JPH0356600B2 - - Google Patents

Info

Publication number
JPH0356600B2
JPH0356600B2 JP19253783A JP19253783A JPH0356600B2 JP H0356600 B2 JPH0356600 B2 JP H0356600B2 JP 19253783 A JP19253783 A JP 19253783A JP 19253783 A JP19253783 A JP 19253783A JP H0356600 B2 JPH0356600 B2 JP H0356600B2
Authority
JP
Japan
Prior art keywords
pitch
anisotropic phase
anisotropic
particle size
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19253783A
Other languages
Japanese (ja)
Other versions
JPS6084390A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19253783A priority Critical patent/JPS6084390A/en
Publication of JPS6084390A publication Critical patent/JPS6084390A/en
Publication of JPH0356600B2 publication Critical patent/JPH0356600B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Working-Up Tar And Pitch (AREA)
  • Inorganic Fibers (AREA)
  • Coke Industry (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、炭素繊維その他の高級炭素材の製造
に用いる原料ピツチを高純度化する、精製処理方
法に関する。 炭素繊維原料、電極材料、黒鉛摺動材料、耐熱
材料または耐薬品材料等高級炭素材製造に供する
原料ピツチは高純度化することが必要不可欠であ
る。 一般に、原料ピツチを精製する方法としては、
石炭系もしくは石油系重質油を原濃度のまま熱処
理する方法、両重質油の混合液を加熱する方法、
あるいは有機溶剤で希釈した後加熱する方法等が
ある。これらのピツチ精製手段の原理は、粒子の
凝集作用もしくは固形物への高分子成分の付着作
用を利用して固形微粒子を巨大化することによつ
て固形物の沈降性を改良し、固形物と重質油の密
度差を利用して固形物を分離除去することにあ
る。 このような固形物はキノリン不溶分で表わされ
ている。キノリン不溶分はキノリン溶剤に不溶
で、かつJIS−K2425(キノリン不溶分の定量方
法)に規定されているガラス濾過器の細孔を通過
しない10μm以上の粗粒状固形不純物量を表わ
す。このキノリン不溶分は、特開昭57−19878に
も記載されているように炭素繊維原料では
100ppm以下、その他の炭素材原料では300ppm以
下にすることが従来の目安になつている。 しかしながらピツチ中における灰分は、前記ガ
ラス濾過器を通過する10ないし5μm未満の無機
質系浮遊物質が主体となつており、沈降分離法は
もとより既存の濾過または遠心分離法等によつて
も除去することが容易でない微細な不純物を形成
している。ちなみに特殊フイルター(細孔径
0.45μm)を用いて回収した10μm未満の固形不純
物(キノリン不溶分)について灰分量を測定した
結果では灰分は該不純物の70%(wt)以上を占
める。 炭素繊維原料用ピツチを例にとれば、精製ピツ
チ中に灰分もしくは溶剤不溶固形物が存在する
と、改質処理を経て製造されるプリカーサーピツ
チ(前駆物質)の不均一度が増して、紡糸性を悪
くするのみならず、炭素繊維の強度や弾性率等に
対しても好ましくない結果を招くとされている。 従来の精製方法では、原料ピツチ中の固形分を
凝集によつて巨大化し、その沈降速度を速めて分
離除去することとしても、灰分を除去することは
できず、期待するほどの高純度化を達成すること
はできない。例えば、特開昭57−47384では、原
料ピツチを予め芳香族溶媒と脂肪族溶媒とにより
混合処理することによつて析出する不溶性相を分
離回収して精製ピツチを得る方法を示している
が、ピツチ中に残存する不純物含有量は0.02〜
0.03%まで低下するに過ぎない。 さらに、このような従来の分離方法では原液の
低粘度を維持するために長時間の高温加熱が必要
で運転コストが嵩む問題があり、また、高価な有
機溶媒の使用比率が増大するので多くの場合その
回収や循環使用が必須となり、装置が複雑となる
と共に経済性にも大きな難点を抱えていると言う
問題があつた。 従来のピツチを精製するための各種の処理法は
いずれにしても、石炭乾留時に副生するコールタ
ール類または常圧、減圧残渣油等の石油系重質油
に多量の有機溶媒を使用して1次処理を施すだけ
で高純度に精製することを狙いとしているが、前
記した微細粒子を凝集巨大化する操作では所望の
純度に達し得ないという欠点を有していた。 本発明は、従来のピツチ精製処理方法では到底
達成することのできなかつた灰分残存量30ppm以
下の高純度ピツチを安価に精製し、優れた炭素繊
維用原料ピツチ等を得ることを目的とするもので
ある。 本発明者等は、石炭ピツチを熱改質する過程に
おいて生成する異方性相の挙動が、共存する不純
物の量および程度によつて大きく影響される事実
を、顕微鏡観察によつて確認した。 本発明はこの知見に基づいてなされたもので、
まず粗製ピツチを製造し、この粗製ピツチを、有
機溶媒等を用いることなく、適切に熱処理し、ピ
ツチ中に異方性相を生成せしめることによつて、
ピツチ中の灰分を30ppm以下にすることができ
る、高純度ピツチの精製処理方法を提供せんとす
るものである。 以下に本発明を詳細に説明する。 本発明は、炭素材製品の製造において有用な、
精製された高純度の原料ピツチ(以下精製ピツチ
と呼ぶ)を製造するに際し、既存の方法を用いて
前処理された1次処理ピツチ(以下粗製ピツチと
呼ぶ)を直接熱処理することによつて、ピツチ中
に異方性相が生成することおよびこの相を構成す
る球体表面に微細浮遊固形物が吸着することを利
用して、該不純物の分離除去を容易ならしめ、こ
れによつてピツチを高純度化する、ピツチの精製
処理方法にある。 本発明において異方性相とは加熱によつてピツ
チ中に生成する相であつて光学的異方性を有し、
微細な球状を呈する相を指称する。この異方性相
は一般に、芳香族分子が加熱過程において熱重合
が進むときこれに伴つて形成される一定の大きさ
の平面分子が層状に配向したものであり、規則性
の高いものほど光学的異方度が強いと言われてい
る。 ピツチがこの異方性相を形成する可能性は種々
の要因によつて大きく左右される。また形成され
る異方性相の化学構造、軟化点、粘度等の物性は
原料とするピツチの性状に依存するところが大で
ある。 粗製ピツチ中に数%(重量)以下のキノリン不
溶分が介在すると、上記異方性相を形成する球体
の生成およびそれらの合体による球体の成長を抑
制すると同時に該物質の粒度を均一化させる効果
がある。本発明はこの現象を利用して加熱温度と
処理時間とを適正に操作することによつて、異方
性相の全生成量およびその粒度を調節するもので
