JP2000328153A - Method for recovering cobalt - Google Patents

Method for recovering cobalt

Info

Publication number
JP2000328153A
JP2000328153A JP13354399A JP13354399A JP2000328153A JP 2000328153 A JP2000328153 A JP 2000328153A JP 13354399 A JP13354399 A JP 13354399A JP 13354399 A JP13354399 A JP 13354399A JP 2000328153 A JP2000328153 A JP 2000328153A
Authority
JP
Japan
Prior art keywords
cobalt
metal
solution
recovering
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13354399A
Other languages
Japanese (ja)
Other versions
JP4262829B2 (en
Inventor
Mitsuhiko Kudo
光彦 工藤
Yukio Sakuma
幸雄 佐久間
Sei Shimizu
▲瀞▼ 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asaka Riken Industrial Co Ltd
Original Assignee
Asaka Riken Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asaka Riken Industrial Co Ltd filed Critical Asaka Riken Industrial Co Ltd
Priority to JP13354399A priority Critical patent/JP4262829B2/en
Publication of JP2000328153A publication Critical patent/JP2000328153A/en
Application granted granted Critical
Publication of JP4262829B2 publication Critical patent/JP4262829B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for recovering cobalt which enables metal cobalt to be recovered only with a device of small or middle scale by wet-reducing cobalt valuables in an aqueous solution to generate metallic cobalt and depositing the metallic cobalt as precipitates outside the system and which further promotes recovery of used lithium batteries to dissolve pollution problems thereby. SOLUTION: This method for recovering cobalt comprises a dissolving process in which cobalt in the cobalt valuables is dissolved in an inorganic acid and indissoluble components are refined and excluded to generate a reductive solution, a recovering process in which an amphoteric metal having a standard electrode potential in a range of -2.4 V to -0.6 V is added to the reductive solution to reduce and recover the cobalt by separation and a purifying process in which recovered cobalt is alkali-washed to remove the amphoteric metal. Further, in the recovering process, after cobalt is reduced and recovered by solid-liquid separation, a process in which a new amphoteric metal with larger specific surface area than that used before is added to a solution to be reduced and residual cobalt is reduced and recovered by separation, may be repeated for plural times.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、コバルト化合物
の水溶液から金属コバルトを製造する方法に関し、特
に、リチウムイオン電池の正極活物質に含有するコバル
ト有価物を水溶液中で湿式還元することにより、金属性
状のコバルトを生成させ沈澱として系外に析出させるコ
バルトの回収方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing metallic cobalt from an aqueous solution of a cobalt compound. The present invention relates to a method of recovering cobalt, which forms cobalt having properties and precipitates out of the system as a precipitate.

【0002】[0002]

【従来の技術とその課題】コバルト化合物は、金鉱山の
様に単独の鉱山として存在する訳では無く、例えば、銅
・ニッケルが産出する鉱山中に少量成分として存在す
る。そのため、工業的には鉱石を精選し主成分の元素類
からコバルトを順次精製して含有率の高いコバルト物質
とした後、主に以下の処理法に従って金属コバルトを得
ている。
2. Description of the Related Art Cobalt compounds do not exist as independent mines like gold mines, but exist as minor components in mines producing copper and nickel, for example. Therefore, industrially, ore is carefully selected and cobalt is sequentially purified from the main component elements to obtain a cobalt material having a high content, and then metallic cobalt is obtained mainly according to the following processing method.

【0003】その方法は、 (イ)コバルト物質を溶解し、電気分解等を繰返して行
う事により粗コバルト金属を得る湿式電解法による。 (ロ)コバルト酸化物を還元剤等の存在又は不存在下、
不活性雰囲気中で熔融してコバルト金属を得る乾式熔錬
法による。 (ハ)(イ)及び(ロ)の併用による精錬方法による。
である。
The method is based on (a) a wet electrolysis method in which a cobalt substance is dissolved and electrolysis is repeatedly performed to obtain a crude cobalt metal. (B) Cobalt oxide in the presence or absence of a reducing agent or the like,
It is based on a dry smelting method to obtain cobalt metal by melting in an inert atmosphere. (C) Refining method using a combination of (a) and (b).
It is.

【0004】しかしながら、上述した鉱石精錬による方
法(イ)では、多くの電力を消費する工程を繰返す必要
があった。また、方法(ロ)では、熔融させるための膨
大な熱源が必要であり、溶融時に発生する排ガスを処理
して公害問題をなくす必要もあった。
[0004] However, in the above method (a) based on ore refining, it is necessary to repeat a step of consuming a large amount of electric power. In addition, the method (b) requires an enormous heat source for melting, and also needs to treat exhaust gas generated during melting to eliminate a pollution problem.

【0005】さらに上記の方法はいずれも、付帯設備が
大掛かりになり精製設備全体の規模が大きくなるため、
従来の精練所では少量のコバルト原料が入荷されて来て
も、小回りに操業し生産する事が困難であった。
Further, in each of the above-mentioned methods, the size of the auxiliary equipment becomes large and the scale of the entire refining equipment becomes large.
In conventional smelters, it was difficult to operate and produce small quantities even if a small amount of cobalt material was received.

【0006】また一般に、水溶液中で標準電極電位が貴
である金属をイオン化した後、該当する元素イオンより
標準電極電位が卑である金属を添加すれば、標準電極電
位が貴である金属イオンが金属に還元される。
In general, a metal having a noble standard electrode potential is ionized in an aqueous solution, and then a metal having a noble standard electrode potential is added to the corresponding element ion. Reduced to metal.

【0007】これを利用して還元銅を得る工業的方法と
しては、例えば特開H7−138620があり、銅イオ
ン(Cu++)の溶液に、金属状の鉄(Fe)を添加して、
銅イオンを還元し金属銅として系外に析出させて回収し
ている。
[0007] An industrial method for obtaining reduced copper by utilizing this is disclosed in, for example, Japanese Patent Application Laid-Open No. H7-138620. Metallic iron (Fe) is added to a solution of copper ions (Cu ++ ).
Copper ions are reduced and precipitated out of the system as metallic copper for recovery.

【0008】しかしながら、工業的に実際に行われてい
る反応は、2種の元素の標準電極電位が離れており、且
つ一方の元素が水素の標準電極電位よりも貴であって、
他の元素が水素の標準電極電位よりも卑である元素間に
ついてのみ工業的に行われているのが実状であった。
[0008] However, in a reaction that is actually carried out industrially, the standard electrode potentials of two elements are far from each other, and one element is more noble than the standard electrode potential of hydrogen.
Actually, only the elements between which other elements are lower than the standard electrode potential of hydrogen are industrially used.

