JPH0356834A - Pig for measuring magnetostrictive stress of cylindrical material - Google Patents

Pig for measuring magnetostrictive stress of cylindrical material

Info

Publication number
JPH0356834A
JPH0356834A JP19224389A JP19224389A JPH0356834A JP H0356834 A JPH0356834 A JP H0356834A JP 19224389 A JP19224389 A JP 19224389A JP 19224389 A JP19224389 A JP 19224389A JP H0356834 A JPH0356834 A JP H0356834A
Authority
JP
Japan
Prior art keywords
stress
cylindrical material
magnetostrictive
main body
pig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19224389A
Other languages
Japanese (ja)
Inventor
Sadaaki Sakai
禎明 境
Koji Ishihara
石原 耕司
Yuji Matoba
的場 有治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP19224389A priority Critical patent/JPH0356834A/en
Publication of JPH0356834A publication Critical patent/JPH0356834A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately grasp the distribution of stress which operates on a cylindrical material in a short time by providing plural tires wherein magnetostrictive sensors which travel in the lengthwise direction of the cylindrical material in contact with the internal surface of the cylindrical material are incorporated in the circumferential direction. CONSTITUTION:The pig for magnetostrictive stress measurement consists of a pig main body 2 fitted with scraper cups 1 at the front and rear parts and 36 tires 4 which are fitted in the circumferential direction of the main body 2 at equal intervals by arms 3, and a magnetostrictive sensor 10 fixed to a shaft 6 is incorporated in each tire 4. The tire 4 can rotate in contact with the internal surface of the cylindrical material 5 such as a steel pipe and the stress distribution of each axial section is measured while the tire rotates together with the pig main body 2. When bending stress operates on the cylindrical material 5, the magnetostrictive sensor 10 outputs a voltage, which is passed through an amplifier 12; and a computing element 13 calculates a stress value corresponding to each output voltage and an inclinometer 14 incorporated in the pig main body 2 detects the rotational position of the main body 2 and the computing element 13 calculates the phase difference from a reference position from the detection signal to know the stress distribution at each position of the cylindrical material 5.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、バイブ等円筒材料に作用する曲げ応力や、
軸方向に作用する応力を連続的に測定する非接触式の磁
歪応力測定用ビグに関する.[従来技術] 鋼管等に曲げ応力や軸方向の応力が作用している場合に
、応力の分布状態を把握する方法としては、従来例えば
X線応力測定法が実施されている.このX線応力測定法
は、測定装置の操作が煩雑であるので、多数の測定点を
測定するのは困難であり、多くても得られる測定データ
は円周方向に4点程度であり、自ずと限られたものであ
った.しかしながら、一般的な横造物について、そのI
m材科をミクロ的に見ると、材質的に均一なものではな
く、上記のような点計測によって得られた応力データが
,必ずしも構造物に作用している応力を示しているとは
いえず、応力データに加えるに測定者の経験的な判断を
必要としていた.そのため、XwA応力測定法よりも一
層簡便な磁歪応力測定法を利用することが考えられる.
この磁歪応力測定法は、磁性材料に荷重が作用すると透
磁率に異方性が生じ、荷重の作用する方向の透磁率が荷
重の作用する方向と直交する方向の透磁率よりも大きく
なるので、両透磁率の差を励磁コアと検出コアを有する
磁歪センサによって出力電圧として検出することにより
、主応力の方向および大きさを測定する方法であり、取
り扱いも極めて簡単なものである. [発明が解決しようとする課H] しかしながら、従来の磁歪応力測定方法は、般に磁歪セ
ンサを被測定面に接触させて行なうようにしているが、
被測定面と磁歪センサ間の距離(リフトオフ)が必ずし
も一定せず、次のような問題点があった.すなわち、上
記した磁歪センサによる応力測定の原理は,次のとおり
である.般に強磁性体の材料に応力が作用すると、磁歪
効果により応力の作用する方向の透磁率が、応力の作用
する方向と直交する方向の透磁率よりわずかではあるが
大きくなる.そして第9図の矢印方向にσの応力が働い
ている状態にある材料に、磁歪センサ21を構戒してい
る直交して組合せたコア22およびコア23を、それぞ
れのコアが材料24に作用する応力の方向とは45度傾
いた方向を示すような状態で対面させる.そして、第1
0図のようにコア22に巻いたコイル(励磁コイル)2
5に電流を流すと、コア22の足26がら出た磁束のう
ち、大部分は直接コア22の他の足27へ向うが、一部
は第9図に矢印で示すようにコア22の足26から材料
24の応力の作用している方向に流れてコア23の足2
8に達し、コア23中を流れてコア23の他の足29が
ら再び材料24の応力の作用している方向に流れてコア
22の足27に達し、コア22中を流れてコア22の足
26に達する.磁束の一部がこのような経路をたどるの
は、材料23の応力の作用する方向の透磁率が、応力の
作用する方向と直交するプj向の透磁率より太きいがら
である.以上のようむ磁気回路を、交流磁束について考
えると、コア23に巻いたコイル(異方性検出コイル)
30には電圧が生じる。この電圧Vは(1)式で表され
る. V一M ・ K・ (μ8 −μア 〉  ・・・・・
・・ (1)ただし、 M.材料の磁気的特性およびセンサと材料との距離(リ
フト・オフ)により定まる定数(磁歪感度〉 K;励磁条件、コイルの条件によって定まる定数 J1m:材料の応力作用方向の透磁率 Jay:材料の応力作用方向と直交する方向の透磁率 すなわち、磁歪センサの出力電圧Vは、材料の透磁率の
差(μ、一μy)に比例し、これはまた材料の応力作用