ある。すなわち本発明は、既存の熱処理装置を用
いる従来の1次処理によつてキノリン不溶分をあ
る程度含有する粗製ピツチを先ず製造し、この粗
製ピツチを溶剤を用いることなく、430〜450℃の
温度範囲で緩速撹拌を継続しながら1〜3時間保
持し、このピツチ中に、平均粒径が40〜60μm範
囲の球体からなる異方性相を25容量%以上生成さ
せる。この生成量は後述の歩留りを考慮すれば、
25〜35容量%が最も好ましい。この場合、ピツチ
が溶融した後、間もなく撹拌を開始し、所定の温
度に到達した後は60rpm以下の緩速撹拌を継続し
ながら、成長した球体表面に数μm以下の微細粒
子を吸着せしめる。過度に撹拌することは、吸着
物を脱離もしくは凝集粒子の崩壊を促すことにな
り、好ましくない。 加熱温度が430℃未満では、生成する球体の粒
径が著しく小さくなると同時に生成量も減少す
る。生成する球体の平均粒径が過度に小さくなる
と異方性相が逆に不純物粒子に取り込まれ吸着効
果が低下するため、加熱温度は430℃以上とし、
生成する粒体の平均粒径は40μm以上としなけれ
ばならない。 加熱温度が450℃を越える温度域では、異方性
相間の融合による合体が局部的に進行して粗大化
した不定形相が多く偏在することとなるか、もし
くは芳香族系組成物の重縮合が進行する。従つて
異方性相の粘度が高くなる等によつて不純物粒子
の移動を困難にし、ひいては吸着能が発揮されな
いので温度の上限は450℃とする。 以上の操作は常圧でも減圧下または加圧下で行
つてもよい。 異方性相の球状粒子の平均粒径は、昇温速度に
よつても影響されるが、昇温速度を固定すると加
熱温度とその保持時間とに大きく依存する。本発
明者等は研究を重ねた結果、次の3点を確認し
た。 (1) 異方性相の全生成量を一定範囲に制御し、異
方性相を構成する球体の粒径の差すなわち、全
表面積の差による該不純物の除去効果への影響
を検討したところ、平均粒径40μmから60μm
までは異方性相の吸着能に大きな変化のないこ
とを認めた。 (2) 所要範囲の平均粒径および粒度を維持する加
熱条件としては、5重量%以下のキノリン不溶
分を含有するピツチでは、温度430〜450℃で1
〜3時間保持することが効果的である。すなわ
ちこの条件下で異方性相を適切に生成させ、そ
の異常成長を抑え、粒度を平均化することがで
きる。 (3) 異方性相の全生成率を過大に高くすること
は、不純物を吸着した異方性相は分離棄却され
るものであるから後工程における精製ピツチの
回収歩留りを極度に悪くするので異方性相は可
及的に少なくすることが望ましい。その下限は
第1図から求めることができる。第1図は異方
性相の平均粒径40〜60μmの範囲でその生成量
を変えた時の精製ピツチ中に残存する灰分量を
示したものである。この図は見方を変えれば不
純物吸着能の変化を示している。第1図から、
異方性相の生成量を25%以上にすれば精製ピツ
チ中に残存する灰分量を30ppm以下に減ずるこ
とが可能であることが明らかである。 以上のようにして生成させた異方性相を分離除
去するには、既存の濾過装置または遠心分離装置
を用いれば容易に行うことができ、精製ピツチ中
に残存する灰分量を30ppm以下にすることが可能
である。 本発明による微粒状固形不純物の効率的除去に
よつて原料ピツチを高純度化する方法は、炭素繊
維等の製品の製品のコストを低減することを可能
とすることに加え、このような炭素材の特性をよ
り高級化して付加価値を高めることも可能とし、
このような高級炭素材の用途の拡大に寄与すると
ころが大である。 以下、本発明を実施例に基づきさらに具体的に
説明する。 実施例 1 コールタールピツチを全量1mm以下に粉砕した
後、溶剤を添加することなく、円筒容器に充填し
既存の熱処理装置で所定温度に保持しながら異方
性相の生成反応を継続した。すなわち第1表に示
した性状を持つキノリン不溶分3.89%の粗製コー
ルタールピツチ約10gを不活性ガスで置換された
アルミ製円筒容器(内径15mm)に充填し、低度の
減圧下で435℃まで2℃/minの昇温速度で昇温
させた後、緩速撹拌を継続しながら1〜3時間保
持し種々のvol%の異方性相を生成させた。次い
でこの熱処理後のピツチを1〜2倍量の溶剤を用
いて溶解し、不溶解残渣の全量を既存の減圧濾過
装置で分離除去した後、瀘液を脱溶剤処理し、回
収した精製ピツチ中に残存する灰分量を測定し、
第2表に示す結果を得た。 実施例 2 実施例1と同様の粗製ピツチをオートクレーブ
(容量1000ml)に装入し、溶剤を添加することな
く、緩速撹拌しながら所定温度に保持し、異方性
相を生成反応を継続した。すなわちピツチ約400
gをオートクレーブに装入し、不活性ガスで置換
後、200℃から445℃まで3℃/minの昇温速度で
昇温させたのち、60rpm以下の回転速度で緩速撹
拌しながら1〜3時間保持し、種々のvol%の異
方性相を生成させた。 次いで、実施例1と同様に操作し、回収ピツチ
中に残存する灰分量を測定し、第3表に示す結果
を得た。 以上の結果から、本発明方法によれば、既存装
置を利用して粗製ピツチを一定の条件で処理する
ことによつて、何らかの支障もなく、より高度に
純化されたピツチを精製することが容易にできる
とことが証された。
The present invention relates to a purification treatment method for highly purifying raw material pitch used in the production of carbon fibers and other high-grade carbon materials. It is essential that the raw material pitch for producing high-grade carbon materials such as carbon fiber raw materials, electrode materials, graphite sliding materials, heat-resistant materials, or chemical-resistant materials be highly purified. In general, the method for refining raw material pitch is as follows:
A method of heat treating coal-based or petroleum-based heavy oil at its original concentration, a method of heating a mixed liquid of both heavy oils,
