JPS6264889A - Purification of pitch - Google Patents

Purification of pitch

Info

Publication number
JPS6264889A
JPS6264889A JP20502185A JP20502185A JPS6264889A JP S6264889 A JPS6264889 A JP S6264889A JP 20502185 A JP20502185 A JP 20502185A JP 20502185 A JP20502185 A JP 20502185A JP S6264889 A JPS6264889 A JP S6264889A
Authority
JP
Japan
Prior art keywords
pitch
component
filter medium
temperature
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20502185A
Other languages
Japanese (ja)
Inventor
Yasusuke Hirao
平尾 庸介
Yukio Fukuyama
幸男 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP20502185A priority Critical patent/JPS6264889A/en
Publication of JPS6264889A publication Critical patent/JPS6264889A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optically anisotropic pitch free from an excessively polycondensed portion and an optically isotropic pitch at low cost through separation and purification of pitch, by filtering pitch contg. both an optically isotropic phase and an optically anisotropic phase in an inert atmosphere through two stages. CONSTITUTION:Pitch contg. both an optically isotropic phase and an optically anisotropic phase is passed through a filtering medium at a temperature higher than the softening point of the pitch and lower than 320 deg.C to recover a filtrate as a first component pitch (first step). The component which is flowable in this stage is comprised essentially of an optically isotropic pitch, so that the first component pitch is an optically isotropic pitch. The pitch which has been left on the filtering medium in the first step is passed through the filtering medium at 320-400 deg.C in an inert atmosphere to recover a filtrate as second component pitch (second step). In the second step, an optically anisotropic pitch free from an excessively polycondensed portion is obtained. The second component pitch is used for production of a carbon fiber, while the first component pitch is recycled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光学的等方性相と光学的異方性相の共存する
ピッチから、炭素材料製造用、特に炭素繊維製造用に好
適なピッチを分離する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for producing carbon materials, particularly carbon fibers, from a pitch in which an optically isotropic phase and an optically anisotropic phase coexist. Concerning how to separate pitches.

〔従来の技術〕[Conventional technology]

近年、素材として種々な用途に適合したものが開発され
ているが、その一つに炭素系材料がある。
In recent years, materials suitable for various uses have been developed, one of which is carbon-based materials.

炭素系材料(炭素、黒鉛材料)のものには、コークス、
黒鉛電極等が知られており、材料としての耐熱性、電導
性、軽量性、耐食性等の特徴を生かした新しい製品が開
発されつつあるが、中でもピッチ系の炭素mlは、安価
に高性能のものが得られる可能性を有することから注目
を集め、多くの研究が発表されている。
Carbon-based materials (carbon, graphite materials) include coke,
Graphite electrodes are well known, and new products are being developed that take advantage of the material's characteristics such as heat resistance, conductivity, light weight, and corrosion resistance. Among them, pitch-based carbon ml is an inexpensive and high-performance material. It has attracted attention because of its potential to yield new products, and many studies have been published.

今、炭素llNを代表として本発明を説明する。The present invention will now be described using carbon 11N as a representative.

従来、炭素繊維の製造法としては、ポリアクリロニトリ
ル、レーヨン等の合成m維やセルロース等の天然繊維を
焼成する方法、炭素系、或いは石油系のビッヂを原料と
し、熱処理等の処理を施しで紡糸用ピッチとし、これを
紡糸、焼成する方法等、種々な物質を原料として製造す
る方性が発表されている。
Conventionally, methods for producing carbon fiber include firing synthetic fibers such as polyacrylonitrile and rayon, and natural fibers such as cellulose, and spinning fibers using carbon-based or petroleum-based bits as raw materials and subjecting them to treatments such as heat treatment. Methods for producing the material using various materials as raw materials have been announced, such as a method of spinning and firing the pitch as a commercial pitch.

最近、特にピッチが安価であることから、これを原料と
して炭素II維を造る方法が種々提案されている。
Recently, since pitch is particularly inexpensive, various methods have been proposed for producing carbon II fibers using pitch as a raw material.

