JPH0356513A - Production of water-absorptive polymer - Google Patents

Production of water-absorptive polymer

Info

Publication number
JPH0356513A
JPH0356513A JP19322989A JP19322989A JPH0356513A JP H0356513 A JPH0356513 A JP H0356513A JP 19322989 A JP19322989 A JP 19322989A JP 19322989 A JP19322989 A JP 19322989A JP H0356513 A JPH0356513 A JP H0356513A
Authority
JP
Japan
Prior art keywords
water
polymerization
monomer
aqueous solution
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19322989A
Other languages
Japanese (ja)
Other versions
JP2745703B2 (en
Inventor
Yoshikazu Mori
義和 森
Shozo Koyama
小山 昌三
Minoru Okada
稔 岡田
Hidenori Sakakibara
秀紀 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP19322989A priority Critical patent/JP2745703B2/en
Publication of JPH0356513A publication Critical patent/JPH0356513A/en
Application granted granted Critical
Publication of JP2745703B2 publication Critical patent/JP2745703B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title polymer to be used for sanitary articles, sludge solidification, etc. by putting an aqueous solution of alpha, beta - unsaturated carboxylic acid ( salt ) monomer to polymerization in the presence of a polyfunctional monomer while preventing the aqueous medium from boiling through pressurization to enable high-concentration aqueous solution reaction. CONSTITUTION:An aqueous solution of monomer predominant in alpha, beta - unsaturated carboxylic acid ( salt ) ( pref. containing >= 20 wt.% of acrylic acid plus its alkali metal salt ) is put to polymerization in the presence of a polyfunctional monomer ( pref. ethylene glycol diacrylate ) while preventing the aqueous medium from boiling through pressurization ( pref. >= 2 kg/cm<2>G ), thus obtaining the objective polymer.

Description

【発明の詳細な説明】 (イ)発明の目的 「産業上の利用分野」 本発明は吸水性ポリマーの新規な製造法に関するもので
あり、該吸水性ポリマーは生理用品、おむつ、使い捨て
雑巾等の衛生用品や保水剤等の農園芸用品として使用さ
れている他、汚泥の凝固、建材の結露防止、油類の脱水
等の用途にも用いられているものでもあり、本発明は、
それら各種の業界および吸水性ポリマーを製造する化学
業界において広く利用されるものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Object of the invention "Field of industrial application" The present invention relates to a new method for producing a water-absorbing polymer. In addition to being used as sanitary products and agricultural and horticultural supplies such as water retention agents, it is also used for purposes such as coagulating sludge, preventing condensation on building materials, and dehydrating oils.
It is widely used in these various industries and in the chemical industry that manufactures water-absorbing polymers.

「従来の技術」 従来吸水性ポリマーとしては、カルボキシメチルセルロ
ース架橋物、ポリオキシエチレン架橋物、澱粉一アクリ
ロニトリルグラフト共重合体の加水分解物、澱粉−アク
リル酸グラフト共重合体、アクリル酸塩重合体架橋物、
アクリル酸塩系共重合体架橋物等が知られている。
"Prior art" Conventional water-absorbing polymers include carboxymethylcellulose crosslinked products, polyoxyethylene crosslinked products, starch-acrylonitrile graft copolymer hydrolysates, starch-acrylic acid graft copolymers, and acrylate polymer crosslinks. thing,
Crosslinked acrylate copolymers are known.

これらの内、カルボキシメチルセルロース架橋物及びポ
リオキシエチレン架橋物では未だ満足すべき吸水能、保
水能を有するものは得られていない。
Among these, carboxymethylcellulose crosslinked products and polyoxyethylene crosslinked products have not yet been found to have satisfactory water absorption and water retention abilities.

また、澱粉−アクリロニトリルグラフト共重合体の加水
分解物及び澱粉一アクリル酸グラフト共重合体は比較的
高い吸水能、保水能を有するが、天然高分子である澱粉
を使用しているため耐熱性、腐敗分解等に欠点があり、
その製造方法も複雑であるという問題点も有している。
In addition, the hydrolyzate of starch-acrylonitrile graft copolymer and the starch-acrylic acid graft copolymer have relatively high water absorption and water retention capacity, but because they use starch, which is a natural polymer, they have low heat resistance, There are drawbacks to rotting and decomposition, etc.
Another problem is that the manufacturing method thereof is complicated.

さらに、アクリル酸塩重合体架橋物及びアクリル酸塩系
共重合体架橋物については吸水能、保水能及び品質安定
性等を満足し得るものであるが、その重合方法には種々
の問題点がある。
Furthermore, although crosslinked acrylate polymers and crosslinked acrylate copolymers can satisfy water absorption capacity, water retention capacity, quality stability, etc., there are various problems with their polymerization methods. be.

