JPH0356629A - Method for refining ni-containing alloy - Google Patents

Method for refining ni-containing alloy

Info

Publication number
JPH0356629A
JPH0356629A JP1191518A JP19151889A JPH0356629A JP H0356629 A JPH0356629 A JP H0356629A JP 1191518 A JP1191518 A JP 1191518A JP 19151889 A JP19151889 A JP 19151889A JP H0356629 A JPH0356629 A JP H0356629A
Authority
JP
Japan
Prior art keywords
ore
refining
melting
raw material
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1191518A
Other languages
Japanese (ja)
Inventor
Retsu Nagabayashi
長林 烈
Morihiro Hasegawa
長谷川 守弘
Masahiro Kinugasa
衣笠 雅普
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP1191518A priority Critical patent/JPH0356629A/en
Publication of JPH0356629A publication Critical patent/JPH0356629A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To refine an Ni-contg. alloy at low cost in a short time by using an Ni raw material obtd. by pulverizing an Ni ore and subjecting it to various chemical treatment and the treatment such as roasting as an Ni source at the time of refining. CONSTITUTION:An Ni ore such as a magnesia silicate nickel ore is pulverized to leach Fe, Mg, Ni or the like by hydrochloric acid. The leach solution is filtered and is thereafter dried and roasted. The roasted product is subjected to water leaching and is subjected to filtering and roasting treatment. The obtd. Ni raw material of the Ni ore treated product constituted of the oxide, oxychloride or the like of Fe, Mg, Ni, etc., is regulated as Ni content to refine an Ni-contg. alloy such as a stainless steel. The Ni raw material is preferably subjected to reducing and melting by a smelting reduction method or in the combination of a smelting reduction method and a scrap melting method. In this way, by using the inexpensive Ni content, the refining of the Ni-contg. alloy can be executed at low cost as well as its decarburization is promoted by oxygen from the oxide or the like to permit the refining in a short time and the component regulation in slag can furthermore be executed by the Mg component.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はステンレス鋼やN1を多量に含有する合金を溶
製する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing stainless steel or an alloy containing a large amount of N1.

(従来技術とその問題点) 一般にオーステナイト系ステンレス鋼のように多量のN
iを含有する合金を溶製するには、あらかじめ高炭素フ
ェロニッケルやNi含有スクラップ等のNi源を電気炉
等の溶解炉で溶融し、その溶融粗金金を上吹きまたは底
吹き転炉、あるいはAOD炉に送入し,O,ガス等を吹
き込んで脱炭等の精錬を行っている. オーステナイト系ステンレス鋼のように多量にNiを含
む合金ではその製鋼コストのうちNi源の占める割合は
極めて大きく、したがって安価なNi源の使用が強く望
まれている。
(Prior art and its problems) Generally, a large amount of N is used in austenitic stainless steel.
To melt an alloy containing i, a Ni source such as high carbon ferronickel or Ni-containing scrap is first melted in a melting furnace such as an electric furnace, and the molten crude gold is heated in a top-blown or bottom-blown converter. Alternatively, it is sent to an AOD furnace and blown with O, gas, etc. to perform decarburization and other refining. In alloys containing a large amount of Ni, such as austenitic stainless steel, the Ni source accounts for a very large proportion of the steel manufacturing cost, and therefore it is strongly desired to use an inexpensive Ni source.

(従来技術とその問題点) 従来Ni含有合金のNi源は主として高炭素フエ口ニッ
ケル、Ni含有スクラップが使われ、成分調整用に低炭
素フエ口ニッケル、純Ni、ニッケルオキサイドシンタ
ー等が使われている。しかし,いずれのNi源も極めて
高価であり、製造コストが高くなる問題点がある. (発明の構成) 本発明はNi鉱石を、粉砕、塩酸浸出、濾過,乾燥・焙
焼、水浸出、濾過、焙焼の各工程により処理して得られ
たNi鉱石処理物を、Ni含有合金溶製時のNi@とし
て用いることにより従来のフェロニッケル、純Ni、ニ
ッケルオキサイドシンター等のNi源を用いる方法に比
べて,安価にNi含有合金を溶製することを図ったもの
である. 本出願の方法が適用されるNi鉱石は具体的にはケイ酸
苦土ニッケル鉱石、ラテライトである。
(Prior art and its problems) Conventional Ni sources for Ni-containing alloys are mainly high-carbon nickel and Ni-containing scrap, and low-carbon nickel, pure Ni, nickel oxide sinter, etc. are used for component adjustment. ing. However, both Ni sources are extremely expensive and have the problem of increasing manufacturing costs. (Structure of the Invention) The present invention processes Ni ore through the steps of crushing, hydrochloric acid leaching, filtration, drying/roasting, water leaching, filtration, and roasting. By using Ni@ as Ni@ during melting, it is possible to melt Ni-containing alloys at a lower cost than conventional methods using Ni sources such as ferronickel, pure Ni, and nickel oxide sinter. Specifically, the Ni ore to which the method of the present application is applied is magnesium silicate nickel ore and laterite.