一般にピッチから炭素繊維を造る工程は、大きく分ける
と、(a)石炭ピッチ、或いは石油ピッチを熱処理等に
よって処理し、紡糸用ピッチとする工程、(b)紡糸用
ピッチを紡糸する工程、(C)紡糸した糸を不遜化する
工程、(d)不融化した糸を焼成し、炭化、或いは更に
黒鉛化する工程となる。
In general, the process of making carbon fiber from pitch can be roughly divided into (a) a process of treating coal pitch or petroleum pitch by heat treatment etc. to make pitch for spinning, (b) a process of spinning the pitch for spinning, and (C ) A process of making the spun yarn into a solid form, and (d) a process of firing the infusible yarn and carbonizing it or further graphitizing it.

上記各工程には、それぞれ改良しなければならない点が
あるが、特に(a)の紡糸用ピッチをつくる工程には大
きな問題がある。ピッチはポリアクリロニトリルやその
伯の合成樹脂と違って、種々な化合物の混合体であるの
で、分子量分布が広く、これを構成する各成分の性質が
異なっている。
Each of the above steps has points that need to be improved, but there is a particular problem in the step (a) of producing pitch for spinning. Unlike polyacrylonitrile and its similar synthetic resins, pitch is a mixture of various compounds, so it has a wide molecular weight distribution and the properties of each constituent component are different.

そのため、紡糸用ピッチをつくる際、僅かの処理条件の
違いによって、得られる紡糸用ビツヂの性状が影響を受
け、その紡糸性、最適紡糸条件が変化し、極端な場合に
は安定した紡糸が不可能となる。
Therefore, when making pitch for spinning, slight differences in processing conditions affect the properties of the resulting spinning pitch, changing its spinnability and optimum spinning conditions, and in extreme cases, making stable spinning impossible. It becomes possible.

例えば、熱処理時におけるピッチの変化はその程度が少
ない場合、まず全面光学的等方性を示し、次いで光学的
異方性のメソフェーズが発生し、最終的には100%光
学的異方性ピッチへと変化する。このように単なる熱処
理によって100%光学的異方性のピッチを得ることは
容易であるが、広い分子量分布およびピッチを構成する
それぞれの成分の重縮合の程度の違いによって、成分の
一部は高分子化が進み過ぎ、紡糸用ピッチとしては流動
性が乏しく、紡糸時、ノズルの閉塞を生じ、安定した紡
糸を不可能とする。これに対し、このような成分が生成
する前に熱処理を終了した場合、まだ熟成不」−分な光
学的等方性ピッチ成分と、光学的異方性メソフェーズ成
分とが混在する、いわゆる二相分離状態となり、紡糸時
にはその二相の粘弾性挙動の違いにより、糸切れを頻繁
に発生させる原因となる。また、糸切れしないように紡
糸条件を設定しても、糸径のばらつきが大きく、安定し
た品質の炭素繊維を得ることが出来ない。更にピッチが
全面光学的等方性の段階で熱処理を終了した場合、紡糸
性の良好なピッチが得られるが、高性能のm雑を得るこ
とは出来ない。
For example, if the change in pitch during heat treatment is small, the entire surface first exhibits optical isotropy, then an optically anisotropic mesophase occurs, and finally a 100% optically anisotropic pitch. and changes. Although it is easy to obtain a pitch with 100% optical anisotropy by simple heat treatment, due to the wide molecular weight distribution and the difference in the degree of polycondensation of each component that makes up the pitch, some of the components have high The molecularization progresses too much and the pitch has poor fluidity as a spinning pitch, causing blockage of the nozzle during spinning, making stable spinning impossible. On the other hand, if the heat treatment is terminated before such a component is generated, a so-called two-phase component is formed, in which an unripe optically isotropic pitch component and an optically anisotropic mesophase component coexist. This results in a separated state, and during spinning, the difference in viscoelastic behavior between the two phases causes yarn breakage to occur frequently. Further, even if the spinning conditions are set so as not to break the yarn, the yarn diameter varies widely and it is not possible to obtain carbon fibers of stable quality. Furthermore, if the heat treatment is completed when the pitch is optically isotropic over the entire surface, a pitch with good spinnability can be obtained, but a high-performance m-sodium cannot be obtained.