【0009】コバルトイオンのように、水素よりも標準
電極電位が卑である物質を還元する為には、標準電極電
位が著しく卑な金属;換言すれば、反応性に富む金属を
利用する必要があり、工業的に試みる場合には、反応の
誘導期間が長くなる場合とか、逆に急激な発熱を伴って
反応が進むという、所謂暴走反応が起りやすく、これを
制御する事が困難であるため、水溶液中から金属コバル
トを析出させて回収することは行われていなかった。
In order to reduce a substance having a lower standard electrode potential than hydrogen, such as a cobalt ion, it is necessary to use a metal having a significantly lower standard electrode potential; in other words, a metal having a high reactivity is required. In the case of industrial trials, a so-called runaway reaction, in which the induction period of the reaction is prolonged, or the reaction proceeds with rapid heat generation, on the contrary, is likely to occur, and it is difficult to control this. However, it has not been performed to precipitate and recover metallic cobalt from an aqueous solution.

【0010】一方、生産量が飛躍的に伸びているリチウ
ムイオン二次電池には、コバルト酸リチウムが使用され
ている。従って、使用済み電池等からコバルト物質を回
収し、簡単な方法でコバルトを金属化する事が可能とな
れば、希少資源のリサイクルが効率的に出来て、産業界
における価値は大きい。
[0010] On the other hand, lithium cobalt oxide is used in lithium ion secondary batteries whose production volume is increasing dramatically. Therefore, if it becomes possible to recover cobalt material from a used battery or the like and to metallize cobalt by a simple method, rare resources can be efficiently recycled, and the value in the industry is great.

【0011】従来、リチウム電池からコバルト有価物を
回収する方法としては、例えば特開平6−346160
に記載されており、この方法では使用済み電池を直接焙
焼し安定化した後、粉砕してコバルト含有物を得るとい
うものであった。
Conventionally, a method of recovering cobalt valuables from a lithium battery is disclosed in, for example, JP-A-6-346160.
According to this method, a used battery is directly roasted and stabilized, and then pulverized to obtain a cobalt-containing material.

【0012】この方法では、焙焼時に有害なHFガス等
を大量に放出する可能性があり、その対策を講じると設
備費が大幅に増加するという欠点を有していた。そのた
め、使用済みのリチウム電池等から、コバルト金属のリ
サイクルの企業化を検討しても、対象となる1回当たり
の原料が少量過ぎては採算が合わないことになる。
This method has a drawback that a large amount of harmful HF gas or the like may be released at the time of roasting. Therefore, even if the recycling of cobalt metal from a used lithium battery or the like is considered for commercialization, it is not profitable if the amount of the target raw material is too small.

【0013】従って、簡単にコバルト資源を回収してコ
バルト金属を提供すると言う訳には行かず、曳いては使
用済み電池の回収が円滑に行われなくなり、新たな公害
発生の遠因となる可能性が生じていた。
[0013] Therefore, it cannot be said that the cobalt resources can be easily recovered to provide the cobalt metal, and the used batteries cannot be smoothly recovered by pulling, which may cause a new pollution. Had occurred.

【0014】最近、本発明者らによるリチウム電池から
コバルトを含む有価物を回収する新たな方法が開示され
ている(工藤、清水、特願平09−026759)。こ
れによれば、充電されたリチウム電池であっても水溶液
中で放電することで安定化した後、加熱・粉砕工程を経
て、コバルト化合物と炭素粉末から構成されるコバルト
純分が約50%程度の物質(コバルト滓と称する)を得
る事が可能であるが、コバルト有価物を更に高純度化し
てコバルト金属とするための新たな技術が望まれてい
た。
Recently, a new method for recovering valuable materials containing cobalt from a lithium battery by the present inventors has been disclosed (Kudo, Shimizu, Japanese Patent Application No. 09-026759). According to this, even a charged lithium battery is stabilized by discharging in an aqueous solution, and then undergoes a heating and pulverizing process, so that a pure cobalt content composed of a cobalt compound and carbon powder is about 50%. (Referred to as cobalt slag) can be obtained, but a new technique for further purifying cobalt valuables into cobalt metal has been desired.

【0015】[0015]

【目的】本願発明は上述した問題点に鑑み為されたもの
であり、コバルト有価物を水溶液中で湿式還元し、金属
性状のコバルトを生成させ沈澱として系外に析出させる
ことで、中小の規模の設備のみでコバルト金属の回収を
可能とし、使用済みリチウム電池の回収をさらに推進
し、ひいては公害問題を解消する、新規なコバルトの回
収方法を提供するものである。
The present invention has been made in view of the above-mentioned problems, and is intended to reduce a cobalt valuable material in an aqueous solution by wet reduction to produce metallic metallic cobalt and to precipitate it out of the system as a precipitate. It is intended to provide a new method of recovering cobalt, which makes it possible to recover cobalt metal with only the above-mentioned equipment, further promotes the recovery of used lithium batteries, and solves the problem of pollution.

【0016】[0016]

【課題を解決するための手段】本願発明のコバルト回収
方法は以下のように構成される。すなわち、コバルト有
価物中のコバルトを無機酸により溶解し、不溶解成分を
精製排除して還元溶解液を生成する溶解工程と、該還元
溶解液を、−2.4V〜−0.6Vの範囲の標準電極電
位を有する1又は2以上の還元金属の添加により、コバ
ルトを還元して分離回収する回収工程と、からなること
を特徴とする。
The method for recovering cobalt of the present invention is constituted as follows. That is, a dissolving step of dissolving cobalt in a cobalt valuable material with an inorganic acid and purifying and eliminating insoluble components to produce a reduced dissolving solution, and forming the reduced dissolving solution in a range of -2.4V to -0.6V. A reduction step of separating and recovering cobalt by adding one or more reducing metals having a standard electrode potential of.

【0017】あるいは、コバルト有価物中のコバルトを
無機酸により溶解し、不溶解成分を精製排除して還元溶
解液を生成する溶解工程と、該還元溶解液を、−2.4
V〜−0.6Vの範囲の標準電極電位を有する1又は2
以上の両性金属の添加により、コバルトを還元して分離
回収する回収工程と、該回収工程により回収したコバル
トをアルカリ洗浄して両性金属を除去する精製工程と、
からなることを特徴とする。
Alternatively, a dissolving step of dissolving cobalt in the cobalt valuables with an inorganic acid and purifying and eliminating insoluble components to form a reduced dissolving solution;
1 or 2 having a standard electrode potential in the range of V to -0.6V
By the addition of the amphoteric metal, a recovery step of reducing and separating and recovering cobalt, a purification step of removing the amphoteric metal by washing the cobalt recovered in the recovery step with alkali,
It is characterized by consisting of.