方向の応力6Xと材料の応力作用方向と直交する方向の
応力6yの差<6.−61 )に比例することになるの
で、この電圧Vにより材料に作用する応力を把握するこ
とができるのである. 上記した磁歪センサを用いて材料に作用する応力を測定
する方法においては、(1〉式の定数Mが磁歪センサの
リフトオフによって異なってくるので、従来技術のよう
にリフトオフが一定していないと、同一の応力が作用し
ていても、磁歪センサの出力電圧Vが場所によって異な
り、このVから応力を把握することは、困難になるとい
う}flFI題点がある. この発明は、従来技術の上述のような問題点を解消し、
リフトオフを一定に保つことができるので、材料に作用
する応力を精度よく連続的に測定できる円筒材料の磁歪
応力測定用ビグを提供することを目的としている. [課題を解決するための手段] この発明に係る磁歪応力測定用ビグは、円筒材料の内面
に接し,かつ円筒材料の長手方向に走行する磁歪センサ
を内蔵したタイヤを、円周方向に複数配した円筒材料の
磁歪応力測定用ビグである. [作用] この発明に係る磁歪応力測定用ビグは、阿筒材料の内面
に接し、かつ円筒材料の長手方向に走行する磁歪センサ
を内蔵したタイヤを、円周方向に複数配している.そし
て、磁歪センサをタイヤの車軸に固定して取り付けるこ
とにより、被測定面と磁歪センサとの間の距離(リフト
オフ)を常に一定に保つことができる.したがって、こ
の磁歪応力測定用ビグを円筒材料の軸方向に移動させる
ことにより、円筒材料に作用している円周方向各断面の
応力の分布を円筒材料の全長にわたって正確に把握する
ことができる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to bending stress acting on a cylindrical material such as a vibrator,
This article relates to a non-contact type magnetostrictive stress measurement vig that continuously measures stress acting in the axial direction. [Prior Art] When bending stress or axial stress is acting on a steel pipe or the like, X-ray stress measurement, for example, has been conventionally used as a method for understanding the state of stress distribution. In this X-ray stress measurement method, the operation of the measuring device is complicated, so it is difficult to measure a large number of measurement points, and the measurement data that can be obtained at most is about 4 points in the circumferential direction. It was limited. However, regarding general horizontal structures, their I
If we look at materials from a microscopic perspective, they are not uniform in material quality, and the stress data obtained by point measurement as described above does not necessarily indicate the stress acting on the structure. However, in addition to the stress data, the measurer's empirical judgment was required. Therefore, it may be possible to use the magnetostrictive stress measurement method, which is simpler than the XwA stress measurement method.
In this magnetostrictive stress measurement method, when a load is applied to a magnetic material, anisotropy occurs in the magnetic permeability, and the permeability in the direction in which the load is applied is larger than the permeability in the direction perpendicular to the direction in which the load is applied. This method measures the direction and magnitude of principal stress by detecting the difference between both magnetic permeabilities as an output voltage using a magnetostrictive sensor that has an excitation core and a detection core, and is extremely easy to handle. [Problem H to be solved by the invention] However, in the conventional magnetostrictive stress measurement method, the measurement is generally carried out by bringing the magnetostrictive sensor into contact with the surface to be measured.
The distance (lift-off) between the surface to be measured and the magnetostrictive sensor was not always constant, which caused the following problems. In other words, the principle of stress measurement using the magnetostrictive sensor described above is as follows. Generally, when stress is applied to a ferromagnetic material, the magnetic permeability in the direction in which the stress is applied becomes slightly larger than the permeability in the direction perpendicular to the direction in which the stress is applied due to the magnetostrictive effect. Then, cores 22 and 23, which are orthogonally combined and facing the magnetostrictive sensor 21, are placed on the material in which a stress of σ is acting in the direction of the arrow in FIG. 9, and each core acts on the material 24. The direction of the stress is 45 degrees tilted to the direction of the stress. And the first
Coil (excitation coil) 2 wound around core 22 as shown in Figure 0