即ち、アクリル酸塩重合体架橋物又はアクリル酸塩系共
重合体架橋物等の製造法として、水溶液重合、逆相乳化
重合、逆相懸濁重合等の各種重合方法が採用されている
が、これらの方法の何れも下記の様な問題点を有してい
る。
That is, various polymerization methods such as aqueous solution polymerization, reverse-phase emulsion polymerization, and reverse-phase suspension polymerization have been adopted as methods for producing crosslinked acrylate polymers or crosslinked acrylate copolymers. All of these methods have the following problems.

例えば、逆相乳化重合、逆相懸濁重合等の場合は、重合
工程に有機溶媒を用いることが必須であるが、有機溶媒
の使用は、突発的重合や重合温度管理のミス等の発生に
より、反応系の温度や圧力が異常に上昇し、爆発、火災
を招く危険性あるいは作業環境を悪化する等の問題があ
る。
For example, in the case of reverse-phase emulsion polymerization, reverse-phase suspension polymerization, etc., it is essential to use an organic solvent in the polymerization process. , the temperature and pressure of the reaction system may rise abnormally, leading to problems such as the risk of explosion or fire, or deterioration of the working environment.

一方、水溶液重合の場合は、反応制御が容易な点からバ
ッチ式で熱重合させる方法が主流であるが、収量の向上
を目的として、高濃度の単量体水溶液を重合させようと
すると、重合反応は、烈しく進行し、反応熱によって系
の温度は急激に上昇して沸騰状態になり、水蒸気の放出
が妨げられるため、反応が暴走してゲルにポップコーン
現象が発生する。更に、溶液の粘度上昇によって、重合
速度が著しく増大するゲル効果現象も加わり、温度制御
が一層困難になり、好ましい品質の製品が得られ難くな
る。又、製品の取り出し等の作業性も著しく劣る様にな
る。
On the other hand, in the case of aqueous solution polymerization, batch thermal polymerization is the mainstream method because it is easy to control the reaction, but when trying to polymerize a highly concentrated monomer aqueous solution with the aim of improving the yield, The reaction progresses rapidly, and the temperature of the system rapidly rises due to the reaction heat, reaching a boiling state, which prevents the release of water vapor, causing the reaction to run out of control and causing a popcorn phenomenon in the gel. Furthermore, due to the increase in the viscosity of the solution, there is also a gel effect phenomenon in which the polymerization rate increases significantly, making temperature control more difficult and making it difficult to obtain a product of favorable quality. In addition, the workability of taking out products, etc. becomes significantly inferior.

これらの問題点の解消、即ち、反応の温度制御を容易に
するため、比較的低温度で重合反応させるという方法も
考えられているが、その方法では反応時間が長くなるた
め生産効率が低いという欠点が生ずる。
In order to solve these problems, that is, to make it easier to control the temperature of the reaction, a method of conducting the polymerization reaction at a relatively low temperature has been considered, but this method requires a long reaction time and has low production efficiency. Defects arise.

一方、こうした生産性の問題を解決すべく、比較的高濃
度の単量体水溶液をあらかじめ加温しておき、これに重
合反応開始剤を添加して外部加熱を行うことなく、エン
ドレスベルト上等で連続的に重合させると共に水分を気
化させるという、乾燥工程も要しない生産効率の高い製
造方法も提案されているが、この方法においては、生産
効率が高い反面、苛酷な重合条件に基づく重合熱による
水の蒸発のため、得られる樹脂が多孔質となる傾向があ
り、得られた樹脂は、保水率が低く加圧時に一旦吸収し
た水が放出される、いわゆる、もどり現象を生じるとい
う問題点があり、更に、低分子量物が多く生成するため
に吸水時にべとつき感が生じるという問題点もある.又
、いずれの製造方法であっても、得られた樹脂の吸水速
度向上のためには、後架橋、表面処理等を行う必要があ
った。
On the other hand, in order to solve these productivity problems, a relatively high concentration monomer aqueous solution is heated in advance, a polymerization reaction initiator is added to it, and an endless belt can be used without external heating. A production method with high production efficiency that does not require a drying process has also been proposed, in which continuous polymerization is carried out at the same time as moisture is vaporized.However, although this method has high production efficiency, it does not require high production heat due to the harsh polymerization conditions. The resulting resin tends to become porous due to water evaporation due to water evaporation, and the resulting resin has a low water retention rate, causing the so-called rebound phenomenon in which water that has been absorbed is released when pressurized. Furthermore, there is the problem that a sticky feeling occurs when water is absorbed due to the formation of a large amount of low molecular weight substances. In addition, regardless of the production method, post-crosslinking, surface treatment, etc. must be performed in order to improve the water absorption rate of the resulting resin.