本出願のうちでNi鉱石の予備処理法は、既に本願発明
者の一部により特許出願されている(特願昭62−15
9765、特願昭62−253557).この方法は、
ケイ酸苦土ニッケル鉱石を塩酸で浸出処理してSin,
を主或分とする浸出残渣とNi、Fe. Mgを含む浸
出液とに分離する工程(浸出工程)、浸出液を250〜
500℃に保持した焙焼炉中に滴下あるいは噴霧し、乾
燥・焙焼しFeの全量を酸化物,Mgの一部とNiの全
量を(Mg.Ni)OHCIとし、かつMgの大部分を
塩化マグネシウムとする工程(乾燥・焙焼工程)、焙焼
生成物を水洗してFeの酸化物の全量および水に不溶の
(Mg. Ni)OHCIとして存在するMgの一部と
Niの全量を水溶液より分離する工程(水洗工程)、よ
りなることを特徴とするケイ酸苦土ニッケル鉱石の処理
方法である. 本発明では上記特許出願に記載された方法によって製造
したy1鉱石処理物をそのままか、あるいは焙焼しCl
を除いた後、Ni含有合金溶製時のNi源として使用す
ることにより、従来のフエ口ニッケル、純Ni,ニッケ
ルオキシド・シンター等のNi′gを使用するよりも、
低コストでNi含有合金を製造できることを特徴とする
. Ni鉱石処理物は主としてFe, M(, Niiの酸
化物あるいはこれら酸化物とNu. Mgのオキシ塩化
物で構威されているので、Ni鉱石処理物を溶湯中に添
加するとFaとN1はほぼlOO%還元されて溶湯中に
入る.一方、Mgの化合物は溶融しスラグ相に入る.こ
の際,酸化鉄、Niのオキシ塩化物または酸化物の分解
により発生する酸素によって、脱炭が促進され,精錬時
間の短縮、酸素単位の減少を図ることができる.さらに
、酸化鉄,酸化Niの分解反応,xgOの溶解は吸熱反
応であるので、llfi鉱石処理物の投入によって溶湯
の温度を制御できる.また、Ni鉱石処理物に含まれる
Mgのオキシ塩化物あるいは酸化物は溶解してMgOと
なリスラグ中に入り、スラグ中のMgO含有量が増える
ため、耐火物の溶損を少なくする効果がある. このように、従来のNi含有合金を溶製する際のNi源
であるフエ口ニッケル、,lliNi、ニッケルオキサ
イドシンター等に代わってNi鉱石処理物を用いること
により、製造コストを下げることができる利点の他に,
説炭を促進して精錬時間を短縮し,出湯温度の調整も可
能としかつスラグの或分mMも行うことができる利点が
ある。
The pretreatment method for Ni ore in this application has already been patented by some of the inventors of this application (Japanese Patent Application No. 62-15
9765, patent application No. 62-253557). This method is
Sin, which is produced by leaching silicate nickel ore with hydrochloric acid,
The leaching residue mainly contains Ni, Fe. The process of separating the leachate from the leachate containing Mg (leaching process), the leachate is
Dropped or sprayed into a roasting furnace maintained at 500°C, dried and roasted to convert the total amount of Fe into oxide, a portion of Mg and the total amount of Ni into (Mg.Ni)OHCI, and most of Mg into OHCI. In the step of forming magnesium chloride (drying/roasting step), the roasted product is washed with water to remove the total amount of Fe oxide and a portion of Mg and Ni present as water-insoluble (Mg.Ni)OHCI. This is a method for processing nickel silicate ore, which is characterized by comprising a step of separating it from an aqueous solution (water washing step). In the present invention, the processed y1 ore produced by the method described in the above patent application is used either as it is or by roasting.
By using Ni'g as a Ni source when melting Ni-containing alloys after removing the
It is characterized by the ability to manufacture Ni-containing alloys at low cost. Processed Ni ore is mainly composed of oxides of Fe, M(, Nii, or these oxides and oxychloride of Nu.Mg), so when processed Ni ore is added to the molten metal, Fa and N1 are almost It is reduced by 1OO% and enters the molten metal.Meanwhile, the Mg compound melts and enters the slag phase.At this time, decarburization is promoted by oxygen generated by the decomposition of iron oxide, Ni oxychloride, or oxide. , it is possible to shorten the refining time and reduce the oxygen unit.Furthermore, since the decomposition reaction of iron oxide and Ni oxide and the dissolution of xgO are endothermic reactions, the temperature of the molten metal can be controlled by adding the processed llfi ore. In addition, the Mg oxychloride or oxide contained in the processed Ni ore dissolves and enters the reslag into MgO, increasing the MgO content in the slag, which has the effect of reducing the erosion of refractories. As described above, manufacturing costs can be reduced by using processed Ni ore instead of conventional Ni sources such as Huekuchi nickel, lliNi, nickel oxide sinter, etc. when melting Ni-containing alloys. In addition to the advantages of
It has the advantage of accelerating coal melting, shortening the refining time, making it possible to adjust the tapping temperature, and also being able to reduce the slag to a certain extent.