5, most of the magnetic flux emitted from the legs 26 of the core 22 goes directly to the other legs 27 of the core 22, but some of it flows through the legs of the core 22 as shown by arrows in FIG. 26 to the direction in which the stress of the material 24 is acting, and the foot 2 of the core 23 flows.
8, flows through the core 23, flows through the other leg 29 of the core 23 again in the direction of stress in the material 24, reaches the leg 27 of the core 22, flows through the core 22, and flows through the other leg 29 of the core 22. Reach 26. Part of the magnetic flux follows such a path because the magnetic permeability of the material 23 in the direction in which the stress acts is greater than the magnetic permeability in the direction P which is orthogonal to the direction in which the stress acts. Considering the above magnetic circuit in terms of alternating current magnetic flux, the coil wound around the core 23 (anisotropy detection coil)
A voltage is generated at 30. This voltage V is expressed by equation (1). V1M・K・(μ8−μa〉・・・・・
... (1) However, M. A constant determined by the magnetic properties of the material and the distance (lift-off) between the sensor and the material (magnetostriction sensitivity) K: Constant determined by the excitation conditions and coil conditions J1m: Magnetic permeability in the stress action direction of the material Jay: Stress of the material The magnetic permeability in the direction perpendicular to the direction of action, i.e. the output voltage V of the magnetostrictive sensor, is proportional to the difference in the magnetic permeability of the material (μ, 1 μy), which is also proportional to the stress in the material stress 6X in the direction of action and the stress in the material. Since it is proportional to the difference in stress 6y in the direction perpendicular to the direction of action (<6.-61), the stress acting on the material can be determined from this voltage V. In the method of measuring stress acting on a material using the magnetostrictive sensor described above, the constant M in equation (1) changes depending on the lift-off of the magnetostrictive sensor, so if the lift-off is not constant as in the conventional technology, Even if the same stress is applied, the output voltage V of the magnetostrictive sensor differs depending on the location, and it is difficult to understand the stress from this V. Solving problems such as
The purpose of the present invention is to provide a vig for measuring magnetostrictive stress in cylindrical materials, which can continuously measure the stress acting on the material with high accuracy because the lift-off can be kept constant. [Means for Solving the Problems] The magnetostrictive stress measurement VIG according to the present invention includes a plurality of tires disposed in the circumferential direction that are in contact with the inner surface of a cylindrical material and have built-in magnetostrictive sensors that run in the longitudinal direction of the cylindrical material. This is a VIG for measuring magnetostrictive stress in cylindrical materials. [Function] The magnetostrictive stress measurement VIG according to the present invention has a plurality of tires disposed in the circumferential direction that are in contact with the inner surface of the cylindrical material and have built-in magnetostrictive sensors that run in the longitudinal direction of the cylindrical material. By fixing the magnetostrictive sensor to the axle of the tire, the distance (lift-off) between the surface to be measured and the magnetostrictive sensor can be kept constant. Therefore, by moving this magnetostrictive stress measuring vig in the axial direction of the cylindrical material, it is possible to accurately grasp the distribution of stress acting on the cylindrical material in each cross section in the circumferential direction over the entire length of the cylindrical material.