「発明が解決しようとする諜題」 本発明は、アクリル酸又はアクリル酸塩等のα,β一不
飽和カルボン酸又はその塩を主体とし多官能単量体を含
有する単量体混合物を重合して吸水性ポリマーとする際
の上記問題点を解消し、生産性、作業性に優れ、物性面
の優れた吸水性ポリマーが得られる製造方法を提供する
ことにある。
``The secret problem to be solved by the invention'' The present invention is directed to polymerization of a monomer mixture containing a polyfunctional monomer mainly composed of α,β monounsaturated carboxylic acid or its salt such as acrylic acid or acrylic acid salt. It is an object of the present invention to provide a manufacturing method that solves the above-mentioned problems when producing a water-absorbing polymer by producing a water-absorbing polymer with excellent productivity, workability, and excellent physical properties.

(口)発明の構或 「課題を解決するための手段」 本発明者は、前記の如き実状に鑑み、上記目的を達或す
べく、従来吸水性ポリマーの製造では実質的に行われた
ことのない加圧重合により反応系における沸騰を防止し
ながら重合することによれば、アクリル酸又はアクリル
酸塩等のα,β一不飽和カルボン酸又はその塩を主体と
する単量体混合物水溶液から、上記問題点を解消し生産
性、作業性に優れ、物性面の優れた吸水性ポリマーが得
られることを見出して、その発明に関して先に出願を行
った(特願昭63−281353号).更に本発明者等
は検討を続け、該重合を多官能単量体、特に親水性多官
能単量体の存在下に行うことにより、さらに優れた吸水
性ポリマーが得られることを見出し本発明を完威したの
である。
(Example) Structure of the Invention or "Means for Solving the Problem" In view of the above-mentioned circumstances, the present inventor has devised a method that has been practically performed in the production of water-absorbing polymers in the past in order to achieve the above-mentioned object. By polymerizing under pressure while preventing boiling in the reaction system, it is possible to polymerize from an aqueous solution of a monomer mixture mainly consisting of α, β monounsaturated carboxylic acids such as acrylic acid or acrylates, or salts thereof. discovered that it was possible to solve the above problems and obtain a water-absorbing polymer with excellent productivity, workability, and physical properties, and filed an application for the invention (Japanese Patent Application No. 63-281353). Furthermore, the present inventors continued their studies and found that an even more excellent water-absorbing polymer could be obtained by carrying out the polymerization in the presence of a polyfunctional monomer, particularly a hydrophilic polyfunctional monomer. It was completely destroyed.

即ち、本発明はα,β一不飽和カルボン酸又はその塩を
主体とする単量体水溶液を、多官能単量体の共存下に、
加圧により水性媒体の沸騰を防止しつつ重合することを
特徴とする吸水性ポリマーの製造方法に関するものであ
る。
That is, in the present invention, an aqueous monomer solution mainly composed of α,β monounsaturated carboxylic acid or a salt thereof in the coexistence of a polyfunctional monomer,
The present invention relates to a method for producing a water-absorbing polymer, characterized in that polymerization is carried out while preventing boiling of an aqueous medium by applying pressure.