そのため、高性能で、かつ品質の安定した炭素繊維の原
料となる紡糸用ピッチが得られるピッチの処理法につい
て種々な提案がなされている。例えば水添後熱処理する
方法(特開昭57−179285、特開昭58−184
21)、熱処理後、沈降分離したピッチに更に熱処理を
加える方法(特開昭57−88016.)、上記沈降分
離の代りに溶剤を用いる方法(特開昭54−16042
7)等、その数も多い。
Therefore, various proposals have been made regarding pitch processing methods that yield spinning pitch, which is a raw material for carbon fibers with high performance and stable quality. For example, a method of heat treatment after hydrogenation (JP-A-57-179285, JP-A-58-184)
21), a method of further heat-treating the pitch that has been precipitated and separated after heat treatment (JP-A-57-88016.), a method of using a solvent instead of the above-mentioned sedimentation separation (JP-A-54-16042).
7) and many others.

これらの方法は、いずれも光学的異方性を含み、かつ紡
糸時にはビツヂが均一系として挙動するようにしたもの
である。
All of these methods involve optical anisotropy, and the bits behave as a homogeneous system during spinning.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、光学的等方性ピッチと光学的異方性ピッチが
混在してなるピッチは、昇温して軟化点を越えると、全
体的には一見流動性を持つように見える。しかし、この
段階で流動性を示すのは、殆んど光学的等方性のピッチ
のみで、光学的異方性のビッヂには流動性がない。更に
昇温を行なうと、光学的異方性ピッチも流動性を示すよ
うになるが、その流動性には大きな差があり、これを完
全に均一系として挙動させることは困難であった。
Incidentally, a pitch that is a mixture of optically isotropic pitch and optically anisotropic pitch appears to have fluidity as a whole when the temperature is increased to exceed the softening point. However, at this stage, only the optically isotropic pitch exhibits fluidity, and the optically anisotropic bit shows no fluidity. When the temperature is further increased, the optically anisotropic pitch also begins to exhibit fluidity, but there is a large difference in fluidity, and it has been difficult to make this behave as a completely homogeneous system.

本発明者は、ピッチを原料として高性能の炭素繊維或い
は炭素材料をつくるべく鋭意研究していたが、その過程
において、光学的等方性ピッチと光学的異方性ピッチの
流動性の違いに着目し、これを利用することにより、各
ピッチ成分を分離。
The inventor of the present invention has been conducting intensive research to create high-performance carbon fibers or carbon materials using pitch as a raw material, but in the process, he discovered that there is a difference in fluidity between optically isotropic pitch and optically anisotropic pitch. By focusing on this and using this, we can separate each pitch component.

精製することが可能なことを知見した。We found that it is possible to purify it.

本発明は上記の知見に基づいてなされたもので、光学的
異方性ピッチと光学的等方性ピッチとが混在するピッチ
を、重縮合が過度に進行した部分を殆ど含まない光学的
異方性ピッチと、光学的等方性ピッチとに分離、精製す
る方法を提供することを目的とする。
The present invention was made based on the above findings, and it is possible to convert a pitch in which an optically anisotropic pitch and an optically isotropic pitch are mixed into an optically anisotropic pitch that contains almost no portion where polycondensation has progressed excessively. The present invention aims to provide a method for separating and purifying optically isotropic pitch and optically isotropic pitch.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記の目的を達成するべくなされたもので、
その要旨は、光学的等方性相と光学的異方性相が共存す
るピッチを不活性雰囲気下、軟化点以上、320℃以下
の温度で濾過材を通過させ、これを第1成分ピッチとし
て回収する第1工程と、第1工程において上記濾過材に
残留したピッチを不活性雰囲気下、320℃以上400
℃以下の温度で濾過材を通過させ、これを第2成分ピチ
として回収する第2工程とによって順次処理するピッチ
の精製法、および高性能炭素繊維または炭素材料に使用
されるピッチの精製法において、光学的等方性相ど光学
的異方性相が共存するピッチを不活性雰囲気下、軟化点
以上320℃以下の温度で濾過材を通過させ除去した後
、」]記瀘過材に残留したピッチを、不活性雰囲気下、
320℃以上、400℃以下の温iで通過させ回収する
ピッチの精製法にある。
The present invention has been made to achieve the above objects, and
The gist is that pitch in which an optically isotropic phase and an optically anisotropic phase coexist is passed through a filter medium in an inert atmosphere at a temperature above the softening point and below 320°C, and this is used as the first component pitch. A first step of recovering the pitch remaining on the filter material in the first step is heated at 320° C. or higher at 400° C. in an inert atmosphere.
A pitch purification method that sequentially processes pitch by passing it through a filter medium at a temperature below ℃ and a second step of recovering it as a second component pitch, and a pitch purification method used for high performance carbon fibers or carbon materials. After removing the pitch in which both the optically isotropic phase and the optically anisotropic phase coexist by passing it through a filter medium at a temperature above the softening point and below 320°C in an inert atmosphere, the remaining pitch remains on the filter medium. The prepared pitch is placed under an inert atmosphere.
The pitch purification method involves passing the pitch at a temperature of 320° C. or higher and 400° C. or lower and collecting it.