[実施例] 本発明の1実施例の磁歪応力測定用ビグを、第1図〜第
8図ににより説明する.第1図は、本発明の1実施例の
磁歪応力測定用ビグの側面図、第2図は第1図のA−A
矢視図である.本発明の1実施例の磁歪応力測定装置の
縦断面図である.この磁歪応力測定用ビグは、前後にス
クレーバーカツプ1が取り付けられたビグ本体2と、ビ
グ本体2の周方向に等間隔にアーム3により取り付けた
36個(θ−10度)のタイヤ4とからなっている.そ
して、このタイヤ4の内部には、車軸に固定した磁歪セ
ンサを内蔵しており、タイヤ4は鋼管等の円筒材f45
の内面に接触した状態で円筒軸方向に回転できるように
なっており、ビグ本体2の走行とともに回転しながら、
軸方向の各断面の応力分布を測定するようになっている
.磁歪センサを内蔵したタイヤ4は、第3図および第4
図に示すような構造となっている.すなわち、第3図は
タイヤ4の側面図、第4図はそのB−B矢視図であるが
、タイヤ4は、前記アーム3に固定されている車軸6の
まわりに軸受7を介して回転可能になっており、側板8
と、硬質樹脂でできており被測定物の表面に接触する車
輪部分9から構成されている.そして車軸6には、磁歪
センサ10が取り付け金具11により固定して取り付け
られている。そしてビグ本体2にタイヤ4を取り付ける
ときには、磁歪センサ10が円筒材料5の内面に対面し
、かつすべての磁歪センサ10と円筒材料内面までの距
離が同じになるようにして取り付けている。
[Example] A magnetostrictive stress measuring vig according to an example of the present invention will be explained with reference to FIGS. 1 to 8. FIG. 1 is a side view of a magnetostrictive stress measurement vig according to an embodiment of the present invention, and FIG. 2 is an A-A in FIG. 1.
This is a view from the arrow. 1 is a longitudinal cross-sectional view of a magnetostrictive stress measuring device according to an embodiment of the present invention. This magnetostrictive stress measurement VIG consists of a VIG main body 2 to which scraper cups 1 are attached at the front and rear, and 36 (θ-10 degrees) tires 4 mounted by arms 3 at equal intervals in the circumferential direction of the VIG main body 2. It has become. A magnetostrictive sensor fixed to the axle is built inside the tire 4, and the tire 4 is made of a cylindrical material F45 such as a steel pipe.
It is designed to be able to rotate in the cylindrical axis direction while in contact with the inner surface of the main body 2, and while rotating as the main body 2 moves,
It is designed to measure the stress distribution of each cross section in the axial direction. The tire 4 with a built-in magnetostrictive sensor is shown in FIGS. 3 and 4.
The structure is as shown in the figure. That is, FIG. 3 is a side view of the tire 4, and FIG. 4 is a view taken along the line B-B. It is possible, and the side plate 8
The wheel part 9 is made of hard resin and comes into contact with the surface of the object to be measured. A magnetostrictive sensor 10 is fixedly attached to the axle 6 with a fitting 11. When the tires 4 are attached to the VIG main body 2, the magnetostrictive sensors 10 are attached so as to face the inner surface of the cylindrical material 5, and the distances from all the magnetostrictive sensors 10 to the inner surface of the cylindrical material are the same.