本発明におけるα,β一不飽和カルボン酸又はそ属塩等
のことであり、それらを主体とする単量体水溶液とは、
それらの単量体のl種又は2種以上からなるか、それら
と他の親水性単量体、例えばアクリルアξド、2−ヒド
ロキシエチル(メタ)アクリレート、2−(メタ)アク
リロイルエタンスルホン酸、2−アクリルアミド2−エ
チルプロパンスルホン酸ソーダ、ジメチルアミノエチル
アクリレートの四級塩等のビニル系親水性単量体との混
合体のことである。又、多官能単量体とは吸水性ポリマ
ーに架橋構造を導入し得るN,N−メチレンビスアクリ
ルアミド、エチレングリコールジアクリレートなどの単
量体のことであり、本発明にとり好ましい多官能単量体
は、エチレングリコールジアクリレート等の親水性多官
能単量体であり、その他の親水性多官能単量体としては
、エチレングリコールジメタクリレート、エチレングリ
コールジグリシジルエーテル、ジエチレングリコールジ
グリシジルエーテル、ポリエチレングリコールジグリシ
ジルエーテル(市販品として主鎖のn(縮合度)が2〜
8のもの、例えば阪本薬品工業■製SR−2EC,SR
−8EG、ナガセ化戒工業■製EX−8 2 1等があ
る)、ポリプロピレングリコールジグリシジルエーテル
、トリメチロールプロパントリメタクリレート、トリメ
チロールプロパントリアクリレート、ポリエーテルポリ
アクリレート(市販品として東亜化学工業■製アロニッ
クスM−240、M−245、M−260,M−305
等がある)等を挙げることが出来、本発明にとりより好
ましい親水性多官能単量体は、ポリエチレングリコール
ジグリシジルエーテル(主鎖のnが2〜4のもの)であ
る。多官能単量体は、吸水速度の向上や吸水後の樹脂の
感触を良好にするものであり、親水性を有する多官能単
量体は、特にその効果が大きく認められるのである。
In the present invention, α,β monounsaturated carboxylic acids or salts thereof, etc., and the monomer aqueous solution mainly composed of them,
Consisting of one or more of these monomers, or together with other hydrophilic monomers, such as acrylamide, 2-hydroxyethyl (meth)acrylate, 2-(meth)acryloylethanesulfonic acid, It is a mixture of 2-acrylamide and vinyl hydrophilic monomers such as sodium 2-ethylpropanesulfonate and quaternary salt of dimethylaminoethyl acrylate. In addition, the polyfunctional monomer refers to a monomer such as N,N-methylenebisacrylamide and ethylene glycol diacrylate that can introduce a crosslinked structure into a water-absorbing polymer, and is a preferred polyfunctional monomer for the present invention. is a hydrophilic polyfunctional monomer such as ethylene glycol diacrylate, and other hydrophilic polyfunctional monomers include ethylene glycol dimethacrylate, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, and polyethylene glycol diglycidyl. Ether (commercially available products with main chain n (degree of condensation) of 2 to
8, such as SR-2EC, SR manufactured by Sakamoto Pharmaceutical Co., Ltd.
-8EG, EX-8 2 1 manufactured by Nagase Kakai Kogyo), polypropylene glycol diglycidyl ether, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, polyether polyacrylate (commercially available products manufactured by Toa Chemical Industry) Aronix M-240, M-245, M-260, M-305
A more preferred hydrophilic polyfunctional monomer for the present invention is polyethylene glycol diglycidyl ether (n in the main chain is 2 to 4). Polyfunctional monomers improve the water absorption rate and improve the feel of the resin after water absorption, and polyfunctional monomers with hydrophilic properties are particularly effective in this regard.

但し、余り親水性の大きいものは、樹脂の粘着性を増加
させ、継粉を発生し易く、吸水速度も低下させる傾向が
認められる。
However, if the resin is too hydrophilic, it tends to increase the adhesiveness of the resin, easily generate joint powder, and reduce the water absorption rate.

さらに、本発明の単量体水溶液として、従来より吸水性
ポリマーの製造に用いられている澱粉やセルロース等の
添加されているものも使用し得る。
Furthermore, as the monomer aqueous solution of the present invention, those to which starch, cellulose, etc., which have been conventionally used in the production of water-absorbing polymers, may be used.

本発明にとり好ましい単量体水溶液は、アクリル酸とア
クリル酸アルカリ金属塩を20重量%以上含む単量体水
溶液であり、アクリル酸とアクリル酸アルカリ金属塩の
割合(モル比)が0〜80:20〜100のものである
。尚、アクリル酸とアクリル酸アルカリ金属塩の混合物
は、アクリル酸をアルカリ金属塩で部分中和することに
より、任意のものが極めて容易に調製され、本発明に用
いられる多官能単量体の使用量としては、単量体純分あ
たり0.02〜0.5重量%が好ましく、より好ましく
は0.05〜0.2重量%である。
A preferred aqueous monomer solution for the present invention is a monomer aqueous solution containing 20% by weight or more of acrylic acid and an alkali metal salt of acrylate, and the ratio (molar ratio) of acrylic acid to an alkali metal salt of acrylate is 0 to 80: 20 to 100. Any mixture of acrylic acid and an alkali metal salt of acrylic acid can be prepared very easily by partially neutralizing acrylic acid with an alkali metal salt, and the use of the polyfunctional monomer used in the present invention is very easy. The amount is preferably 0.02 to 0.5% by weight, more preferably 0.05 to 0.2% by weight based on the pure monomer content.

単量体水溶液の重合は水性溶液中でバッチ又は連続的に
行われるが、その際の単量体濃度については、単量体が
溶解度の関係から水性溶液から析出しない範囲において
任意に調整することが出来、それも本発明の特長となる
ものである。当然、それは析出濃度付近での重合をも可
能とするものであり、それは生産効率を最大限に向上さ
せ得るものである。
Polymerization of an aqueous monomer solution is carried out batchwise or continuously in an aqueous solution, but the monomer concentration at this time can be adjusted arbitrarily to the extent that the monomer does not precipitate from the aqueous solution due to solubility. This is also a feature of the present invention. Naturally, it also allows polymerization near the precipitate concentration, which can maximize production efficiency.