〔発明の具体的構成および作用〕[Specific structure and operation of the invention]

本発明の方法は、第1工程と第2工程とによって構成さ
れている。
The method of the present invention is comprised of a first step and a second step.

ピッチの中で光学的異方性ピッチは流動性が低く、光学
的等方性ピッチは流動性が高い。これらの両ピッヂが混
在する混合ピッチの流動性は大部分が光学的等方性ピッ
チに依存している。本発明の第1■稈はこの混合状態の
もとで濾過することにより、光学的等方性ピッチを除去
するものである。上記状態は、量的比率は別としてポリ
マーとポリマー中のゲルとの関係に類似している。この
際、濾過温度は、極めて重要で炭素繊維をつくる場合の
前記(a)のピッチの処理法によって光学的異方性相を
示すピッチの粘度も変化するので、第1工程における最
適温度も変る。しかし、320℃を越えると、光学的等
方性ピッチのみならず光学的異方性ビッヂもかなりの流
動性を示すようになるので両ピッチの分離性は悪くなる
Among pitches, optically anisotropic pitch has low fluidity, and optically isotropic pitch has high fluidity. The fluidity of a mixed pitch in which both of these pitches coexist is largely dependent on the optically isotropic pitch. The first culm of the present invention is filtered under this mixed state to remove optically isotropic pitch. The above situation is similar to the relationship between a polymer and a gel in a polymer, apart from the quantitative ratio. At this time, the filtration temperature is extremely important, and the viscosity of the pitch that exhibits an optically anisotropic phase changes depending on the pitch treatment method described in (a) above when making carbon fibers, so the optimal temperature in the first step also changes. . However, when the temperature exceeds 320° C., not only the optically isotropic pitch but also the optically anisotropic bit shows considerable fluidity, so that the separation between the two pitches deteriorates.

また、第2工程においては、第1■稈で濾過材に捕捉さ
れ残留した光学的異方性ピッチを、320℃以上、40
0℃以下、好ましくは320℃以上、380℃以下の範
囲に加熱すると、第1工程で流動性が低く、濾過材を通
過しなかったピッチが濾材を通過するのに十分な流動性
を持つようになる。上記第2工程の温度の設定はビッヂ
を用いる操作の最終工程の温度、すなわち炭素繊維をつ
くる場合には、紡糸温度とすることが望ましい。
In the second step, the remaining optically anisotropic pitch captured by the filter material in the first culm is removed at 40°C and above 320°C.
When heated to a temperature below 0°C, preferably above 320°C and below 380°C, the pitch that had low fluidity in the first step and did not pass through the filter medium will have sufficient fluidity to pass through the filter medium. become. The temperature in the second step is desirably set to the temperature in the final step of the operation using the bitge, that is, in the case of producing carbon fibers, the spinning temperature.

紡糸温度で濾過することにより、紡糸時において流動性
が乏しく、ノズル閉塞の原因となる重縮合が進み過ぎた
成分を除去することが出来る。しかし温度を400℃以
上とすると、第2工程においてピッチの重縮合が進行す
る。したがって安全を見れば380℃以下が好ましい。
By filtering at the spinning temperature, it is possible to remove components that have poor fluidity during spinning and have undergone excessive polycondensation, which causes nozzle clogging. However, when the temperature is set to 400° C. or higher, polycondensation of pitch proceeds in the second step. Therefore, from a safety standpoint, the temperature is preferably 380°C or lower.