【0018】なお、上記回収工程において、還元金属又
は両性金属の添加によりコバルトを還元して固液分離し
て回収した後に、液体分の被還元溶解液に対して、さら
に前回より比表面積を大きくした新たな還元金属又は両
性金属を添加することにより、コバルトを還元して分離
回収する過程を複数回繰り返すようにしてもよい。
In the above-described recovery step, after the cobalt is reduced by adding a reducing metal or an amphoteric metal to recover the solid-liquid separation, the specific surface area of the liquid to be reduced and dissolved is further increased from the previous time. The process of reducing and separating and collecting cobalt by adding a new reduced metal or amphoteric metal may be repeated a plurality of times.

【0019】[0019]

【作用】以下に、本願発明のコバルト回収方法による作
用について、操作手順に従って詳述することとする。 (1) 溶解工程 溶解工程では、コバルト有価物を無機酸により溶解し、
不溶解成分を精製して還元溶解液とする。なお、当該コ
バルト有価物となる原料は特に限定されるものではない
が、コバルト含有率が高く、かつ他の金属含有率の低い
ことが、金属コバルトの純度を向上させる観点から重要
となる。
The operation of the method for recovering cobalt of the present invention will be described below in detail according to the operation procedure. (1) Dissolution step In the dissolution step, cobalt valuables are dissolved with an inorganic acid,
The insoluble components are purified to obtain a reduced solution. In addition, although the raw material used as the said cobalt valuables is not specifically limited, it is important from the viewpoint of improving the purity of metallic cobalt that the cobalt content is high and the other metal contents are low.

【0020】例えば、前記した特願平09−02675
9に開示した方法で回収した使用済みリチウムイオン電
池を処理することにより、コバルト含有率が50重量%
程度で、残りの大部分は炭素粉であるコバルト滓を得る
ことができるため、本願発明のコバルト回収方法の実施
対象としては好適なものとなる。
For example, the aforementioned Japanese Patent Application No. 09-02675 is disclosed.
By treating the used lithium ion battery recovered by the method disclosed in No. 9, the cobalt content becomes 50% by weight.
To the extent that most of the remaining carbon slag, which is a carbon powder, can be obtained, it is suitable as a target for implementing the cobalt recovery method of the present invention.

【0021】また、溶解工程における無機酸は、コバル
ト有価物中のコバルトを酸水溶液中に溶解できればよ
く、特に限定されるものではないが、コバルト有価物に
含有する他の含有物等を考慮するとともに、作業性、取
扱性、公害防止を含めた後処理の観点から、塩酸または
硫酸とすることが好ましいものである。
The inorganic acid used in the dissolving step is not particularly limited as long as it can dissolve the cobalt in the cobalt valuables in the aqueous acid solution, and is not particularly limited. However, other contents contained in the cobalt valuables are considered. In addition, it is preferable to use hydrochloric acid or sulfuric acid from the viewpoint of post-treatment including workability, handling, and pollution prevention.

【0022】(2)回収工程 回収工程では、酸性溶液中で−2.4V〜−0.6Vの
範囲の標準電極電位を有する1又は2以上の金属または
両性金属を、還元金属として還元溶解液に添加すること
により、コバルトを還元して回収するものである。
(2) Recovery Step In the recovery step, one or more metals or amphoteric metals having a standard electrode potential in the range of -2.4 V to -0.6 V in an acidic solution are reduced as a reducing metal to obtain a reduced solution. To reduce and recover cobalt.

【0023】本発明者らは、標準電極電位が水素より卑
であるコバルト金属元素(コバルト−0.28V)と、
コバルト元素よりさらに標準電極電位が卑である元素の
組合せで、工業的に生産可能な条件を鋭意検討した結
果、上記範囲の標準電極電位を有する金属を用いて、上
記還元溶解液からコバルトを還元して回収する方法を見
出したものである。当該範囲内の金属単体としては、例
えば、Cr、Zn、Mn、Al、Mgが挙げられる。
The present inventors have proposed a cobalt metal element (cobalt-0.28 V) whose standard electrode potential is lower than hydrogen,
As a result of intensive studies on the conditions that can be industrially produced by a combination of elements whose standard electrode potential is lower than that of the cobalt element, cobalt was reduced from the above-mentioned reduced solution using a metal having a standard electrode potential in the above range. And found a method of recovery. Examples of the metal simple substance within the range include Cr, Zn, Mn, Al, and Mg.

【0024】なお、酸性溶液中で上記範囲外の標準電極
電位を有する金属では以下のような問題が生じる。すな
わち、コバルトの標準電極電位である−0.28Vから
−0.6Vの範囲ではコバルトの標準電極電位と接近し
すぎており還元反応が遅い。また、標準電極電位が−
2.4V以下では、カリウム金属(−2.925V)、
カルシウム金属(−2.713V)の如く、反応性に富
むため還元反応は暴走する。
In the case of a metal having a standard electrode potential outside the above range in an acidic solution, the following problems occur. That is, in the range of -0.28 V to -0.6 V, which is the standard electrode potential of cobalt, the standard electrode potential of cobalt is too close to the standard electrode potential of cobalt, and the reduction reaction is slow. The standard electrode potential is-
At 2.4V or less, potassium metal (-2.925V),
Like calcium metal (-2.713V), the reduction reaction runs away because of its high reactivity.

【0025】ここで、還元金属の添加量はコバルト元素
に対して1〜1.5当量で十分であるが、コバルトの還
元反応の暴走を制御し、コバルトの回収率を向上させる
観点から、還元金属の添加においては還元溶解液中のコ
バルト含有量(コバルト濃度)に応じた還元方法を考え
る必要がある。
Here, the addition amount of the reducing metal is 1 to 1.5 equivalents to the cobalt element, but from the viewpoint of controlling runaway of the reduction reaction of cobalt and improving the recovery rate of cobalt, When adding a metal, it is necessary to consider a reduction method according to the cobalt content (cobalt concentration) in the reduction solution.

【0026】すなわち、比表面積の大きな粉状の還元金
属で比較的高濃度のコバルトイオンを一気に還元して還
元溶液からコバルトを析出させると、発熱を伴う還元反
応が急速に進行して、しばしば暴走し制御不可能になる
からである。例えば、50g/Lのコバルトを含有する
塩化コバルト水溶液を攪拌下、外部から水冷し、所定量
のアルミニウム粉を少量ずつ投入した所、2〜3分の誘
導期間のあと、著しいガスの発生が起こると共に、系の
温度が急激に上昇し系は沸騰して危険な状態となること
が観察された。
That is, when a relatively high concentration of cobalt ions is reduced at once with a powdery reducing metal having a large specific surface area to precipitate cobalt from a reducing solution, a reduction reaction accompanied by heat generation rapidly progresses, and often a runaway occurs. It becomes impossible to control. For example, when a cobalt chloride aqueous solution containing 50 g / L of cobalt is externally water-cooled with stirring and a predetermined amount of aluminum powder is added little by little, a significant gas is generated after an induction period of 2 to 3 minutes. At the same time, it was observed that the temperature of the system rapidly increased, and the system was brought to a boiling state and became a dangerous state.

