべく、
ステツプS13で加速時の燃料の増量値QSPを下記の
式 QSP=a・√i+b より計算したのち、上記ステツプS11の燃料噴射
量Qiにこの増量値QSPを加えた値(=Qi+QSP)を
新たな燃料噴射量Qiとして設定し、ステツプS15
でこの信号を制御回路13に出力する。ここにお
いて、上記式におけるaおよびbは予め設定され
た定数であつて、第4図に示すように燃料消費率
に対する空燃比のリーン側ラフネス許容限界値特
性によつて定まるもので、リーン側ラフネス許容
限界値に応じてリーン側ラフネス許容限界値が小
さい程空燃比をリツチする増量値QSPになるよう
に設定されるものである。
After that, in step S12 , it is determined whether the throttle opening signal θ TV is accelerating (acceleration instant) or not.If NO, the process moves directly to step S15 and the fuel injection amount in step S11 is determined. Q i
The signal is output to the control circuit 13. On the other hand, in the case of YES during acceleration, in order to correct the increase in fuel,
In step S13 , the fuel increase value Q SP during acceleration is calculated using the following formula Q SP = a・√ i + b, and then this value is added to the fuel injection amount Q i in step S 11 above. (=Q i +Q SP ) is set as the new fuel injection amount Q i , and step S15
This signal is output to the control circuit 13. Here, a and b in the above equation are constants set in advance, and are determined by the lean-side roughness allowable limit value characteristic of the air-fuel ratio with respect to the fuel consumption rate, as shown in FIG. According to the allowable limit value, the smaller the lean side roughness allowable limit value is, the larger the increase value Q SP becomes, which enriches the air-fuel ratio.

これに対し、運転状態の変化に伴つて学習制御
する場合には、上記の各気筒の補正噴射量Q0i
もとにして、ステツプS16で各気筒の補正噴射量
の平均値0iを計算したのちステツプS17に移り、
このステツプS17の判別が定常運転状態でない
NOのときに、ステツプS18において基本噴射量
Q00iだけ増量した値(Q00i)に置き換え
て、それをステツプS19で学習マツプに入力する。
また、上記の補正噴射量の平均値0iの計算後、
ステツプS20で補正係数Kiを設定すべき運転条件
を満たしているか否か、例えば中負荷域でエンジ
ン回転数が1000〜3000rpmでかつ吸気負圧が−
400〜−200mmHgの運転域にあるか否かを判別し、
この判別がYESのときにのみステツプS21に移つ
て、各気筒の燃料噴射量(Q0+Q0i)とその各気
筒の平均値(Q00i)とを比較して、その比か
ら補正係数ki=(Q0+Q0i)/(Q00i)を求め、
それをステツプS19の学習マツプに入力する。尚、
ステツプS22で固定マツプ(ROM)により基本噴
射量Q0の初期値が、また補正係数kiの初期値
(ki=1)がそれぞれセツトされており、ステツ
プS23のエンジン運転開始のYESの判別と同時に、
これらの初期条件がステツプS19の学習マツプに
入力されている。
On the other hand, when performing learning control in response to changes in operating conditions, the average value 0i of the corrected injection amount for each cylinder is calculated in step S16 based on the above corrected injection amount Q 0i for each cylinder. After that, move on to step S 17 .
The determination in step S17 indicates that the operating condition is not steady.
When NO, the basic injection amount is set at step S18 .
Q 0 is replaced with a value increased by 0i (Q 0 + 0i ), and this is input into the learning map in step S19 .
Also, after calculating the average value 0i of the corrected injection amount above,
Check whether the operating conditions for setting the correction coefficient Ki in step S20 are met, for example, in the medium load range, the engine speed is 1000 to 3000 rpm, and the intake negative pressure is -
Determine whether or not it is in the operating range of 400 to -200mmHg,
Only when this determination is YES, the process moves to step S21 , where the fuel injection amount (Q 0 + Q 0i ) of each cylinder is compared with the average value (Q 0 + 0i ) of each cylinder, and correction is made based on the ratio. Find the coefficient ki = (Q 0 + Q 0i )/(Q 0 + 0i ),
Enter it into the learning map in step S19 . still,
In step S22 , the initial value of the basic injection amount Q0 and the initial value of the correction coefficient ki (ki=1) are set by the fixed map (ROM), and the determination of YES to start engine operation is made in step S23 . At the same time,
These initial conditions are input into the learning map in step S19 .