Alternatively, there is a method of diluting with an organic solvent and then heating. The principle of these pitch refining means is to improve the sedimentation properties of solids by making solid fine particles large by utilizing particle agglomeration or adhesion of polymer components to solids. The purpose is to separate and remove solids by utilizing the density difference of heavy oil. Such solids are represented by quinoline insolubles. The quinoline insoluble content represents the amount of coarse solid impurities with a size of 10 μm or more that are insoluble in the quinoline solvent and do not pass through the pores of a glass filter as specified in JIS-K2425 (method for determining quinoline insoluble content). This quinoline insoluble content is not found in carbon fiber raw materials as described in JP-A-57-19878.
The conventional standard is to keep the content below 100ppm, and for other carbon materials below 300ppm. However, the ash in the pitcher is mainly composed of inorganic suspended solids of less than 10 to 5 μm that pass through the glass filter, and can be removed not only by sedimentation but also by existing filtration or centrifugation methods. It forms fine impurities that are difficult to remove. By the way, a special filter (pore diameter
According to the results of measuring the ash content of solid impurities less than 10 μm (quinoline-insoluble matter) collected using 0.45 μm), the ash content accounts for more than 70% (wt) of the impurities. Taking pitch for carbon fiber raw material as an example, if ash or solvent-insoluble solids are present in refined pitch, the heterogeneity of the precursor pitch (precursor material) produced through the modification process will increase, which will impair spinnability. It is said that it not only deteriorates the carbon fiber, but also causes unfavorable results on the strength, elastic modulus, etc. of the carbon fiber. In conventional purification methods, the solid content in the raw material pitch is made large by flocculation, and even if it is separated and removed by increasing the sedimentation rate, it is not possible to remove the ash content, and it is not possible to achieve as high a purity as expected. cannot be achieved. For example, JP-A No. 57-47384 discloses a method of obtaining purified pitch by pre-mixing raw pitch with an aromatic solvent and an aliphatic solvent and separating and collecting the precipitated insoluble phase. The content of impurities remaining in pitch is 0.02 ~
It only drops to 0.03%. Furthermore, such conventional separation methods require high-temperature heating for long periods of time to maintain the low viscosity of the stock solution, which increases operating costs.Additionally, the use of expensive organic solvents increases, so many In this case, it is necessary to recover and reuse the material, which makes the equipment complicated and has major economical problems. In any case, the various conventional processing methods for refining pituti involve the use of large amounts of organic solvents in petroleum-based heavy oils such as coal tar, which is produced as a by-product during coal carbonization, or residual oil under normal pressure or vacuum pressure. Although the aim is to purify to a high purity by simply performing a primary treatment, the above-described operation of agglomerating fine particles to make them large has the drawback that the desired purity cannot be achieved. The purpose of the present invention is to inexpensively refine high-purity pitch with a residual ash content of 30 ppm or less, which could not be achieved using conventional pitch refining methods, and to obtain excellent raw material pitch for carbon fibers. It is. The present inventors have confirmed through microscopic observation that the behavior of the anisotropic phase generated in the process of thermally reforming coal pitch is greatly influenced by the amount and degree of coexisting impurities. The present invention was made based on this knowledge,