【0027】また、塩化コバルト水溶液に投入するアル
ミニウム粉末を、長時間掛けて極少量宛て添加する別の
実験を行った場合でも、一定量添加するまでは、反応が
顕著には起こらず誘導期間が長くなるだけで(5〜7
分)、誘導期が過ぎると反応は暴走し制御不可能となっ
た。
Further, even if another experiment was conducted in which the aluminum powder to be added to the aqueous solution of cobalt chloride was added to a very small amount over a long period of time, the reaction did not remarkably occur until the certain amount was added, and the induction period was short. Just become longer (5-7
Minute), after the induction period, the reaction went out of control and became uncontrollable.

【0028】さらに、系の温度を45〜50℃とし、ア
ルミニウム粉末を更に少量宛て時間を掛けて投入した
が、誘導期の時間が短縮されるだけで、それが過ぎると
反応系の暴走は一層激しく起こり危険であった。以上の
事実から、高濃度のコバルト溶液にアルミニウム粉末を
1段で投入して還元する方法は、工業的規模では暴走反
応を阻止する事が出来ないという結論に至ったものであ
る。
Further, the temperature of the system was set to 45 to 50 ° C., and a small amount of aluminum powder was added over a long period of time. However, only the time of the induction period was shortened. Violent and dangerous. From the above facts, it was concluded that the method in which the aluminum powder was put into the high-concentration cobalt solution in one step to reduce it could not prevent the runaway reaction on an industrial scale.

【0029】そこで、比較的高濃度のコバルトイオンが
含まれる還元溶解液に対しては、還元を複数回に分けて
行うことにより還元反応の暴走を抑えることが好まし
い。すなわち、比表面積が小さい還元金属(例えば、粒
径5mm以上の塊状のもの)を添加して、還元にともな
う反応の暴走を抑えながらコバルトを還元して回収する
ことが好ましい。
Therefore, it is preferable to reduce the runaway of the reduction reaction by performing the reduction in a plurality of times for the reduction solution containing a relatively high concentration of cobalt ions. That is, it is preferable to add a reducing metal having a small specific surface area (for example, a lump having a particle size of 5 mm or more) to reduce and recover cobalt while suppressing runaway of the reaction accompanying the reduction.

【0030】続いて、コバルト回収によりコバルトイオ
ンが低濃度となった液体分(濾液)の還元溶解液に対し
ては、比表面積が大きい還元金属(例えば、粒径1mm
以下のものや粉状のもの)の添加により、コバルトを還
元して回収することが好ましい。これは、還元溶解液に
残存する低濃度のコバルトイオンであれば、還元溶液量
に対するコバルト含有量が少ないため、速やかに還元し
ても発熱量が少なく還元反応が暴走することがないから
である。
Subsequently, a reduced metal having a large specific surface area (for example, a particle diameter of 1 mm) is applied to the reduced solution of the liquid (filtrate) in which the concentration of cobalt ions has become low due to the recovery of cobalt.
It is preferable to reduce and collect cobalt by adding the following or powdery substances). This is because, if the concentration of cobalt ions remaining in the reduction solution is low, the cobalt content is small relative to the amount of the reduction solution, so that even if the reduction is performed quickly, the calorific value is small and the reduction reaction does not run away. .

【0031】このように、コバルトイオン濃度が下がる
ほど比表面積の大きな還元金属を添加する工程を、必要
に応じて複数回繰り返すことで、作業効率、回収効率の
向上を図ることができ工業的なコバルト回収方法として
好ましいものとなる。
As described above, the step of adding a reducing metal having a larger specific surface area as the concentration of cobalt ions lowers is repeated a plurality of times as necessary, so that the work efficiency and the recovery efficiency can be improved, and the industrial efficiency can be improved. This is preferable as a cobalt recovery method.

【0032】上記方法により、コバルトイオンは容易に
還元され、例えば、使用済みリチウムイオン電池を処理
して得た有価物から、純度95%以上、収率90%以上
のコバルト粉を得ることが可能となる。なお、生成した
コバルト粉は、反応条件によってその粒度(従ってその
比表面積)が異なるが、何れも乾燥すると酸化し発熱し
やすいので、大気中で保存する際には注意を要する。
According to the above method, cobalt ions are easily reduced. For example, cobalt powder having a purity of 95% or more and a yield of 90% or more can be obtained from valuable materials obtained by treating a used lithium ion battery. Becomes Although the produced cobalt powder has a different particle size (accordingly, its specific surface area) depending on the reaction conditions, any of them is oxidized and easily generates heat when dried, so care must be taken when storing it in the air.

【0033】(3)精製工程 精製工程では、アルカリ液で洗浄することで、コバルト
に混在する両性金属を溶解除去して精製できるため好ま
しいものである。(2)の回収工程では、還元金属添加
により生じたコバルト金属の沈澱を分離回収するのみで
あり、これを洗浄するのみでもコバルト純度を高めるこ
とが可能であるが、両性金属でコバルトイオンを還元し
てコバルト沈澱を分離回収した後、アルカリ洗浄するこ
とにより、両性金属を洗浄液に溶出させて除去すること
で、コバルト純度の更なる向上を図るものである。
(3) Purification Step In the purification step, washing with an alkaline solution is preferable because the amphoteric metal mixed in cobalt can be dissolved and removed for purification. In the recovery step (2), it is only necessary to separate and recover the precipitate of cobalt metal generated by the addition of the reducing metal, and it is possible to increase the cobalt purity only by washing it. The cobalt precipitate is separated and recovered, and then washed with an alkali to elute and remove the amphoteric metal in the washing solution, thereby further improving the purity of cobalt.

【0034】ここで、上記範囲内の標準電極電位を有す
る両性金属では、入手容易性、取扱性、公害防止等の観
点から、アルミニウム(−1.66V)または(及び)
亜鉛(−0.763V)を用いることが好ましいもので
ある。
The amphoteric metal having a standard electrode potential within the above range is selected from aluminum (-1.66 V) or (and) from the viewpoints of availability, handling, and pollution prevention.
It is preferable to use zinc (-0.763 V).

【0035】[0035]

【発明の実施の形態】以下、本願発明に係るコバルト回
収方法の実施形態について詳細に説明する。図1は実施
例1及び2の工程図であり、図2は実施例3、5及び7
の工程図である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of a method for recovering cobalt according to the present invention will be described in detail. FIG. 1 is a process chart of Examples 1 and 2, and FIG.
FIG.