そして、ステツプS19の学習マツプに基づいて、
ステツプS24において各気筒毎の新しい基本噴射
量Q0として上記ステツプS18で学習した基本噴射
量Q0に上記ステツプS21で算出した各気筒毎の補
正係数kiを乗算した値(Q0・ki)に更新して、
ステツプS11に戻ることを繰返す。このことによ
り、運転状態に変化に伴う各気筒毎の新しい空燃
比制御目標値を設定する場合、学習した各気筒の
空燃比制御目標値の平均値(各気筒の目標燃料噴
射量の平均値)に対する補正係数kiを求めて、こ
の各補正係数kiにより各気筒毎の新しい空燃比制
御目標値(各気筒毎の新しい目標燃料噴射量)を
算出することにより、各気筒毎の学習制御を不要
とし、各気筒毎の空燃比制御目標値をその算出時
間に遅れなどなく算出して、CPUのメモリ容量
(RAM)の能力低下なく有効に少なくするよう
になされている。
Then, based on the learning map in step S 19 ,
In step S24 , the new basic injection amount Q0 for each cylinder is determined by multiplying the basic injection amount Q0 learned in step S18 by the correction coefficient ki for each cylinder calculated in step S21 . ki) and
Repeat returning to step S11 . As a result, when setting a new air-fuel ratio control target value for each cylinder due to changes in operating conditions, the average value of the learned air-fuel ratio control target values for each cylinder (the average value of the target fuel injection amount for each cylinder) By finding the correction coefficient ki for each cylinder and calculating a new air-fuel ratio control target value for each cylinder (new target fuel injection amount for each cylinder) using this correction coefficient ki, learning control for each cylinder is unnecessary. The air-fuel ratio control target value for each cylinder is calculated without any delay in the calculation time, and the CPU memory capacity (RAM) is effectively reduced without deteriorating the capacity.

以上の作動フローにおいて、ステツプS12によ
り、エンジンの加速時を検出する加速時検出手段
14を構成している。また、ステツプS13〜S14
より、加速時検出手段14の出力を受け、加速
時、各気筒毎にリーン側空燃比のラフネス許容限
界値に応じてリーン側ラフネス許容限界値が小さ
い程空燃比をリツチにすべく燃料噴射量を増量す
るように制御する制御手段15を構成している。
In the above operation flow, step S12 constitutes the acceleration detecting means 14 which detects when the engine is accelerating. Further, in steps S13 to S14 , the output of the acceleration detecting means 14 is received, and during acceleration, the air-fuel ratio is determined according to the roughness tolerance limit value of the lean side air-fuel ratio for each cylinder as the lean side roughness tolerance limit value is smaller. A control means 15 is configured to control the fuel injection amount to increase in order to make it rich.

したがつて、このように各気筒毎の燃焼状態
(最大燃焼圧力Pmaxのサイクル間変動および気
筒間較差)に基づいて各気筒毎にその混合気の空
燃比をリーン側ラフネス許容限界値に制御する場
合、加速時には、制御手段15により各気筒毎に
リーン側空燃比のラフネス許容限界値に応じてリ
ーン側ラフネス許容限界値が小さい程燃料供給量
を増量するよう制御されるので、加速時でのリー
ン側空燃比のラフネス許容限界値の急激な悪化お
よびそれに伴う燃焼安定性の悪化が上記燃料供給
量の増量制御による空燃比のリツチ化によつて補
正防止されて、良好な燃焼安定性が維持されると
ともに、この加速時での燃焼安定性の悪化はリー
ン側ラフネス許容限界値の小さい気筒ほど著しく
なるが、この悪化の程度に応じた燃料供給量の増
量制御によつて補償されて、リーン側ラフネス許
容限界値の小さい気筒でも、良好な燃焼安定性が
確保され、失火を生じることはない。よつて、リ
ーン側ラフネス許容限界値への空燃比制御によつ
てエンジンラフネス抑制の基に燃費の低減を図り
ながら、加速時の失火を有効にかつ確実に防止す
ることができ、良好な加速性の確保を図ることが
できる。
Therefore, in this way, the air-fuel ratio of the air-fuel mixture for each cylinder is controlled to the allowable lean roughness limit value for each cylinder based on the combustion state of each cylinder (cycle-to-cycle variation in maximum combustion pressure Pmax and inter-cylinder difference). In this case, during acceleration, the control means 15 controls each cylinder to increase the fuel supply amount according to the roughness allowable limit value of the lean side air-fuel ratio as the lean side roughness allowable limit value becomes smaller. The rapid deterioration of the allowable roughness limit value of the lean side air-fuel ratio and the resulting deterioration of combustion stability are corrected and prevented by enriching the air-fuel ratio by controlling the increase in the amount of fuel supplied, and good combustion stability is maintained. At the same time, this deterioration in combustion stability during acceleration becomes more pronounced in cylinders with smaller lean-side roughness tolerance limit values, but this is compensated for by increasing control of the fuel supply amount according to the degree of deterioration. Good combustion stability is ensured even in cylinders with a small allowable side roughness limit value, and misfires do not occur. Therefore, by controlling the air-fuel ratio to the allowable lean-side roughness limit value, it is possible to reduce fuel consumption by suppressing engine roughness, while effectively and reliably preventing misfires during acceleration, resulting in good acceleration performance. can be ensured.