紡糸用ピッチの中間段階において水沫を適用する場合は
、予想される紡糸温度以下がよい。また、炭素材料用と
する場合には、求める特性、或いは製造条件に応じ、上
記温度範囲より適宜選択すればよい。
When applying water droplets at an intermediate stage of spinning pitch, it is preferable to use a water droplet below the expected spinning temperature. In addition, when the temperature is used for carbon materials, the temperature may be appropriately selected from the above temperature range depending on the desired characteristics or manufacturing conditions.

本発明の方法によって分離、精製された各ピッチは、厳
密に両ピッチに分離されるわけでないが、溶融時には、
均一な一相系のピッチとして挙動するので、紡糸用ピッ
チとして優れている。
Each pitch separated and purified by the method of the present invention is not strictly separated into both pitches, but when melted,
Since it behaves as a uniform one-phase pitch, it is excellent as a pitch for spinning.

また本発明の方法の最大の利点は、不活性ガス雰囲気下
、加圧濾過を2段階行なうのみで効率良く分離すること
が可能な点である。この第2■程から得られる第2成分
ピッチを紡糸用ピッチとして使用するとともに、第1工
程より得られる第1成分ピッチは、前記(a)のピッチ
の処理の原料としてリターンされるので、実質的な収率
の低下はない。
The greatest advantage of the method of the present invention is that efficient separation can be achieved by only performing two steps of pressure filtration under an inert gas atmosphere. The second component pitch obtained from the second step (2) is used as spinning pitch, and the first component pitch obtained from the first step is returned as a raw material for the pitch processing in (a) above, so There is no significant yield loss.

また、第1.第2工程における収量は、処理の方法程度
によって異なるが、一般に第1成分ピッチと第2成分ピ
ッチの取得用の比較で、第1成分ピッチは5〜50wt
%、第2成分ピッチは95〜50wt%である。
Also, 1st. The yield in the second step varies depending on the processing method, but in general, when comparing the first component pitch and the second component pitch, the first component pitch is 5 to 50wt.
%, and the second component pitch is 95 to 50 wt%.

また、濾過材としては、径のそろったメタル粒子を充填
形成したフィルター、メツシュ網を重ね合わせたフィル
ター、焼結金属フィルター、ガラスフィルター、カーボ
ンフィルター等が用いられる。フィルターは空隙率40
%以上、特に50%以上のものが好ましい。40%以下
では、フィルターに捕捉されるピッチ成分は不必要に多
くなり、40%以下では濾過する効果が低下する。
Further, as the filter material, a filter filled with metal particles having a uniform diameter, a filter made of overlapping mesh nets, a sintered metal filter, a glass filter, a carbon filter, etc. are used. The filter has a porosity of 40
% or more, particularly preferably 50% or more. If it is less than 40%, the pitch component captured by the filter will increase unnecessarily, and if it is less than 40%, the filtering effect will decrease.

以下本発明を実施例比較例を示して説明する。The present invention will be explained below with reference to Examples and Comparative Examples.

〔実施例1〕 2ノのオートクレーブに、テトラハイドロキノリンを溶
媒とし、コールタールピッチ:溶媒−1=1の重量比で
充填し、90 K9 / cMの水素加圧下、470℃
に1時間保持して、ピッチの水素化処理を行なった。得
られた水素化ピッチを濾過および加熱下で減圧処理を行
ない、熱処理原料ピッチとした。この熱処理原料ピッチ
をフラスコに入れて窒素雰囲気下、470℃で処理し、
等方性相と異 11一 方性相が混在したピッチを得た。
[Example 1] Two autoclaves were filled with tetrahydroquinoline as a solvent at a weight ratio of coal tar pitch:solvent-1=1, and heated at 470°C under a hydrogen pressure of 90 K9/cM.
The pitch was held for 1 hour to perform hydrogenation treatment. The obtained hydrogenated pitch was filtered and treated under reduced pressure under heating to obtain heat-treated raw pitch. This heat-treated raw material pitch was placed in a flask and treated at 470°C under a nitrogen atmosphere.
A pitch containing a mixture of isotropic phase and anisotropic phase was obtained.