【0036】[試料の調整] (1)リチウム電池からコバルト化合物(コバルト滓)
の調整 コバルト化合物は、リチウムイオン2次電池から回収し
た酸化コバルト含有物(コバルト滓と称する)を用い、
その製造法はアサカ理研工業公開法(特願平09−02
6759)に記載の方法に従って調達した。
[Preparation of sample] (1) Cobalt compound (cobalt slag) from lithium battery
Adjustment of the cobalt compound, using a cobalt oxide-containing material (called cobalt slag) recovered from a lithium ion secondary battery,
Its manufacturing method is based on the Asaka Riken Industrial Open Law (Japanese Patent Application No. 09-02 / 2009).
6759).

【0037】(2)塩化コバルト水溶液及び硫酸コバル
ト水溶液の調整 (1)で得たコバルト含有率40%のコバルト滓10k
gを35%の工業塩酸31.8kgに溶解させて、不溶
の炭素粉を濾過により除去し、この水溶液に水を加えて
全体を80Lにした。この塩化コバルト水溶液のコバル
ト含有率は、50g/Lであった。
(2) Preparation of aqueous cobalt chloride solution and aqueous cobalt sulfate solution 10 k of cobalt slag having a cobalt content of 40% obtained in (1)
g was dissolved in 31.8 kg of 35% industrial hydrochloric acid, the insoluble carbon powder was removed by filtration, and water was added to this aqueous solution to make the whole to 80 L. The cobalt content of the aqueous cobalt chloride solution was 50 g / L.

【0038】また、(1)で得た40%コバルト滓10
kgを、20%硫酸68kgに加えて70℃で溶解させ
た後、系をろ過しこの水溶液に水を加えて全体を80L
にした。この硫酸コバルト水溶液のコバルト含有率は5
0g/Lであった。
The 40% cobalt slag obtained in (1) 10
was added to 68 kg of 20% sulfuric acid and dissolved at 70 ° C., and then the system was filtered.
I made it. The cobalt content of this aqueous cobalt sulfate solution is 5
It was 0 g / L.

【0039】[実施例1] 塩化コバルト水溶液のマン
ガンによる2段還元 (2)で得た塩化コバルト水溶液8Lに直径5mm程度
のマンガン塊450grを添加し攪拌下、系の温度を9
5℃に上昇させた。系の温度が上昇するに従ってガスの
発生が見られた。このまま反応を2時間続けた後、放冷
後濾過し還元されたコバルト粉の沈澱1を採取した。ま
た濾液にはコバルトが残存している為、溶液の色は赤紫
色を呈した。この濾液に粉末状のマンガン(粒度#0.
2mmメッシュ)を20gr宛て系に数回添加した。攪
拌を止めたところ系は2層に分離し、赤紫色の上澄み液
は反応の進行とともに薄くなり殆ど無色透明になった。
反応後上澄み液をデカントにより除去して沈澱2を得
た。沈澱1と沈澱2を合せ、水で洗浄しコバルト金属粉
末300g(75%)を得た。このときのコバルト金属
粉の純度は87%であった。
Example 1 Two-Step Reduction of Cobalt Chloride Aqueous Solution with Manganese 450 g of manganese lump having a diameter of about 5 mm was added to 8 L of the aqueous cobalt chloride solution obtained in (2), and the temperature of the system was adjusted to 9 under stirring.
Increased to 5 ° C. Gas evolution was observed as the temperature of the system increased. After continuing the reaction for 2 hours as it was, the mixture was allowed to cool and then filtered to collect a precipitate 1 of reduced cobalt powder. Since cobalt remained in the filtrate, the color of the solution was purple-red. Manganese powder (particle size # 0.
(2 mm mesh) was added several times to the system for 20 gr. When the stirring was stopped, the system was separated into two layers, and the reddish purple supernatant liquid became thinner with the progress of the reaction and became almost colorless and transparent.
After the reaction, the supernatant was removed by decantation to obtain a precipitate 2. The precipitates 1 and 2 were combined and washed with water to obtain 300 g (75%) of cobalt metal powder. At this time, the purity of the cobalt metal powder was 87%.

【0040】[実施例2] 塩化コバルト水溶液のアル
ミニウムによる2段還元 (2)で得た塩化コバルト水溶液80Lに、直径5mm
程度のアルミニウム塊2200grを添加し攪拌下、系
の温度を80℃に上昇させた。系の温度が上昇するに従
ってガスの発生が見られた。このまま反応を2時間続け
た後、放冷後濾過し還元されたコバルト粉の沈澱3を採
取した。また濾液にはコバルトが残存している為、溶液
の色は赤紫色を呈した。この濾液に粉末状のアルミニウ
ム(粒度#0.1mmメッシュ)を100gr宛て系に
数回添加した。攪拌を止めたところ系は2層に分離し、
赤紫色の上澄み液は反応の進行とともに薄くなり殆ど無
色透明になった。反応後上澄み液をデカントにより除去
して沈澱4を得た。沈澱3と沈澱4を合せ、水で洗浄し
コバルト金属粉末3.8kg(95%)を得た。このと
きのコバルト金属粉の純度は90%であった。
Example 2 Two-Step Reduction of Cobalt Chloride Aqueous Solution with Aluminum 80 L of cobalt chloride aqueous solution obtained in (2) was added
About 2200 gr of aluminum lump was added, and the temperature of the system was raised to 80 ° C. with stirring. Gas evolution was observed as the temperature of the system increased. After continuing the reaction for 2 hours as it was, the mixture was allowed to cool and then filtered to collect reduced cobalt powder precipitate 3. Since cobalt remained in the filtrate, the color of the solution was purple-red. To this filtrate, powdered aluminum (particle size # 0.1 mm mesh) was added several times to the system for 100 gr. When the stirring was stopped, the system separated into two layers,
The red-purified supernatant liquid became thinner with the progress of the reaction and became almost colorless and transparent. After the reaction, the supernatant was removed by decantation to obtain a precipitate 4. The precipitates 3 and 4 were combined and washed with water to obtain 3.8 kg (95%) of cobalt metal powder. At this time, the purity of the cobalt metal powder was 90%.

【0041】[実施例3] 塩化コバルト水溶液のアル
ミニウムによる2段還元 (2)で得た塩化コバルト水溶液80Lに、直径5mm
程度のアルミニウム塊2200grを添加し攪拌下、系
の温度を95℃に上昇させた。系の温度が上昇するに従
ってガスの発生が見られた。このまま反応を2時間続け
た後、放冷後濾過し還元されたコバルト粉の沈澱5を採
取した。
Example 3 Two-Step Reduction of Cobalt Chloride Aqueous Solution with Aluminum A 5 mm diameter was added to 80 L of the cobalt chloride aqueous solution obtained in (2).
About 2200 gr of aluminum lump was added, and the temperature of the system was raised to 95 ° C. with stirring. Gas evolution was observed as the temperature of the system increased. After continuing the reaction for 2 hours as it was, the mixture was allowed to cool and filtered to collect a precipitate 5 of reduced cobalt powder.