たとえば、アクリル酸の部分中和塩(中和度70%:ア
クリル酸とアクリル酸塩の混合物)の水に対する溶解度
は、常温で48%であり、本発明によれば、その様な濃
度での重合反応も可能にするものである。
For example, the solubility of a partially neutralized salt of acrylic acid (degree of neutralization: 70%: mixture of acrylic acid and acrylate) in water is 48% at room temperature, and according to the present invention, the solubility of a partially neutralized salt of acrylic acid at such a concentration is 48%. It also enables polymerization reactions.

本発明においては、重合時に水性媒体が沸騰することを
防止するために、加圧することが必要であり、加圧圧力
は単量体混合物或いは単量体混合物と単量体混合物の重
合により生成した重合体を含む反応系(水性溶液)の沸
騰、特に水性媒体の沸騰を防止するできるものでなけれ
ばならない。
In the present invention, in order to prevent the aqueous medium from boiling during polymerization, it is necessary to pressurize the aqueous medium. It must be able to prevent boiling of the reaction system (aqueous solution) containing the polymer, especially boiling of the aqueous medium.

加圧により、ゲルも沸騰することなく、均一なゲルを生
威し得るが、加圧の程度は、単量体混合物濃度及び重合
開始温度によって、沸騰時圧力が種々変動するので、そ
れに応じて、沸騰を防止するに足る様に適宜設定すれば
良いが、一般的には0. 5 Kg/cm2G以上の加
圧下に重合させるのが好ましく、より好ましくは2 K
g/cm2G以上の加圧下の重合である。 加圧の上限
は、得られる吸水性ポリマーの特性によって制限される
ことはなく、主として製造設備化における経済性および
操作の難易性等から定められるものである。
Applying pressure can produce a uniform gel without boiling, but the degree of pressurization should be adjusted accordingly, as the pressure at boiling varies depending on the monomer mixture concentration and polymerization initiation temperature. , may be set appropriately to prevent boiling, but generally it is 0. It is preferable to polymerize under pressure of 5 Kg/cm2G or more, more preferably 2K
This is polymerization under pressure of g/cm2G or more. The upper limit of pressurization is not limited by the characteristics of the water-absorbing polymer to be obtained, but is determined mainly by the economical efficiency of production equipment and the difficulty of operation.

加圧は重合温度が高くなり水性媒体が沸騰するのを防止
するために行われるのであるから、単量体水溶液或いは
単量体水溶液と単量体水溶液の重合により生成した重合
体を含む反応系(水性溶液)の沸騰温度における蒸気圧
より幾分高めであれば良いが、操作の容易性からは、重
合期間中、前記した様に設定された圧力を加えておくの
が望ましい。
Pressurization is performed to prevent the polymerization temperature from increasing and the aqueous medium from boiling. The pressure may be slightly higher than the vapor pressure at the boiling temperature of the (aqueous solution), but from the viewpoint of ease of operation, it is desirable to apply the pressure set as described above during the polymerization period.

重合開始温度については、特に制限はなく、使用する触
媒系に応じて設定すれば良く、反応速度が著しく低下し
ない温度に設定すれば問題はない。
The polymerization initiation temperature is not particularly limited and may be set depending on the catalyst system used, and there will be no problem as long as it is set at a temperature that does not significantly reduce the reaction rate.

開始剤としては、過硫酸塩、過酸化水素、こはく酸過酸
化物、t−プチルパーオキシマレイン酸などの過酸化物
の一種又は二種以上、或いはこれら過酸化物と亜硫酸ソ
ーダ、アスコルビン酸、エリソルビン酸ナトリウムなど
の還元剤を組み合わせたレドックス系開始剤およびアゾ
化合物などが用いられ、添加量は、通常単量体に対して
0.05〜0.5重量%である。
As an initiator, one or more peroxides such as persulfate, hydrogen peroxide, succinic peroxide, t-butylperoxymaleic acid, or these peroxides and sodium sulfite, ascorbic acid, A redox initiator combined with a reducing agent such as sodium erythorbate and an azo compound are used, and the amount added is usually 0.05 to 0.5% by weight based on the monomer.

「作用」 前記した水性溶液重合によって吸水性ポリマーを製造し
ようとした場合、反応系の温度は、水性溶液の沸点を越
えないよう制御しなければ、反応の暴走のみならず、均
一なゲルを生成することが困難であると考えられていた
。そのために採用されていた方法は、ベルト重合するか
、七ノマー濃度を低くして、反応熱を押さえるか、反応
スタート温度をできるだけ下げて、水溶液の沸点を越え
ないよう制御するという方法であった。このため、反応
時間が長くなったり、反応器容積当りの取得量に限界が
あり、又物性の優れた吸水性ポリマーが得にくいという
問題が存在した。
"Effect" When attempting to produce a water-absorbing polymer by the above-mentioned aqueous solution polymerization, unless the temperature of the reaction system is controlled so as not to exceed the boiling point of the aqueous solution, the reaction will not only run out of control, but will also produce a uniform gel. It was considered difficult to do. The methods adopted for this purpose were to suppress the reaction heat by performing belt polymerization, lowering the concentration of the heptopomer, or lowering the reaction start temperature as much as possible so as not to exceed the boiling point of the aqueous solution. . For this reason, there were problems in that the reaction time was long, the amount obtained per reactor volume was limited, and it was difficult to obtain a water-absorbing polymer with excellent physical properties.