First, a crude pitch is produced, and this crude pitch is appropriately heat-treated without using an organic solvent or the like to generate an anisotropic phase in the pitch.
The purpose of the present invention is to provide a method for purifying high-purity pitcher which can reduce the ash content in pitcher to 30 ppm or less. The present invention will be explained in detail below. The present invention is useful in the production of carbon material products.
When producing refined high-purity raw material pitch (hereinafter referred to as refined pitch), by directly heat-treating the primary treated pitch (hereinafter referred to as crude pitch) that has been pretreated using an existing method, Utilizing the formation of an anisotropic phase in the pitch and the adsorption of fine suspended solids on the surface of the spheres constituting this phase, the impurities can be easily separated and removed, thereby increasing the pitch. It is in the purification process of pitchchi to purify it. In the present invention, the anisotropic phase is a phase that is generated in the pitch by heating and has optical anisotropy.
Refers to a phase that exhibits a fine spherical shape. This anisotropic phase is generally a layered arrangement of planar molecules of a certain size that are formed as aromatic molecules undergo thermal polymerization during the heating process, and the more regular they are, the more optically oriented they are. It is said to have a strong degree of anisotropy. The possibility that pitches will form this anisotropic phase is highly dependent on various factors. Further, the chemical structure, softening point, viscosity, and other physical properties of the anisotropic phase formed largely depend on the properties of the pitch used as a raw material. When a few percent (weight) or less of insoluble quinoline is present in the crude pitch, it has the effect of suppressing the formation of spheres that form the above-mentioned anisotropic phase and the growth of spheres due to their coalescence, and at the same time uniformizing the particle size of the substance. There is. The present invention utilizes this phenomenon to control the total amount of anisotropic phase produced and its particle size by appropriately controlling the heating temperature and treatment time. That is, the present invention first produces a crude pitch containing a certain amount of quinoline insoluble matter through a conventional primary treatment using existing heat treatment equipment, and then processes this crude pitch at a temperature range of 430 to 450°C without using a solvent. The mixture is maintained for 1 to 3 hours with continued slow stirring to generate 25% by volume or more of an anisotropic phase consisting of spheres with an average particle size in the range of 40 to 60 μm. This amount of production is calculated by considering the yield described below.