【0042】また濾液にはコバルトが残存している為、
溶液の色は赤紫色を呈した。この濾液に粉末状のアルミ
ニウム(粒度#0.1mmメッシュ)を100gr宛て
系に数回添加した。攪拌を止めたところ系は2層に分離
し、赤紫色の上澄み液は反応の進行とともに薄くなり殆
ど無色透明になった。反応後上澄み液をデカントにより
除去して沈澱6を得た。沈澱5と沈澱6を合せ、か性ソ
ーダ水溶液を加えてpH14とした後、1時間攪拌し
て、還元剤であるアルミニウムを溶出し除去する操作を
2回繰り返した。
Since cobalt remains in the filtrate,
The color of the solution was reddish purple. To this filtrate, powdered aluminum (particle size # 0.1 mm mesh) was added several times to the system for 100 gr. When the stirring was stopped, the system was separated into two layers, and the reddish purple supernatant liquid became thinner with the progress of the reaction and became almost colorless and transparent. After the reaction, the supernatant was removed by decantation to obtain a precipitate 6. The operation of combining Precipitate 5 and Precipitate 6 and adjusting the pH to 14 with an aqueous solution of caustic soda was carried out, and the operation of stirring for 1 hour to elute and remove aluminum as a reducing agent was repeated twice.

【0043】最後に、スラリーを水で洗浄しコバルト金
属粉末3.9kg(97.5%)を得た。このときのコ
バルト金属粉の純度は98.5%であった。なお、生じ
たコバルト粉を大気中で濾過・乾燥すると酸化により発
熱したため、取扱いには注意を要した。
Finally, the slurry was washed with water to obtain 3.9 kg (97.5%) of cobalt metal powder. At this time, the purity of the cobalt metal powder was 98.5%. When the resulting cobalt powder was filtered and dried in the air, it generated heat due to oxidation.

【0044】[実施例4] 塩化コバルト水溶液のアル
ミニウムによる1段還元 粉末状アルミニウムのみを用い、(2)で得た塩化コバ
ルト水溶液10Lを用い、反応温度以外は実施例3と同
様の条件での還元反応を試みた。即ち、攪拌下、外部か
ら水冷し、所定量のアルミニウム粉を少量ずつ投入した
所、2〜3分の誘導期間のあと、著しいガスの発生が起
こると共に、系の温度が急激に上昇し系は沸騰して危険
な状態となったため試験を中止した。
Example 4 One-Step Reduction of Aqueous Cobalt Chloride with Aluminum Using only powdered aluminum, using 10 L of the aqueous cobalt chloride solution obtained in (2) under the same conditions as in Example 3 except for the reaction temperature. A reduction reaction was attempted. That is, under stirring, water was cooled from the outside, and a predetermined amount of aluminum powder was added little by little. After an induction period of 2 to 3 minutes, remarkable gas generation occurred and the system temperature rose rapidly, The test was stopped because it was boiling and dangerous.

【0045】[実施例5] 硫酸コバルト水溶液のアル
ミニウムによる2段還元 (2)で得た硫酸コバルト水溶液80Lに、アルミニウ
ム塊2200grを添加し攪拌しながら、系の温度を8
0℃に上昇させた。系の温度が上昇するに従って、上澄
み液の赤紫色は退色し反応が進行する様子が伺えた。
Example 5 Two-Step Reduction of Cobalt Sulfate Aqueous Solution with Aluminum To 200 L of the aqueous solution of cobalt sulfate obtained in (2), 2200 gr of aluminum lump was added, and while stirring, the temperature of the system was reduced to 8%.
Increased to 0 ° C. As the temperature of the system rose, the reddish purple color of the supernatant liquid faded, indicating that the reaction proceeded.

【0046】しかし反応の進行速度は、実施例3の塩酸
溶液の場合よりも若干遅かった。反応速度を高める為
に、系の温度を95℃に上昇させた場合、及び35%塩
酸を少量添加し、反応を促進させても系全体が暴走する
様な事はなかった。
However, the progress of the reaction was slightly slower than in the case of the hydrochloric acid solution of Example 3. When the temperature of the system was raised to 95 ° C. to increase the reaction rate, or even when a small amount of 35% hydrochloric acid was added to promote the reaction, the entire system did not run away.

【0047】2時間反応を続けた後、放冷した後濾過し
還元されたコバルトの沈澱7を採取した。また、濾液に
はコバルトが残存している為、溶液は赤紫色を呈してい
た。この濾液を攪拌しながら粉末状のアルミニウムを2
00gr宛て数回系に添加した。
After continuing the reaction for 2 hours, the mixture was allowed to cool and then filtered to collect a precipitate 7 of reduced cobalt. Further, since cobalt remained in the filtrate, the solution exhibited a purple-red color. While stirring the filtrate, powdery aluminum
It was added to the system several times for 00 gr.

【0048】攪拌を止めたところ系は2層に分離し、赤
紫色の上澄み液は反応の進行とともに薄くなり殆ど無色
透明になった。反応後上澄み液をデカントにより除去し
てコバルトの沈澱8を得た。沈澱7と沈澱8を合せ、か
性ソーダ水溶液を加えてpH14とした後、1時間攪拌
して、還元剤であるアルミニウムを溶出し除去する操作
を2回繰り返した。
When the stirring was stopped, the system was separated into two layers, and the reddish purple supernatant liquid became thinner with the progress of the reaction and became almost colorless and transparent. After the reaction, the supernatant was removed by decanting to obtain cobalt precipitate 8. The operation of combining Precipitate 7 and Precipitate 8, adjusting the pH to 14 by adding an aqueous solution of caustic soda, stirring for 1 hour, and eluting and removing aluminum as a reducing agent was repeated twice.

【0049】最後に、このコバルトの沈澱を水で洗浄し
コバルト金属粉末3.8kg(収率95.0%)、コバ
ルト金属粉の純度98.8%を得た。なお、生じたコバ
ルト粉を大気中で濾過・乾燥すると酸化により発熱した
ため、取扱いには注意を要した。
Finally, the cobalt precipitate was washed with water to obtain 3.8 kg (yield 95.0%) of cobalt metal powder and 98.8% purity of cobalt metal powder. When the resulting cobalt powder was filtered and dried in the air, it generated heat due to oxidation.