ところが、重合反応を加圧下に行うという本発明によれ
ば、即ち、重合反応時の反応温度における重合反応水溶
液の蒸気圧以上に加圧することにより、ゲルの沸騰が押
さえられ、沸点を気にする必要もなく、高濃度の単量体
水溶液でも制御良く重合反応を進めることが出来、又、
吸水性ポリマーの均一なゲルを生或することが出来る。
However, according to the present invention in which the polymerization reaction is carried out under pressure, that is, by pressurizing the polymerization reaction solution to a level higher than the vapor pressure of the polymerization reaction aqueous solution at the reaction temperature during the polymerization reaction, boiling of the gel is suppressed, and boiling points are not a concern. There is no need for this, and the polymerization reaction can proceed with good control even in a highly concentrated monomer aqueous solution.
A uniform gel of water-absorbing polymer can be produced.

更に、加圧下で反応させているので反応完結後ゲルの取
り出しも自圧を利用して容易に取り出すということも出
来る。
Furthermore, since the reaction is carried out under pressure, the gel can be easily taken out after the reaction is completed using its own pressure.

特に本発明によれば、加圧のためとは推定されるが、得
られる吸水性ポリマーのゲルは無数の細かい気泡を内包
し、吸水性ポリマーの吸水速度を大幅に向上し、かつ、
継粉になりにくいものになるという予測しえない優れた
性能を有する吸水性ポリマーが得られる。そしてこれは
、高濃度重合することにより、より顕著になる。
In particular, according to the present invention, although it is presumed that this is due to pressurization, the resulting water-absorbing polymer gel contains countless fine bubbles, which greatly improves the water absorption rate of the water-absorbing polymer, and
A water-absorbing polymer is obtained that has unexpectedly excellent performance in that it is resistant to joint powder. This becomes more noticeable when polymerization is carried out at a high concentration.

又、本発明においては吸水性ポリマーに架橋構造を導入
し得る多官能単量体を使用しているため、吸水性ポリマ
ーの吸水速度をさらに向上し、かつ吸水後のゲルが、サ
ラットした感触のものになるという様な優れた特性を付
与することが出来るのである。
In addition, since the present invention uses a polyfunctional monomer that can introduce a crosslinked structure into the water-absorbing polymer, the water absorption rate of the water-absorbing polymer is further improved, and the gel after water absorption has a smooth feel. It is possible to impart excellent properties such as the ability to become a product.

一般に、吸水性ポリマー粉末は、その粒度が細かければ
細かい程、表面積が大きくなり、このため吸水速度が向
上するが、ある粒度までくると、吸水中に、粒子同志が
くっつき合って、継粉になり、これが吸水速度を下げる
原因となる。このため、無機系の微粉を表面にコーティ
ングしたり、表面架橋をする等の後処理によって、これ
を解決しようとしているが、本発明によれば、このよう
な工程もなくすことが出来る。
In general, the finer the particle size of water-absorbing polymer powder, the larger the surface area, which improves the water absorption rate.However, when the particle size reaches a certain point, the particles stick together while absorbing water, causing joint powder. This causes the water absorption rate to decrease. Therefore, attempts have been made to solve this problem by post-processing such as coating the surface with inorganic fine powder or crosslinking the surface, but according to the present invention, such steps can be eliminated.

「実施例」 実施例1 アクリル酸35.3部に水22.8部加えて得た水溶液
に濃度32%の苛性ソーダ水溶液42部をかきまぜなが
ら加えて中和した。20’Cまで冷却したのち、この水
溶液に親水性多官能単量体ジエチレングリコールジグリ
シジルエーテルを0.11部加え、加圧重合反応器で窒
素パブリングしたのち、過硫酸アンモニウム(以下AP
Sという)0.09部、エリソルビン酸ナトリウム(エ
ルビットN:商品名藤沢薬品工業株式会社製)0.00
45部をそれぞれlO%水溶液にした状態で添加し、圧
力4 Kg/cm”G下で重合さセタ。
"Examples" Example 1 To an aqueous solution obtained by adding 22.8 parts of water to 35.3 parts of acrylic acid, 42 parts of a 32% aqueous solution of caustic soda was added with stirring to neutralize the solution. After cooling to 20'C, 0.11 parts of hydrophilic polyfunctional monomer diethylene glycol diglycidyl ether was added to this aqueous solution, and after nitrogen bubbling in a pressure polymerization reactor, ammonium persulfate (hereinafter referred to as AP) was added.
S) 0.09 parts, sodium erythorbate (Elvit N: trade name manufactured by Fujisawa Pharmaceutical Co., Ltd.) 0.00
45 parts of each were added as lO% aqueous solutions and polymerized under a pressure of 4 Kg/cm''G.