次に、径0.311111のノズルを有するモノホール
の紡糸筒に、67〜72%の空隙率を形成する40〜6
0メツシユのメタルパウダー(M etallwrai
cal  I ndustres、 J nc、製)を
充填し、その上に上記ピッチをすりつぶしたものをセッ
トした。
Next, a monohole spinning tube having a nozzle with a diameter of 0.311111 was filled with 40 to 60% porosity to form a porosity of 67 to 72%.
0 mesh metal powder (M etallwrai
(manufactured by Cal Industries, JNC), and the ground pitch described above was set thereon.

その場合、上記メタルパウダーおよびピッチの層厚をそ
れぞれ1 cmおよび10cttrとした。
In that case, the layer thicknesses of the metal powder and pitch were 1 cm and 10 cttr, respectively.

この紡糸筒を窒素雰囲気下で加熱し、ピッチ温度が30
8℃で安定した後、窒素によって1Kg/dに加圧し第
1工程とした。この操作によりノズルより押出されたピ
ッチを第1成分ピッチとする。
This spinning tube was heated under a nitrogen atmosphere until the pitch temperature reached 30
After the temperature was stabilized at 8° C., the pressure was increased to 1 Kg/d using nitrogen to carry out the first step. The pitch extruded from the nozzle by this operation is defined as the first component pitch.

第1成分ピッチが完全に押出された後、メタルパウダー
に残留したピッチを345℃に昇渇し、4に9 / c
dに加圧し第2工程とした。この操作によって押出され
たピッチを第2成分ピッチとする。このノズルより押出
された第2成分ピッチを巻取り機によって1000m/
分の速度で巻取った。その紡糸性は極めて良好で、30
分以上糸切れなく紡糸することが出来た。このピッチ繊
維を常法により不融化した後、1000℃で焼成炭化し
た。
After the first component pitch is completely extruded, the pitch remaining in the metal powder is heated to 345℃, and the pitch is heated to 4 to 9/c.
Pressure was applied to d for the second step. The pitch extruded by this operation is defined as the second component pitch. The second component pitch extruded from this nozzle is passed through a winder for 1000m/
It was wound at a speed of 1 minute. Its spinnability is extremely good, with 30
I was able to spin yarn for more than a minute without breaking the yarn. After making the pitch fiber infusible by a conventional method, it was fired and carbonized at 1000°C.

得られた炭素繊維は、糸径:8μm、引張強度:310
に’J/lttm2.弾性率:20T/am2.破断伸
度:1.55%であった。各工程でのピッチの性状を第
1表に示す。
The obtained carbon fiber had a thread diameter of 8 μm and a tensile strength of 310.
ni'J/lttm2. Elastic modulus: 20T/am2. Elongation at break: 1.55%. Table 1 shows the properties of the pitch in each step.

第     1     表 (比較例1〕 実施例1と同じにして、紡糸筒にピッチをセットし、第
1工程を経ることなく、直接第2工程を行なった外は、
実施例1と同じにして紡糸した。
Table 1 (Comparative Example 1) Same as Example 1 except that the pitch was set in the spinning tube and the second step was directly performed without going through the first step.
Spinning was carried out in the same manner as in Example 1.

押出されたピッチは不均一で2相分離状態を示し、10
00m/分の巻取速度ではせいぜい数秒しか連続して紡
糸出来ず、300m/分においても最長10秒程度の紡
糸しか出来なかった。
The extruded pitch is non-uniform and exhibits a two-phase separation state, with 10
At a winding speed of 00 m/min, continuous spinning was possible for only a few seconds at most, and even at 300 m/min, spinning was only possible for a maximum of about 10 seconds.