【0050】[実施例6] 硫酸コバルト水溶液のアル
ミニウムによる1段還元 実験例2で得た硫酸コバルト水溶液1.0kgを攪拌し
ながら、所定量のアルミニウム粉末の内、極少量を水冷
架下に添加したところ一見反応が遅い様に感じられた。
その為60℃に加温した所、系の温度が急激に上昇し水
蒸気が突沸し、反応を制御できなくなったため実験を中
止した。
Example 6 One-Step Reduction of Aqueous Solution of Cobalt Sulfate with Aluminum A small amount of a predetermined amount of aluminum powder was added to 1.0 kg of the aqueous solution of cobalt sulfate obtained in Experimental Example 2 while stirring under water cooling. At first glance, the reaction seemed to be slow.
For this reason, when the temperature was raised to 60 ° C., the temperature of the system rose rapidly and steam was bumped, and the reaction was no longer controllable.

【0051】[実験例7] 塩化コバルト水溶液の亜鉛
による2段還元 (2)で得た塩化コバルト水溶液10Lに、直径5mm
程度の粒状の亜鉛金属666grを添加し攪拌下、系の
温度を80℃に上昇させた。
[Experimental Example 7] Two-stage reduction of cobalt chloride aqueous solution with zinc 10 L of aqueous cobalt chloride solution obtained by (2)
About 666 gr of zinc metal in a granular form was added, and the temperature of the system was raised to 80 ° C. with stirring.

【0052】系の温度が上昇するに従ってガスの発生が
見られた。このまま反応を3時間続けた後、室温にまで
冷却した系を濾過して還元されたコバルトの沈澱9を採
取した。濾液中にはコバルトが残存している為、溶液の
色は赤紫色を呈した。続いて、この濾液に粉末状の金属
亜鉛を35gr宛て数回系に添加した。
Gas generation was observed as the temperature of the system increased. After continuing the reaction for 3 hours, the system cooled to room temperature was filtered to collect reduced cobalt precipitate 9. Since cobalt remained in the filtrate, the color of the solution was purple-red. Subsequently, powdery metallic zinc was added to the filtrate several times in an amount of 35 gr.

【0053】攪拌を止めたところ系は2層に分離し、赤
紫色の上澄み液は反応の進行とともに薄くなり殆ど無色
透明になった。反応後上澄み液をデカントにより除去し
て沈澱10を得た。沈澱9と沈澱10を合せ、か性ソー
ダ水溶液を加えてpH14としたものを2時間攪拌し
て、還元剤である亜鉛粉末を溶出させて除去した。
When the stirring was stopped, the system was separated into two layers, and the reddish purple supernatant liquid became thinner with the progress of the reaction and became almost colorless and transparent. After the reaction, the supernatant was removed by decantation to obtain a precipitate 10. The precipitates 9 and 10 were combined, adjusted to pH 14 by adding an aqueous solution of caustic soda, and stirred for 2 hours to elute and remove zinc powder as a reducing agent.

【0054】最後に、この沈澱を水で洗浄しコバルト金
属粉末487gr(95.9%)を得た。このときのコ
バルト金属粉の純度は98.5%であった。なお、生じ
たコバルト粉を大気中で濾過・乾燥すると酸化により発
熱したため、取扱いには注意を要した。
Finally, the precipitate was washed with water to obtain 487 gr (95.9%) of cobalt metal powder. At this time, the purity of the cobalt metal powder was 98.5%. When the resulting cobalt powder was filtered and dried in the air, it generated heat due to oxidation.

【0055】[実施例8]塩化コバルトの亜鉛粉末によ
る1段還元 実験例2で得た塩化コバルト水溶液1.0Lを攪拌しな
がら、所定量の亜鉛粉末の1/10量を添加した後60
℃に加温した所、系の温度が急激に上昇して水蒸気が突
沸し、反応を制御できなくなったため実験を中止した。
Example 8 One-Step Reduction of Cobalt Chloride with Zinc Powder While stirring 1.0 L of the aqueous cobalt chloride solution obtained in Experimental Example 2, 1/10 of a predetermined amount of zinc powder was added to the solution, followed by mixing.
When the temperature was raised to ° C., the temperature of the system rapidly increased and steam was bumped, and the experiment was stopped because the reaction could not be controlled.

【0056】[0056]

【他の実施形態の可能性】本願発明の目的を達成するた
め、本実施例は以下のように変更することが可能であ
る。すなわち、コバルト有価物の原料としては、コバル
トを用いたリチウム電池が好適であるが、これに限定さ
れるものではない。さらに、コバルトを回収した後の濾
液に対しても、還元金属あるいは両性金属をさらに添加
して、濾液中に残存するコバルトイオンを還元して回収
しているが、この工程は選択的なものであり、省略する
ことも可能である。
[Possibility of Other Embodiments] In order to achieve the object of the present invention, the present embodiment can be modified as follows. That is, as a raw material of the cobalt valuables, a lithium battery using cobalt is suitable, but not limited thereto. Furthermore, a reducing metal or an amphoteric metal is further added to the filtrate after the cobalt has been recovered, and the cobalt ions remaining in the filtrate are reduced and recovered, but this step is optional. Yes, and can be omitted.

【0057】[0057]

【効果】上述したように、本願発明に係るコバルト回収
方法によれば、工業的にコバルト有価物を水溶液中で湿
式還元し、金属性状のコバルトを生成させ沈澱として系
外に析出させることができる。
As described above, according to the cobalt recovery method of the present invention, cobalt valuables can be industrially wet-reduced in an aqueous solution to produce metallic cobalt and precipitate out of the system as a precipitate. .

【0058】特に、還元金属として両性金属を用いるこ
とで、コバルトイオンの還元により生じたコバルト金属
の沈澱をアルカリ液で洗浄し、両性金属をアルカリ溶出
する事によって精製することで、コバルト純度をさらに
向上させることが可能である。
In particular, by using an amphoteric metal as the reducing metal, the cobalt metal precipitate generated by the reduction of cobalt ions is washed with an alkaline solution and purified by eluting the amphoteric metal with an alkali to further improve the cobalt purity. It is possible to improve.

【0059】従って、中小の規模の設備のみでコバルト
金属の回収を可能とし、使用済みリチウム電池の回収を
さらに推進し、ひいては公害問題を解消することができ
るため、その産業的効果は顕著なものである。
Therefore, it is possible to recover cobalt metal with only small and medium-sized facilities, further promote the recovery of used lithium batteries, and solve the problem of pollution. It is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1及び2の工程図である。FIG. 1 is a process chart of Examples 1 and 2.