(発明の具体的開示) 次に実施例を掲げるが本発明はこれに限定されるもので
はない。
(Specific Disclosure of the Invention) Examples are given below, but the present invention is not limited thereto.

実施例1 ニューカレドニア産ガーニエライトを80メッシュ以下
に粉砕し,6規定塩酸で大気圧下60〜90℃で3時間
浸出した.この時、Ni. Feはほぼ100%浸出し
た.この塩酸浸出液を濾過しSin,を除去した.この
濾液を乾燥焙焼炉に肩下し300〜350℃に保持した
流動層中で乾燥焙焼した.この焙焼生或物を重量で2〜
3倍の水によって水浸出し、11gcl,を含む水溶物
と、Feの酸化物とNiとMgのオキシ塩化物からなる
水洗残渣を得た.この水洗残渣を乾燥後700℃で焙焼
した.このNi鉱石処理物のNi含有量は12.0%.
 Fe含有量は37.4%. Mg含有量は11.6%
であった。このNi鉱石処理物は0,5t/t一鉱石の
割合で得られた。
Example 1 Garnierite from New Caledonia was crushed to 80 mesh or less and leached with 6N hydrochloric acid at 60-90°C under atmospheric pressure for 3 hours. At this time, Ni. Almost 100% of Fe was leached out. This hydrochloric acid leachate was filtered to remove Sin. This filtrate was transferred to a dry roasting furnace and dried and roasted in a fluidized bed maintained at 300 to 350°C. The weight of this roasted raw food is 2~
Water leaching was carried out with 3 times as much water to obtain a water-washed residue consisting of an aqueous solution containing 11 gcl, an oxide of Fe, and oxychlorides of Ni and Mg. The water-washed residue was dried and roasted at 700°C. The Ni content of this processed Ni ore is 12.0%.
Fe content is 37.4%. Mg content is 11.6%
Met. This processed Ni ore was obtained at a rate of 0.5 t/t/ore.