〔実施例2〕 実施例1の熱処理原料ピッチをギアポンプにて、1段目
処理として480℃の区域を通過させた後、2段目の処
理を行なう撹拌器付き反応器に送り込んだ。この反応器
での平均滞留時間は2時間、処理温度は420℃であっ
た。この反応器の底部よりピッチを連続的に抜出し、3
00℃に保持したベッセルに受けた。このベッセルに受
けたピッチを、300℃に保持し、濾過層として空隙率
70〜80%の焼結金属フィルター(フジメタルファイ
バー、富士フィルター■業製)が取付られた濾過器に送
込んだ。次いで、窒素圧1.5に9/ciによってピッ
チを濾過し、焼結金属フィルターを通過した濾液を第1
成分ピッチとした。第1成分ピッチが完全に流出し終っ
た後、10Kg/c#iまで加圧したが、ピッチの流出
は認められなかった。次いで濾過器を330℃に胃温し
、7 Kfl / crirの窒素圧によって加圧、8
1!過し、第2成分ピッチを得た。
[Example 2] The heat-treated raw material pitch of Example 1 was passed through a 480° C. zone as a first-stage treatment using a gear pump, and then fed into a reactor equipped with a stirrer for a second-stage treatment. The average residence time in this reactor was 2 hours, and the treatment temperature was 420°C. Pitch is continuously extracted from the bottom of this reactor, and 3
It was placed in a vessel kept at 00°C. The pitch received in this vessel was maintained at 300° C. and sent to a filter equipped with a sintered metal filter (Fuji Metal Fiber, manufactured by Fuji Filter Corporation) with a porosity of 70 to 80% as a filter layer. The pitch was then filtered with a nitrogen pressure of 1.5 to 9/ci, and the filtrate that passed through the sintered metal filter was filtered into the first
component pitch. After the first component pitch had completely flowed out, the pressure was increased to 10 Kg/c#i, but no pitch was observed to flow out. The filter was then warmed to 330°C and pressurized with a nitrogen pressure of 7 Kfl/crir.
1! A second component pitch was obtained.

この第2成分ピッチを実施例1と同じ紡糸筒に入れ、3
40℃に加熱し、窒素圧で7 Kg / cMに加圧し
て紡糸し、これを900m/分の速度で巻取った。紡糸
性は良好で30分以上糸切れすることなく紡糸出来た。
This second component pitch was put into the same spinning tube as in Example 1, and
It was heated to 40°C and spun at a nitrogen pressure of 7 Kg/cM, and wound up at a speed of 900 m/min. The spinning properties were good, and the yarn could be spun for more than 30 minutes without breaking.

このピッチ糸を常法によって不融化した後、1000℃
で焼成炭化した。得られた炭素繊維は、糸径:9μ肌、
引張強11:290Kg/ cl 、弾性率18T/#
2.破断伸度く6%であった。各ピッチの性状を第2表
に示す。
After making this pitch yarn infusible by a conventional method,
It was fired and carbonized. The obtained carbon fiber had a thread diameter of 9μ,
Tensile strength 11: 290Kg/cl, elastic modulus 18T/#
2. The elongation at break was 6%. Table 2 shows the properties of each pitch.

第     2     表 〔比較例2〕 実施例2においてベッセルから抜き出したピッチを用い
、実施例2と同じ条件、操作によって紡糸した。その結
果、ノズル出口でのピッチの脈打ちが激しく、連続して
紡糸できた最長時間は20秒であった。
Table 2 [Comparative Example 2] Using the pitch extracted from the vessel in Example 2, spinning was carried out under the same conditions and operations as in Example 2. As a result, the pitch pulsation at the nozzle exit was severe, and the longest continuous spinning time was 20 seconds.

〔効果〕〔effect〕

以上述べたように、本発明の方法は簡単な装置。 As described above, the method of the present invention uses a simple device.

操作によって均一相として挙動するピッチが得られ、し
かも、除去したピッチはリサイクルにして使用されるの
で、収率の低下もなく、優れた製品が安価に得られる等
多くの長所を有するものである。
Pitch that behaves as a homogeneous phase is obtained through the operation, and since the removed pitch is recycled and used, there is no drop in yield and it has many advantages such as being able to obtain excellent products at low cost. .

Claims (4)