【図2】 実施例3、5及び7の工程図である。FIG. 2 is a process chart of Examples 3, 5 and 7.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】コバルト有価物中のコバルトを無機酸によ
り溶解し、不溶解成分を精製排除して還元溶解液を生成
する溶解工程と、 該還元溶解液を、−2.4V〜−0.6Vの範囲の標準
電極電位を有する1又は2以上の還元金属の添加によ
り、コバルトを還元して分離回収する回収工程と、から
なることを特徴とするコバルト回収方法。
(1) a dissolving step of dissolving cobalt in a cobalt valuable material with an inorganic acid and purifying and eliminating insoluble components to produce a reduced dissolving solution; A recovery step for reducing and separating and recovering cobalt by adding one or more reducing metals having a standard electrode potential in the range of 6 V.
【請求項2】コバルト有価物中のコバルトを無機酸によ
り溶解し、不溶解成分を精製排除して還元溶解液を生成
する溶解工程と、 該還元溶解液を、−2.4V〜−0.6Vの範囲の標準
電極電位を有する1又は2以上の両性金属の添加によ
り、コバルトを還元して分離回収する回収工程と、 該回収工程により回収したコバルトをアルカリ洗浄して
両性金属を除去する精製工程と、からなることを特徴と
するコバルト回収方法。
2. A dissolving step of dissolving cobalt in a cobalt valuable material with an inorganic acid and purifying and eliminating insoluble components to produce a reduced dissolving solution; and dissolving the reduced dissolving solution in a range of -2.4V to -0.4V. A recovery step of reducing and separating and recovering cobalt by adding one or more amphoteric metals having a standard electrode potential in the range of 6 V, and a purification step of removing the amphoteric metal by washing the cobalt recovered in the recovery step with an alkali. And a process for recovering cobalt.
【請求項3】回収工程において、 還元金属又は両性金属の添加によりコバルトを還元して
固液分離して回収した後に、液体分の被還元溶解液に対
して、さらに前回より比表面積を大きくした新たな還元
金属又は両性金属を添加したことにより、コバルトを還
元して分離回収する過程を複数回繰り返すようにしたこ
とを特徴とする請求項1又は2記載のコバルト回収方
法。
3. In the recovery step, after reducing and cobalt-reducing cobalt by adding a reducing metal or an amphoteric metal and recovering the liquid, the specific surface area of the liquid to be reduced and dissolved is further increased from the previous time. 3. The method for recovering cobalt according to claim 1, wherein the step of reducing and separating and recovering cobalt is repeated a plurality of times by adding a new reducing metal or amphoteric metal.
JP13354399A 1999-05-14 1999-05-14 Cobalt recovery method Expired - Lifetime JP4262829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13354399A JP4262829B2 (en) 1999-05-14 1999-05-14 Cobalt recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13354399A JP4262829B2 (en) 1999-05-14 1999-05-14 Cobalt recovery method

Publications (2)

Publication Number Publication Date
JP2000328153A true JP2000328153A (en) 2000-11-28
JP4262829B2 JP4262829B2 (en) 2009-05-13

Family

ID=15107281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13354399A Expired - Lifetime JP4262829B2 (en) 1999-05-14 1999-05-14 Cobalt recovery method

Country Status (1)

Country Link
JP (1) JP4262829B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100443416B1 (en) * 2001-07-06 2004-08-09 한국원자력연구소 A method for recovering cobalt and lithium from organic wastesludge including LiCoO2
CN107546437A (en) * 2017-09-05 2018-01-05 华东理工大学 Lithium, nickel, cobalt, the method for manganese are reclaimed from waste and old lithium ion battery
CN107863583A (en) * 2017-10-25 2018-03-30 中南大学 Valuable metal Leaching Systems and leaching method in a kind of waste lithium cell
CN111540974A (en) * 2020-05-26 2020-08-14 四川省有色冶金研究院有限公司 Method for recycling lithium ion battery anode material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100443416B1 (en) * 2001-07-06 2004-08-09 한국원자력연구소 A method for recovering cobalt and lithium from organic wastesludge including LiCoO2
CN107546437A (en) * 2017-09-05 2018-01-05 华东理工大学 Lithium, nickel, cobalt, the method for manganese are reclaimed from waste and old lithium ion battery
CN107863583A (en) * 2017-10-25 2018-03-30 中南大学 Valuable metal Leaching Systems and leaching method in a kind of waste lithium cell
CN107863583B (en) * 2017-10-25 2020-03-10 中南大学 Valuable metal leaching system and method in waste lithium battery
CN111540974A (en) * 2020-05-26 2020-08-14 四川省有色冶金研究院有限公司 Method for recycling lithium ion battery anode material
CN111540974B (en) * 2020-05-26 2021-11-09 四川省有色冶金研究院有限公司 Method for recycling lithium ion battery anode material

Also Published As

Publication number Publication date
JP4262829B2 (en) 2009-05-13

Similar Documents

Publication Publication Date Title
US20210079495A1 (en) Process for the recovery of cobalt, lithium, and other metals from spent lithium-based batteries and other feeds
CA3136875C (en) Process for the preparation of precursor compounds for lithium battery cathodes
US5453111A (en) Method for separation of metals from waste stream
EP4194572A1 (en) Method for recycling iron and aluminum in nickel-cobalt-manganese solution
CN103911514B (en) The recovery and treatment method of scrap hard alloy grinding material
US5464596A (en) Method for treating waste streams containing zinc
KR20120074167A (en) Recovery method of valuableness metals from copper smelting slag
AU710302B2 (en) Method for recovering metal and chemical values
CA2199268C (en) Method for recovering metal and chemical values
CN114214520B (en) Copper-containing refractory material waste-free environment-friendly recovery method
JP2000328153A (en) Method for recovering cobalt
US20230235427A1 (en) Desulfurisation of lead-containing waste
WO2018168471A1 (en) Production method for metallic manganese
EP0410996B1 (en) A process of recovering non-ferrous metal values, especially nickel, cobalt, copper and zinc, by using melt and melt coating sulphation, from raw materials containing said metals
US5851490A (en) Method for utilizing PH control in the recovery of metal and chemical values from industrial waste streams
CN113981230A (en) Method for leaching nickel cobalt slag
JP6411001B1 (en) Method for producing metal manganese
RU2398900C1 (en) Method of extracting palladium from wastes of electron raw material
KR101585777B1 (en) Method for multi-step reduction of low grade nickel ore and concentration method in nickel recovery from low grade nickel ore using the same
RU2484154C1 (en) Processing wastes containing nonferrous and platinum metals
RU2190678C1 (en) Method of recovering and separating tungsten and cobalt
KR20240045151A (en) Method for improving recovery rate of valuable metal
CA3219839A1 (en) Process for recycling battery materials by way of hydrometallurgical treatment
CN118064726A (en) Method for comprehensively recovering potassium, iron, zinc and lead resources in blast furnace gas ash
EA043878B1 (en) METHOD FOR RECOVERING METALS FROM LI-CONTAINING START MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060314

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term