25-35% by volume is most preferred. In this case, stirring is started soon after the pitch is melted, and after reaching a predetermined temperature, slow stirring at 60 rpm or less is continued to allow fine particles of several μm or less to be adsorbed onto the surface of the grown sphere. Excessive stirring is undesirable because it promotes detachment of adsorbed substances or collapse of aggregated particles. If the heating temperature is lower than 430°C, the particle size of the spheres produced becomes significantly smaller and at the same time the amount of produced spheres also decreases. If the average particle size of the generated spheres becomes too small, the anisotropic phase will be incorporated into the impurity particles, reducing the adsorption effect, so the heating temperature should be 430°C or higher.
The average particle size of the particles produced must be 40 μm or more. In a temperature range where the heating temperature exceeds 450°C, coalescence due to fusion between anisotropic phases locally progresses, resulting in large and uneven distribution of coarse amorphous phases, or polycondensation of aromatic compositions. proceed. Therefore, the viscosity of the anisotropic phase becomes high, making it difficult for the impurity particles to move, and as a result, the adsorption ability is not exhibited, so the upper limit of the temperature is set at 450°C. The above operations may be performed under normal pressure, reduced pressure, or increased pressure. The average particle size of the spherical particles of the anisotropic phase is also influenced by the temperature increase rate, but when the temperature increase rate is fixed, it largely depends on the heating temperature and the holding time. As a result of repeated research, the present inventors confirmed the following three points. (1) The total amount of anisotropic phase produced was controlled within a certain range, and the influence of the difference in particle size of the spheres constituting the anisotropic phase, that is, the difference in total surface area, on the impurity removal effect was investigated. , average particle size 40μm to 60μm
Up to this point, it was observed that there was no significant change in the adsorption capacity of the anisotropic phase. (2) The heating conditions for maintaining the average particle diameter and particle size within the required range are as follows: For pitches containing 5% by weight or less of quinoline insoluble matter, heating conditions for maintaining the average particle diameter and particle size within the required range are as follows:
Holding for ~3 hours is effective. That is, under these conditions, an anisotropic phase can be appropriately generated, its abnormal growth can be suppressed, and the grain size can be averaged. (3) Excessively increasing the total production rate of the anisotropic phase will extremely reduce the recovery yield of purified pitch in the subsequent process, since the anisotropic phase that has adsorbed impurities will be separated and discarded. It is desirable to reduce the anisotropic phase as much as possible. The lower limit can be determined from FIG. Figure 1 shows the amount of ash remaining in the refining pitch when the amount of anisotropic phase produced was varied within the range of average particle size of 40 to 60 μm. Viewed from a different perspective, this figure shows changes in impurity adsorption capacity. From Figure 1,