溶解炉でスクラップおよびフェロクロム、フエ口ニッケ
ルをまえもって溶解した.この母溶湯の成分はC 2.
0%. Si 0.40%、Cr 19.1%、Ni 
7.Q%である.この母溶湯を転炉に移し、酸素吹錬を
行ない. Ar攪拌しながら,説炭精錬を行った.この
攪拌ガスと伴に上記Ni鉱石処理物微粉末を溶湯1t当
り0.124t吹き込んだ。このNi鉱石処理物微粉末
の吹き込みにより溶湯中のNi含有量は約1.0%増加
して8.0%となった。また、鉄酸化物もほぼ全量が還
元されるため溶湯量は、母溶湯t当り0.061 t増
加した.脱炭速度は従来法(Ni鉱石処理物微粉末を添
加せず他の条件は同一とした場合)に比較して0.00
6%C/min程度速くなった.この時、NiおよびF
eの酸化物の分解吸熱反応あるいはMgOの溶解潜熱に
よる冷却効果により、溶湯温度は40℃低下した. M
gOは完全に溶解してスラグ中に入った.上記実施例に
おけるNi鉱石処理物の吹き込み量と溶湯中の増加分を
対比すれば吹き込んだNi鉱石処理物のNiおよびFe
はほとんど全量還元して合金中に入ることが明らかであ
る.実施例2 実施例1と同様にして製造したNi鉱石処理物と予備還
元したCr鉱石ペレット(SRCベレット)を溶融還元
して18%Cr−8%Ni−5%Cの含ニッケルステン
レス素溶湯を製造した. 種湯として0.3t/t−18−8ステンレス鋼の溶湯
を装入した溶融還元炉中にNi鉱石処理物0.67t/
t−18−8ステ’/Lzス鋼、SRCぺL/ット0.
350t/t−18−8ステンレス鋼および塊コークス
、フラックス(石灰、珪砂)を連続的に添加し、酸素吹
精を行った.原料を装入し終わったときのスラグ組成は
qgo =22%、Sin2= 30%、CaO = 
35%、Al203= 15%であった。
Scrap, ferrochrome, and nickel were melted in advance in a melting furnace. The component of this mother molten metal is C2.
0%. Si 0.40%, Cr 19.1%, Ni
7. Q%. This mother molten metal is transferred to a converter and subjected to oxygen blowing. Coal refining was performed while stirring with Ar. Together with this stirring gas, 0.124 t of the Ni ore treated fine powder was blown per 1 t of molten metal. The Ni content in the molten metal increased by about 1.0% to 8.0% by blowing the Ni ore processed powder into the melt. Furthermore, since almost all of the iron oxides were reduced, the amount of molten metal increased by 0.061 t per t of mother molten metal. The decarburization rate was 0.00 compared to the conventional method (when no Ni ore processed powder was added and other conditions were the same).
It became faster by about 6%C/min. At this time, Ni and F
The molten metal temperature decreased by 40°C due to the endothermic decomposition reaction of the oxide of e or the cooling effect due to the latent heat of dissolution of MgO. M
gO was completely dissolved and entered the slag. Comparing the amount of injected Ni ore processed material in the above example and the increase in the amount in the molten metal, the amount of Ni and Fe in the injected Ni ore processed material is
It is clear that almost the entire amount of is reduced and enters the alloy. Example 2 Processed Ni ore produced in the same manner as in Example 1 and pre-reduced Cr ore pellets (SRC pellets) were melted and reduced to produce 18% Cr-8% Ni-5% C nickel-containing stainless steel molten metal. Manufactured. 0.67 t/g of processed Ni ore was placed in a smelting reduction furnace charged with 0.3 t/t/t-18-8 stainless steel molten metal as seed water.
T-18-8 ST'/Lz steel, SRC PeL/t0.
350t/t-18-8 stainless steel, lump coke, and flux (lime, silica sand) were continuously added, and oxygen blowing was performed. The slag composition after charging the raw materials is qgo = 22%, Sin2 = 30%, CaO =
35%, Al203=15%.

実施例3 実施例1と同様にして製造したNi鉱石処理物と予備還
元したCr鉱石ペレット(SRCペレット)を溶融還元
して得られた溶湯と、スクラップを溶かして得られた溶
湯をあわせて、I8%Cr−8%Ni−5%Cの含ニッ
ケルステンレス素溶湯を製造した。
Example 3 A molten metal obtained by melting and reducing a processed Ni ore produced in the same manner as in Example 1 and pre-reduced Cr ore pellets (SRC pellets) and a molten metal obtained by melting scrap were combined. A molten nickel-containing stainless steel containing I8%Cr-8%Ni-5%C was produced.

電気炉あるいは炭材を用いた脱電力炉でスクラップを溶
解した.得られたl5%Cr−7%Ni−5%Cの溶湯
の0.723t/t−18−8ステンレス鋼を種湯とし
、これにNi鉱石処理物0.267t/t−18−8ス
テンレス鋼、SRCベレット0.139t/t−18−
1tステンレスmおよび塊コークス、フラックス(石灰
、珪砂)を連続的に添加し、酸素吹精を行った.原料を
装入し終わったときのスラグ組成は、MgO = 29
%、Sin2=35%,CaO =31%.A1,O,
=5%であった.(発明の効果)
The scrap was melted in an electric furnace or a power-free furnace using carbonaceous materials. The obtained 15%Cr-7%Ni-5%C molten metal of 0.723t/t-18-8 stainless steel was used as a seed water, and 0.267t/t-18-8 stainless steel of the treated Ni ore was added to it. , SRC pellet 0.139t/t-18-
1 ton of stainless steel, lump coke, and flux (lime, silica sand) were continuously added, and oxygen blowing was performed. The slag composition after charging the raw materials is MgO = 29
%, Sin2=35%, CaO=31%. A1, O,
= 5%. (Effect of the invention)