第5図(a)に示すように矢印のような曲げ応力が円筒
材料5に作用した場合、円筒材料5の各断面の円周方向
の応力分布は、第5図<b>のグラフに示すようなSi
nカーブとなる.しかしながら、実際に使用されている
円筒材料5に作用している応力の円周方向の分布は、円
筒材料5に局部的な変形が発生していたり、タイヤ4と
円筒材料5との接触状態がかならずしも一定でないので
、完全なSinサインカーブとはならず、iiv記36
個のタイヤ4に内蔵した磁歪センサ10の出力電圧に基
づき演算された応力値をプロットしても、第6図のグラ
フの各点のようにSin力−ブから外れたものになる.
したがって、正しい応力分布を把握するためには、36
個のデータをSinカーブに近似させる必要がある。ま
た、ビグ本体2は円筒軸方向に走行中に円周方向に回転
することがある.このようにビグ本体2が円周方向に回
転すると、第7図の基準点であるO度の位置の応力を測
定していた磁歪センサが、ある時点て゛は90度回転し
た位置の応力を測定していることになるので、このよう
な場合には位相を補正してやる必要がある.そのため、
本発明の1実施例の磁歪応力測定用ビグを使って円筒材
料に作用する応力を測定するときには、第8図のような
装置横或により測定するようにしている.すなわち、そ
れぞれの磁歪センサ10の出力電圧を磁歪アンブ12で
増幅し、演算器13に送り、それぞれの出力電圧に対応
した応力値を演算する.一方ビグ本体2に傾斜計14を
内蔵させ、ビグ本体2の円周方向の回転位置を検出し、
その信号を演算器13に送って、基準位置からの位相差
を演算するようにしている.そして、演算された円筒材
科の軸方向の各断面の36個の応力値と、各断面におけ
るビグ木体2の位相差を記録計15に記録するようにし
ている.そしてこの記録に基づき、グラフ上に円周方向
の各位置の応力値をプロットして、応力の分布をグラフ
上でSinカーブに近似させたり、電子計算機を用いて
Sinカーブに近似させたりしている. 本考案の1実施例の磁歪応力測定用ビグは、上記のよう
に円筒材料に作用する応力測定に使用することにより、
円筒材料に作用する応力を正確にかつ短時間で測定する
ことができる. [発明の効果] この発明により、円筒材料に作用する応力の分布を正確
に、かつ短時間に把握することができる.
When bending stress as shown by the arrow in FIG. 5(a) acts on the cylindrical material 5, the stress distribution in the circumferential direction of each cross section of the cylindrical material 5 is shown in the graph in FIG. 5<b>. Like Si
It becomes an n curve. However, the circumferential distribution of the stress acting on the cylindrical material 5 that is actually used may be such that the cylindrical material 5 is locally deformed or the contact state between the tire 4 and the cylindrical material 5 is not correct. Since it is not always constant, it is not a perfect sin sine curve, and
Even if the stress values calculated based on the output voltage of the magnetostrictive sensor 10 built into each tire 4 are plotted, the values deviate from the sine force curve as shown at each point in the graph of FIG.
Therefore, in order to understand the correct stress distribution, 36
It is necessary to approximate these data to a sin curve. Further, the VIG main body 2 may rotate in the circumferential direction while traveling in the direction of the cylinder axis. When the VIG main body 2 rotates in the circumferential direction in this way, the magnetostrictive sensor that was measuring the stress at the 0 degree position, which is the reference point in Figure 7, at some point measures the stress at a position rotated 90 degrees. Therefore, in such a case, it is necessary to correct the phase. Therefore,
When measuring the stress acting on a cylindrical material using the magnetostrictive stress measuring vig according to one embodiment of the present invention, the measurement is carried out from the side of the device as shown in FIG. That is, the output voltage of each magnetostrictive sensor 10 is amplified by the magnetostrictive amplifier 12 and sent to the calculator 13, which calculates the stress value corresponding to each output voltage. On the other hand, an inclinometer 14 is built into the VIG main body 2 to detect the rotational position of the VIG main body 2 in the circumferential direction.
The signal is sent to a calculator 13 to calculate the phase difference from the reference position. Then, the calculated 36 stress values of each cross section in the axial direction of the cylindrical material and the phase difference of the Big wooden body 2 at each cross section are recorded on the recorder 15. Then, based on this record, the stress value at each position in the circumferential direction is plotted on a graph, and the stress distribution is approximated to a sine curve on the graph, or it is approximated to a sine curve using an electronic computer. There is. The magnetostrictive stress measurement VIG according to one embodiment of the present invention can be used to measure stress acting on a cylindrical material as described above.
The stress acting on cylindrical materials can be measured accurately and in a short time. [Effects of the Invention] According to this invention, the distribution of stress acting on a cylindrical material can be grasped accurately and in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例の磁歪応力測定用ビグの側面
図、第2図は第1図のA − .A矢視図、第3図はタ
イヤ4の側面図、第4図は第3図のB − B矢視図、
第5図(a)は円筒材料に曲げ応力が働いている状態を
示す説明図、第5図<b>Sinカーブとなる応力の分
布を示すグラフ、第6図は実際の応力測定データを示す
グラフ図、第7図はビグの回転方向を定義した説明図、
第8図は応力測定の装置構成を示す説明図、第9図は磁
歪センサによる応力測定の原理を示す説明図、第10図
は磁歪センサの説明図である.
FIG. 1 is a side view of a magnetostrictive stress measuring vig according to an embodiment of the present invention, and FIG. A view in the direction of arrow A, FIG. 3 is a side view of the tire 4, FIG. 4 is a view in the direction of B-B in FIG. 3,
Fig. 5 (a) is an explanatory diagram showing the state in which bending stress is applied to a cylindrical material, Fig. 5 (b) is a graph showing the stress distribution resulting in a sin curve, and Fig. 6 shows actual stress measurement data. Graph diagram, Figure 7 is an explanatory diagram that defines the rotation direction of the VIG,
FIG. 8 is an explanatory diagram showing the structure of a stress measurement device, FIG. 9 is an explanatory diagram showing the principle of stress measurement using a magnetostrictive sensor, and FIG. 10 is an explanatory diagram of the magnetostrictive sensor.