It is clear that if the amount of anisotropic phase produced is 25% or more, it is possible to reduce the amount of ash remaining in the refining pitch to 30 ppm or less. The anisotropic phase generated as described above can be easily separated and removed using existing filtration equipment or centrifugation equipment, and the amount of ash remaining in the refining pitch can be reduced to 30 ppm or less. Is possible. The method of highly purifying raw material pitch by efficiently removing fine particulate solid impurities according to the present invention not only makes it possible to reduce the cost of products such as carbon fibers, but also makes it possible to reduce the cost of products such as carbon fibers. It is also possible to make the characteristics of the product more sophisticated and increase added value.
This greatly contributes to expanding the uses of such high-grade carbon materials. Hereinafter, the present invention will be explained in more detail based on Examples. Example 1 After pulverizing coal tar pitch to a total amount of 1 mm or less, it was filled into a cylindrical container without adding any solvent, and the anisotropic phase production reaction was continued while maintaining it at a predetermined temperature using an existing heat treatment device. That is, approximately 10 g of crude coal tar pitch with a quinoline insoluble content of 3.89% having the properties shown in Table 1 was filled into an aluminum cylindrical container (inner diameter 15 mm) purged with inert gas, and heated at 435°C under a low degree of vacuum. The temperature was raised at a temperature increase rate of 2° C./min until the temperature reached 2° C./min, and then maintained for 1 to 3 hours while continuing slow stirring to generate anisotropic phases of various vol%. Next, this heat-treated pitch is dissolved using 1 to 2 times the amount of solvent, and the entire amount of undissolved residue is separated and removed using an existing vacuum filtration device.The filtrate is then subjected to solvent removal treatment, and the purified pitch is recovered. Measure the amount of ash remaining in the
The results shown in Table 2 were obtained. Example 2 The same crude pitch as in Example 1 was charged into an autoclave (capacity 1000 ml), and the temperature was maintained at a predetermined temperature with slow stirring without adding any solvent to continue the reaction to generate an anisotropic phase. . That is about 400 pitches
g was charged into an autoclave, and after purging with inert gas, the temperature was raised from 200°C to 445°C at a rate of 3°C/min. The mixture was held for a period of time to generate anisotropic phases of various vol%. Next, the same operation as in Example 1 was carried out to measure the amount of ash remaining in the recovery pitch, and the results shown in Table 3 were obtained. From the above results, according to the method of the present invention, by treating crude pitch under certain conditions using existing equipment, it is easy to refine more highly purified pitch without any problems. It has been proven that it can be done.