なお、この混合物は、中和度70%、単量体見掛け濃度
48%である。
Note that this mixture has a degree of neutralization of 70% and an apparent monomer concentration of 48%.

系の温度は135゜Cまで上昇し、約IO分間で重合反
応が終了した。
The temperature of the system rose to 135°C, and the polymerization reaction was completed in about 10 minutes.

生成物を細断し、1 2 0 ’Cの熱風乾燥器中で乾
燥し、乾燥物を粉砕して樹脂粉末を得た。この粉末樹脂
をふるい分けをし、60〜l Q Qmeshの粒度の
ものを選別した。
The product was shredded and dried in a hot air oven at 120'C, and the dried material was ground to obtain a resin powder. This powdered resin was sieved to select particles with a particle size of 60 to 1 Q Qmesh.

攻本盈度生盟足徂 ガラスフィルター(11G2)と50mlビュレットを
ゴム管で接続し、0.9%NaCl水溶液を入れ、フィ
ルター下部の空気を十分抜いたのち、フィルター表面が
液で滲みる程度に液面をビュレットを上下して合わせる
。60〜1 0 0meshの粒度の粉末試料0. 1
 gを精秤し、これをフィルターに均一になるようばら
まき、1分後の吸水量を測定する(以下この方法をCA
P法という)。
Connect a 50ml burette with a 50ml burette using a rubber tube, add a 0.9% NaCl aqueous solution, and remove enough air from the bottom of the filter until the filter surface is smeared with liquid. Adjust the liquid level by moving the burette up and down. A powder sample with a particle size of 60 to 100 mesh 0. 1
Accurately weigh the amount of water, spread it evenly on the filter, and measure the amount of water absorbed after 1 minute (hereinafter this method will be referred to as CA
(referred to as P method).

致述1Dし列糺(剃 100dビーカーに0.9%NaC1水溶液50!II
l人れ6 0 0 rpmでマグネチックスターラーで
回転する。これに、60〜1 0 0meshの粒度の
粉末試料2gを入れ、溶液表面が平らになる時間を読む
Detailed description 1D and column (shave 100D beaker with 0.9% NaCl aqueous solution 50!II
Rotate with a magnetic stirrer at 600 rpm. Add 2 g of a powder sample with a particle size of 60 to 100 mesh to this, and read the time until the surface of the solution becomes flat.

測定後継粉(白い固まり)状態をチェックする(以下こ
の方法を渦巻法という)。
Check the status of the powder (white mass) after measurement (hereinafter this method is referred to as the swirl method).

亘止度史邊定 90φの時計皿に、60〜100meshの粒度の粉末
試料0.5gを入れ、平らに広げた後、純水5mlをま
んべんなく添加し、1分後のゲルの白化状態をチェック
する。
Put 0.5g of powder sample with a particle size of 60-100mesh into a 90φ watch glass, spread it flat, and evenly add 5ml of pure water. Check the whitening state of the gel after 1 minute. do.

判定/A一完全白化 B一半分白化 C一僅かに白化 D一白化せず 尚、この測定法は吸水後のゲルのサラット感と良く相関
する。
Judgment: A - Complete whitening B - Half whitening C - Slight whitening D - No whitening Furthermore, this measurement method correlates well with the smooth feeling of the gel after water absorption.

実施例2 アクリル酸22.1部に水51.2部加えて得た水溶液
に濃度32%の苛性ソーダ水溶液26.2部をかきまぜ
ながら加えて中和した。2 0 ’Cまで冷却したのち
この水溶液に親水性多官能単量体ジエチレングリコール
ジグリシジルエーテル0.075部加え、加圧重合反応
器で窒素パブリングしたのち、APS0.06部、エル
ビットNO. O O a部をそれぞれlO%水溶液に
した状態で添加し、圧力3Kg/cm2G下で重合させ
た。この混合物は中和度70%、単量体見掛け濃度30
%である。
Example 2 To an aqueous solution obtained by adding 51.2 parts of water to 22.1 parts of acrylic acid, 26.2 parts of a 32% aqueous solution of caustic soda was added with stirring to neutralize the solution. After cooling to 20'C, 0.075 part of hydrophilic polyfunctional monomer diethylene glycol diglycidyl ether was added to this aqueous solution, and after bubbling with nitrogen in a pressure polymerization reactor, 0.06 part of APS and Elvit NO. O 2 O a parts were each added as a 10% aqueous solution, and polymerized under a pressure of 3 Kg/cm 2 G. This mixture has a degree of neutralization of 70% and an apparent monomer concentration of 30%.
%.