Claims (1)

【特許請求の範囲】[Claims]  円筒材料の内面に接し、かつ円筒材料の長手方向に走
行する磁歪センサを内蔵したタイヤを、円周方向に複数
配したことを特徴とする円筒材料の磁歪応力測定用ピグ
A pig for measuring magnetostrictive stress in a cylindrical material, characterized in that a plurality of tires each containing a built-in magnetostrictive sensor are disposed in the circumferential direction and are in contact with the inner surface of the cylindrical material and run in the longitudinal direction of the cylindrical material.
JP19224389A 1989-07-24 1989-07-24 Pig for measuring magnetostrictive stress of cylindrical material Pending JPH0356834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19224389A JPH0356834A (en) 1989-07-24 1989-07-24 Pig for measuring magnetostrictive stress of cylindrical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19224389A JPH0356834A (en) 1989-07-24 1989-07-24 Pig for measuring magnetostrictive stress of cylindrical material

Publications (1)

Publication Number Publication Date
JPH0356834A true JPH0356834A (en) 1991-03-12

Family

ID=16288043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19224389A Pending JPH0356834A (en) 1989-07-24 1989-07-24 Pig for measuring magnetostrictive stress of cylindrical material

Country Status (1)

Country Link
JP (1) JPH0356834A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517531U (en) * 1991-08-23 1993-03-05 大阪瓦斯株式会社 Magnetostrictive stress measuring device
JPH0680145U (en) * 1993-04-26 1994-11-08 大阪瓦斯株式会社 Magnetostrictive stress measuring device
JP2006064565A (en) * 2004-08-27 2006-03-09 Sumitomo Electric Ind Ltd Tire sensor unit, tire state detection device, and tire
CN103207118A (en) * 2012-01-16 2013-07-17 中国石油天然气集团公司 Real-time measuring apparatus and real-time measuring method for large deformation and stress of test tube in steel pipe bending deformation
CN107745610A (en) * 2017-10-27 2018-03-02 西安科技大学 Vehicle tyre flat tire prewarning device and method based on resistance dynamic tomography