尚、本発明は上記実施例に限定されるものでは
なく、その他種々の変形例をも包含するものであ
る。例えば、上記実施例では燃料噴射量の制御に
より空燃比制御を行う場合について述べたが、吸
入空気量の制御により空燃比制御を行う場合につ
いても同様に適用できるものである。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but also includes various other modifications. For example, in the above embodiment, a case has been described in which the air-fuel ratio is controlled by controlling the amount of fuel injection, but the present invention can be similarly applied to a case where the air-fuel ratio is controlled by controlling the amount of intake air.

さらに、上記実施例では、各気筒の燃焼状態を
最大燃焼圧力Pmaxにより検出したが、平均有効
圧力等により検出するようにしてもよい。
Further, in the above embodiment, the combustion state of each cylinder is detected using the maximum combustion pressure Pmax, but it may be detected using the average effective pressure or the like.

(発明の効果) 以上説明したように、本発明の多気筒エンジン
の空燃比制御装置によれば、各気筒毎の燃焼状態
に基づき各気筒毎に空燃比をリーン側ラフネス許
容限界値に制御する場合、加速時には各気筒毎に
リーン側空燃比のラフネス許容限界値に応じてリ
ーン側ラフネス許容限界値が小さい程燃料供給量
を増量するように制御したので、加速時のリーン
側ラフネス許容限界値の急激な悪化をその悪化の
程度に応じて補償防止して、エンジンラフネス抑
制のもとでの燃費の低減を図りながら、加速時の
失火を有効にかつ確実に防止でき、良好な加速性
を維持することができる。
(Effects of the Invention) As explained above, according to the air-fuel ratio control device for a multi-cylinder engine of the present invention, the air-fuel ratio is controlled to the lean-side roughness allowable limit value for each cylinder based on the combustion state of each cylinder. In this case, during acceleration, the fuel supply amount was controlled to be increased for each cylinder according to the roughness allowable limit value of the lean side air-fuel ratio, so that the smaller the lean side roughness allowable limit value was, the smaller the lean side roughness allowable limit value during acceleration. By compensating and preventing a sudden deterioration of the engine speed according to the degree of deterioration, it is possible to effectively and reliably prevent misfires during acceleration while reducing fuel consumption by suppressing engine roughness, thereby achieving good acceleration performance. can be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロツク図であ
る。第2図および第3図は本発明の実施例を示
し、第2図は全体概略構成図、第3図はコントロ
ールユニツトの判定回路の作動フローを示すフロ
ーチヤート図である。第4図は燃料消費率に対す
る空燃比のリーン側ラフネス許容限界値の特性を
示す説明図である。 1……エンジン、5a〜5d……燃料噴射弁、
8a〜8d……筒内圧力センサ、11……コント
ロールユニツト、12……判定回路、13……制
御回路、14……加速時検出手段、15……制御
手段。
FIG. 1 is a block diagram showing the configuration of the present invention. 2 and 3 show an embodiment of the present invention, FIG. 2 is a general schematic diagram, and FIG. 3 is a flowchart showing the operation flow of the determination circuit of the control unit. FIG. 4 is an explanatory diagram showing the characteristics of the lean-side roughness allowable limit value of the air-fuel ratio with respect to the fuel consumption rate. 1...Engine, 5a to 5d...Fuel injection valve,
8a to 8d... Cylinder pressure sensor, 11... Control unit, 12... Judgment circuit, 13... Control circuit, 14... Acceleration detection means, 15... Control means.