Claims (1)

【特許請求の範囲】 1、Ni含有合金を溶製するにあたり、Ni分として、
Ni鉱石を、粉砕、塩酸浸出、濾過、乾燥・焙焼、水浸
出、濾過、焙焼の各工程により処理して得られたNi原
料を用いることを特徴とするNi含有合金の溶製方法。 2、Ni原料の還元溶解方法として、溶融還元法を用い
ることを特徴とする、請求項1に記載のNi含有合金の
溶製方法。 3、Ni原料の還元溶解方法としての溶融還元法と、ス
クラップ溶解法を、組合せて用いることを特徴とする、
請求項1に記載のNi含有合金の溶製方法。
[Claims] 1. When melting a Ni-containing alloy, as the Ni content,
A method for melting a Ni-containing alloy, characterized by using a Ni raw material obtained by processing Ni ore through the steps of crushing, hydrochloric acid leaching, filtration, drying/roasting, water leaching, filtration, and roasting. 2. The method for producing a Ni-containing alloy according to claim 1, characterized in that a melting reduction method is used as the method for reducing and melting the Ni raw material. 3. Characterized by using a combination of a melting reduction method as a method for reducing and melting Ni raw materials and a scrap melting method,
A method for producing a Ni-containing alloy according to claim 1.
JP1191518A 1989-07-26 1989-07-26 Method for refining ni-containing alloy Pending JPH0356629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1191518A JPH0356629A (en) 1989-07-26 1989-07-26 Method for refining ni-containing alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1191518A JPH0356629A (en) 1989-07-26 1989-07-26 Method for refining ni-containing alloy

Publications (1)

Publication Number Publication Date
JPH0356629A true JPH0356629A (en) 1991-03-12

Family

ID=16275991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1191518A Pending JPH0356629A (en) 1989-07-26 1989-07-26 Method for refining ni-containing alloy

Country Status (1)

Country Link
JP (1) JPH0356629A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010522824A (en) * 2007-03-29 2010-07-08 エム.カー.エヌ.テクノロジース ゲゼルシャフト ミット ベシュレンクテル ハフツング Melt metallurgy process for the production of metal melts and transition metal-containing additive materials used therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010522824A (en) * 2007-03-29 2010-07-08 エム.カー.エヌ.テクノロジース ゲゼルシャフト ミット ベシュレンクテル ハフツング Melt metallurgy process for the production of metal melts and transition metal-containing additive materials used therefor

Similar Documents

Publication Publication Date Title
US1717160A (en) Reduction of complex ores
CN102690944A (en) Method for comprehensively recovering vanadium, titanium and iron from high-vanadium vanadium titano-magnetite
AU2005338902A1 (en) A process for recovery of iron from copper slag
CN101886231B (en) Method for manufacturing nickel iron alloy
JP5778215B2 (en) Method for producing austenitic stainless steel from nickel laterite and chromite ores
US3947267A (en) Process for making stainless steel
CN103045790A (en) Nickel-containing steel production process
JPH0356629A (en) Method for refining ni-containing alloy
US3043681A (en) Metallurgical processes
JPH05125425A (en) Production of ni-containing alloy
CN110342517B (en) Method for directly producing titanium carbide from vanadium titano-magnetite
CN111500813B (en) Method for utilizing iron and vanadium resources by melting vanadium-titanium metallized pellets in electric furnace
JPS61166910A (en) Production of chromium-containing alloy
JP3063537B2 (en) Stainless steel manufacturing method
JPS6043444A (en) Method for recovering valuable metal from special steel dust and sludge
JPH06279881A (en) Treatment of magnesium silicate-nickel ore
US3202503A (en) Production of high quality steel from iron sand
CA2820676C (en) Method for manufacturing an austenitic stainless steel from a nickel laterite ore and a chromite ore
JPS61279608A (en) Production of high-chromium alloy by melt reduction
US3077396A (en) Method of feni alloy production from nickel bearing iron ores
JPH0463241A (en) Method for melting ni-containing alloy
US2978317A (en) Method of processing lateritic nickeliferous ores
JPH06128663A (en) Treatment of granierite ore
JP2000328153A (en) Method for recovering cobalt
US2914396A (en) Process for treating ore