【特許請求の範囲】[Claims] (1)光学的等方性相と光学的異方性相が共存するピッ
チを不活性雰囲気下、軟化点以上、320℃以下の温度
で濾過材を通過させ、これを第1成分ピッチとして回収
する第1工程と、第1工程において上記濾過材に残留し
たピッチを不活性雰囲気下、320℃以上、400℃以
下の温度で濾過材を通過させこれを第2成分ピッチとし
て回収する第2工程とにより、順次処理することを特徴
とするピッチの精製法。
(1) Pitch in which an optically isotropic phase and an optically anisotropic phase coexist is passed through a filter medium at a temperature above the softening point and below 320°C in an inert atmosphere and is recovered as the first component pitch. A second step in which the pitch remaining in the filter medium in the first step is passed through the filter medium at a temperature of 320° C. or higher and 400° C. or lower under an inert atmosphere and recovered as a second component pitch. A pitch purification method characterized by sequential processing.
(2)濾過材の充填状態における空隙率が少なくとも4
0%である特許請求の範囲第1項記載のピッチの精製法
(2) The porosity of the filter medium in the filled state is at least 4
The pitch refining method according to claim 1, wherein the pitch is 0%.
(3)高性能炭素繊維または炭素材料に使用されるピッ
チの精製法において、光学的等方性相と光学的異方性相
が共存するピッチを不活性雰囲気下、軟化点以上、32
0℃以下の温度で濾過材を通過させ除去した後、上記濾
過材に残留したピッチを、不活性雰囲気下、320℃以
上、400℃以下の温度で濾過材を通過させ回収するこ
とを特徴とすピッチの精製法。
(3) In a method for refining pitch used for high-performance carbon fibers or carbon materials, pitch in which an optically isotropic phase and an optically anisotropic phase coexist is heated under an inert atmosphere to a temperature above the softening point of 32
The pitch is removed by passing through a filter medium at a temperature of 0° C. or lower, and then the pitch remaining on the filter medium is recovered by passing through the filter medium at a temperature of 320° C. or higher and 400° C. or lower in an inert atmosphere. Method for refining pitch.
(4)濾過材の充填状態における空隙率が少なくとも4
0%である特許請求の範囲第3項記載のピッチの精製法
(4) The porosity of the filter medium in the filled state is at least 4
The pitch refining method according to claim 3, wherein the pitch is 0%.
JP20502185A 1985-09-17 1985-09-17 Purification of pitch Pending JPS6264889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20502185A JPS6264889A (en) 1985-09-17 1985-09-17 Purification of pitch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20502185A JPS6264889A (en) 1985-09-17 1985-09-17 Purification of pitch

Publications (1)

Publication Number Publication Date
JPS6264889A true JPS6264889A (en) 1987-03-23

Family

ID=16500129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20502185A Pending JPS6264889A (en) 1985-09-17 1985-09-17 Purification of pitch

Country Status (1)

Country Link
JP (1) JPS6264889A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104924A (en) * 1985-10-30 1987-05-15 Mitsubishi Chem Ind Ltd Production of pitch carbon fiber
JPS62250226A (en) * 1986-04-18 1987-10-31 Mitsubishi Chem Ind Ltd Production method for carbon fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104924A (en) * 1985-10-30 1987-05-15 Mitsubishi Chem Ind Ltd Production of pitch carbon fiber
JPS62250226A (en) * 1986-04-18 1987-10-31 Mitsubishi Chem Ind Ltd Production method for carbon fiber

Similar Documents

Publication Publication Date Title
US4243512A (en) Process for preparation of pitch for producing carbon fiber
EP0198471B1 (en) Method of purifying the starting material for use in the production of carbon products
US4115527A (en) Production of carbon fibers having high anisotropy
JPS62270685A (en) Production of mesophase pitch
JPS5818421A (en) Preparation of carbon fiber
US5968435A (en) Process for manufacturing pitch-type carbon fiber
JPS59196390A (en) Preparation of pitch for carbon fiber
JPS6264889A (en) Purification of pitch
JPS5938280A (en) Preparation of precursor pitch for carbon fiber
JPS60202189A (en) Pitch for carbonaceous material and its preparation
JPH058238B2 (en)
JPS61215692A (en) Mesophase pitch suitable for high-performance carbon fiber and its production
JPS6257679B2 (en)
JPH0155314B2 (en)
JPS61138721A (en) Production of carbon fiber
EP0172955B1 (en) A method for producing a precursor pitch for carbon fiber
JPS59161483A (en) Production of pitch for carbon material
CA1259576A (en) Method of purifying the starting material for use in the production of carbon products
JPH058959B2 (en)
JPH01149892A (en) Production of precursor pitch for general-purpose carbon fiber
JPH0424217A (en) Production of precursor pitch for general purpose carbon fiber
JPS5988923A (en) Manufacture of carbon fiber
JPS5982417A (en) Pitch for raw material of carbon fiber and its preparation
JPS62187790A (en) Production of precursor pitch carbon fiber
JPS59136384A (en) Preparation of pitch for producing carbon fiber