Claims (1)

【特許請求の範囲】[Claims] 1 各気筒毎に燃焼状態を検出する燃焼状態検出
手段を設け、該各燃焼状態検出手段の出力に基づ
いて各気筒毎に各気筒に供給される混合気の空燃
比をリーン側のラフネス許容限界値に制御するよ
うにした多気筒エンジンの空燃比制御装置におい
て、エンジンの加速時を検出する加速時検出手段
と、該加速時検出手段の出力を受け、加速時、各
気筒毎にリーン側空燃比のラフネス許容限界値に
応じてリーン側ラフネス許容限界値が小さい程燃
料供給量を増量するように制御する制御手段とを
設けたことを特徴とする多気筒エンジンの空燃比
制御装置。
1. A combustion state detection means for detecting the combustion state is provided for each cylinder, and based on the output of each combustion state detection means, the air-fuel ratio of the air-fuel mixture supplied to each cylinder is set to the allowable roughness limit on the lean side. In an air-fuel ratio control device for a multi-cylinder engine, the air-fuel ratio control device includes an acceleration detecting means for detecting when the engine is accelerating; 1. An air-fuel ratio control device for a multi-cylinder engine, comprising: control means for controlling a fuel supply amount to be increased as the lean-side roughness tolerance limit value is smaller, according to a fuel ratio roughness tolerance limit value.
JP6948985A 1985-04-01 1985-04-01 Air-fuel ratio controller for multiple cylinder engine Granted JPS61229936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6948985A JPS61229936A (en) 1985-04-01 1985-04-01 Air-fuel ratio controller for multiple cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6948985A JPS61229936A (en) 1985-04-01 1985-04-01 Air-fuel ratio controller for multiple cylinder engine

Publications (2)

Publication Number Publication Date
JPS61229936A JPS61229936A (en) 1986-10-14
JPH0584384B2 true JPH0584384B2 (en) 1993-12-01

Family

ID=13404168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6948985A Granted JPS61229936A (en) 1985-04-01 1985-04-01 Air-fuel ratio controller for multiple cylinder engine

Country Status (1)

Country Link
JP (1) JPS61229936A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2668557B2 (en) * 1988-07-14 1997-10-27 株式会社ユニシアジェックス Air-fuel ratio control device for internal combustion engine
JP3170067B2 (en) * 1992-10-02 2001-05-28 株式会社日立製作所 Lean combustion control device for internal combustion engine and fuel injection amount control device having the same

Also Published As

Publication number Publication date
JPS61229936A (en) 1986-10-14

Similar Documents

Publication Publication Date Title
JP2855952B2 (en) Idle speed control method for internal combustion engine
US5450837A (en) Apparatus and method for controlling the air-fuel ratio of an internal combustion engine
US5058550A (en) Method for determining the control values of a multicylinder internal combustion engine and apparatus therefor
US5697337A (en) Engine rotation speed controller
JPS58144642A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPH0652074B2 (en) Idling stabilizer for multi-cylinder engine
JPH0584384B2 (en)
JP2521039B2 (en) Engine air-fuel ratio control device
JPH0366503B2 (en)
JP2625862B2 (en) Fuel injection amount control device for multi-cylinder internal combustion engine
JP3765416B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0559994A (en) Control device for engine
JPH0536621B2 (en)
JPH02259251A (en) Combustion control device for internal combustion engine
JP3186889B2 (en) Engine air-fuel ratio control device
JP2750777B2 (en) Electronic control fuel supply device for internal combustion engine
JPS61229937A (en) Air-fuel ratio controller for multiple cylinder engine
JPS61215435A (en) Combustion controller for multicylinder engine
JPH0429855B2 (en)
JP2581046B2 (en) Fuel injection method for internal combustion engine
JPS62101857A (en) Electronically-controlled fuel injection device
JPS61185631A (en) Control unit for engine
JPS6189948A (en) Engine throttle valve controlling device
JPH06272601A (en) Control of engine
JPH06249050A (en) Misfire detecting device of engine