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は熱処理することによつて生成する異方
性相全量と精製ピツチ中に残留した灰分量との関
係を示すグラフである。
FIG. 1 is a graph showing the relationship between the total amount of anisotropic phase produced by heat treatment and the amount of ash remaining in the refining pitch.

Claims (1)

【特許請求の範囲】[Claims] 1 石炭系または石油系重質油から粗粒固形不純
物を除去して粗製ピツチを製造し、該粗製ピツチ
を加熱温度430〜450℃で緩速撹拌を継続しながら
1〜3時間保持し、該ピツチ中に、光学的異方性
を有しかつ平均粒径40〜60μmの球状を呈する異
方性相を25容量%以上生成させ、次いで、前記異
方性相を分離除去し、前記ピツチ中の灰分残存量
を30ppm以下に調整することを特徴とするピツチ
の精製処理方法。
1. Produce a crude pitch by removing coarse solid impurities from coal-based or petroleum-based heavy oil, hold the crude pitch at a heating temperature of 430 to 450°C for 1 to 3 hours while continuing to stir slowly, and At least 25% by volume of an anisotropic phase having optical anisotropy and exhibiting a spherical shape with an average particle size of 40 to 60 μm is generated in the pitch, and then the anisotropic phase is separated and removed, and the anisotropic phase is separated and removed. A method for refining pituti, which is characterized by adjusting the residual amount of ash to 30 ppm or less.
JP19253783A 1983-10-17 1983-10-17 Refining of pitch Granted JPS6084390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19253783A JPS6084390A (en) 1983-10-17 1983-10-17 Refining of pitch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19253783A JPS6084390A (en) 1983-10-17 1983-10-17 Refining of pitch

Publications (2)

Publication Number Publication Date
JPS6084390A JPS6084390A (en) 1985-05-13
JPH0356600B2 true JPH0356600B2 (en) 1991-08-28

Family

ID=16292921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19253783A Granted JPS6084390A (en) 1983-10-17 1983-10-17 Refining of pitch

Country Status (1)

Country Link
JP (1) JPS6084390A (en)

Also Published As

Publication number Publication date
JPS6084390A (en) 1985-05-13

Similar Documents

Publication Publication Date Title
GB2051118A (en) Preparation of an optically anisotropic pitch precursor material
JPS61238885A (en) Method of refining raw material used for production of carbon product
JP3789936B2 (en) Method for isolating mesophase pitch
EP0034410A2 (en) Process for the preparation of a feedstock for carbon artifact manufacture
JPH0258596A (en) Production of both pitch for producing high-performance carbon fiber and pitch for producing widely useful carbon fiber
EP0119273B1 (en) Process for producing pitch
MXPA97003289A (en) Process to insulate pez mesofas
US4482452A (en) Process for preparing raw material for producing carbon material
JPS59216921A (en) Manufacture of carbon fiber
JPH0356600B2 (en)
JPH0149316B2 (en)
JPS58156023A (en) Production of carbon fiber
JPH0116877B2 (en)
JPH058238B2 (en)
JPS5910717B2 (en) Production method of heavy oil for high-grade carbon material raw material
JPS6051782A (en) Production of qi-free pitch having controlled beta resin content
JPS6049084A (en) Method for treating coal tar or coal tar pitch
JPH0832884B2 (en) Method for producing precursor pitch for general-purpose carbon fiber
JPH0455237B2 (en)
JPS6264889A (en) Purification of pitch
JPS60255604A (en) Preparation of mesocarbon microbead
JP2000230178A (en) Production of mesophase microbeads
JPS581783A (en) Manufacture of pitch
JPH0741770A (en) Manufacture of pitch for production of carbonaceous product
JPH0431493A (en) Manufacture of superclean carbonaceous pitch