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974992A (en) * 1972-11-17 1974-07-19
JPS5229253A (en) * 1975-08-29 1977-03-04 Sumitomo Metal Ind Ltd Shape monitoring method of running magnetic metal strips and stress me ter used with it
JPS6131962A (en) * 1984-07-25 1986-02-14 Nippon Kogyo Kensa Kk Inspecting instrument of piping

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974992A (en) * 1972-11-17 1974-07-19
JPS5229253A (en) * 1975-08-29 1977-03-04 Sumitomo Metal Ind Ltd Shape monitoring method of running magnetic metal strips and stress me ter used with it
JPS6131962A (en) * 1984-07-25 1986-02-14 Nippon Kogyo Kensa Kk Inspecting instrument of piping

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517531U (en) * 1991-08-23 1993-03-05 大阪瓦斯株式会社 Magnetostrictive stress measuring device
JPH0680145U (en) * 1993-04-26 1994-11-08 大阪瓦斯株式会社 Magnetostrictive stress measuring device
JP2006064565A (en) * 2004-08-27 2006-03-09 Sumitomo Electric Ind Ltd Tire sensor unit, tire state detection device, and tire
JP4713863B2 (en) * 2004-08-27 2011-06-29 住友電気工業株式会社 TIRE SENSOR UNIT, TIRE STATE DETECTION DEVICE, AND TIRE
CN103207118A (en) * 2012-01-16 2013-07-17 中国石油天然气集团公司 Real-time measuring apparatus and real-time measuring method for large deformation and stress of test tube in steel pipe bending deformation
CN107745610A (en) * 2017-10-27 2018-03-02 西安科技大学 Vehicle tyre flat tire prewarning device and method based on resistance dynamic tomography
CN107745610B (en) * 2017-10-27 2020-02-14 西安科技大学 Vehicle tire burst early warning device and method based on resistance dynamic tomography

Similar Documents

Publication Publication Date Title
JP2944315B2 (en) Preload detection device
US8970208B2 (en) Displacement measurement system and method using magnetic encodings
EP1360467B1 (en) Measurement of stress in a ferromagnetic material
US7215117B2 (en) Measurement with a magnetic field
JPH0356834A (en) Pig for measuring magnetostrictive stress of cylindrical material
JPH03503210A (en) Non-contact rod-shaped object stress measuring device
CN107727733A (en) A kind of conductivity meter based on impulse eddy current
JP2727671B2 (en) Magnetostrictive sensor built into the tire
JP3204073B2 (en) Stress measuring method and apparatus utilizing magnetostriction effect
JP3191726B2 (en) Stress measuring method and apparatus utilizing magnetostriction effect
JPS624641B2 (en)
JP2000002600A (en) Method for measuring stress
JPH01269049A (en) Method of inspecting deterioration of metallic material
JPH0381641A (en) Method and device for measuring hardness characteristic of material
JPH03176627A (en) Estimating method for stress of depressed pipe
EP0650028A2 (en) Method and apparatus for measurement of thickness of specimens
JP3173365B2 (en) Stress measurement method using magnetostriction effect
JPH03176625A (en) Bending stress estimating method for tube
JP3924207B2 (en) Stress measuring method and stress measuring apparatus
JP3130116B2 (en) Method and apparatus for measuring magnetostrictive stress of welded pipe
JP4691279B2 (en) Stress measuring method and stress measuring apparatus
SU696306A1 (en) Method of determining distance for contact-free measuring of mechanical oscillations
JPH01189511A (en) Apparatus for measuring thickness of non-magnetic sheet
JPH07253365A (en) Method and jig for measuring magnetostrictive stress of pipe
JPH03176628A (en) Stress estimating method by fixation of bending stress direction of tube