系の温度は90゜Cまで上昇し、約20分間で重合反応
が終了した。
The temperature of the system rose to 90°C, and the polymerization reaction was completed in about 20 minutes.

生成物を細断し、120゜Cの熱風乾燥器中で乾燥し、
乾燥物を粉砕して樹脂粉末を得た。この粉末樹脂をふる
い分けをし、60〜l Q Qmeshの粒度のものを
選別した。
The product was shredded and dried in a hot air oven at 120°C;
The dried product was pulverized to obtain resin powder. This powdered resin was sieved to select particles with a particle size of 60 to 1 Q Qmesh.

比較例1 実施例lと同様の准金物を作り常圧下で重合させた。反
応中106゜Cを越えた時点で、ゲルが飛び出した。
Comparative Example 1 A quasi-metallic material similar to Example 1 was prepared and polymerized under normal pressure. When the temperature exceeded 106°C during the reaction, the gel popped out.

生或物を細断し、120゜Cの熱風乾燥器中で乾燥し、
乾燥物を粉砕して樹脂粉末を得た。この粉末樹脂をふる
い分けをし、60〜1 0 0meshの粒度のものを
選別した。
The raw material was shredded and dried in a hot air dryer at 120°C.
The dried product was pulverized to obtain resin powder. This powdered resin was sieved to select particles with a particle size of 60 to 100 mesh.

吸述1劃ト裡虹定 以上の様にして得た樹脂粉末について吸水性能を測定し
第1表にまとめた。
The water absorption performance of the resin powder obtained in the above manner after one suction was measured and summarized in Table 1.

=(以 下 余 白)一一一 第1表 第1表で明らかな様に、親水性多官能単量体を加え加圧
重合したものは、加えなかったものに比較して吸水速度
が向上し、何等吸水後のゲルに継粉は発生しない。特に
高濃度で加圧重合したものは、後処理を行わなくても、
吸水速度が飛躍的に向上する。
= (Margin below) 111 Table 1 As is clear from Table 1, the water absorption rate of the polymers subjected to pressure polymerization with the addition of hydrophilic polyfunctional monomers is improved compared to those without the addition of hydrophilic polyfunctional monomers. However, no joint powder is generated in the gel after water absorption. In particular, products polymerized under pressure at high concentrations can be treated without post-treatment.
Water absorption speed is dramatically improved.

(ハ)発明の効果 本発明は次の様な優れた効果を示す。(c) Effects of the invention The present invention exhibits the following excellent effects.

1.高濃度水溶液反応が可能で均一な吸水性ポリマーを
得ることができる。
1. A highly concentrated aqueous solution reaction is possible and a uniform water-absorbing polymer can be obtained.

2.反応熱の除熱装置が不要である。2. A heat removal device for reaction heat is not required.

3.無数の微細な気泡を有する吸水性ポリマーが得られ
、後処理等を行わなくとも吸水速度の速い吸水性ポリマ
ーを得ることができる。
3. A water-absorbing polymer having countless microscopic bubbles can be obtained, and a water-absorbing polymer with a high water absorption rate can be obtained without any post-treatment.

4.ゲルの取り出しが容易に行なえる。4. Gel can be easily removed.

5.高濃度で重合できるため、乾燥工程が大幅に短縮で
き、設備規模もエネルギーコストも゛押さえられる。
5. Since it can be polymerized at a high concentration, the drying process can be significantly shortened, and equipment scale and energy costs can be reduced.

6.多官能単量体、特に適度な親水性を持つ、親水性単
量体を使用することにより、吸水速度が更に向上し、吸
水後のゲルにサラットした感触を付与することができる
6. By using a polyfunctional monomer, particularly a hydrophilic monomer having appropriate hydrophilicity, the water absorption rate can be further improved and a smooth feel can be imparted to the gel after water absorption.

7.本発明で得られた吸水性ポリマーは、前記した優れ
た特性の故に、生理用品、おむつ、使い捨て雑巾等の衛
生用品や保水剤等の農園芸用品さらには、汚泥の凝固、
建材の結露防止、油類の脱水等に用いられて、従来のも
のよりさらに優れた効果を奏し得る.
7. Because of the above-mentioned excellent properties, the water-absorbing polymer obtained in the present invention can be used for sanitary products such as sanitary products, diapers, and disposable rags, for agricultural and gardening products such as water retention agents, and for coagulation of sludge.
It is used to prevent condensation on building materials, dehydrate oil, etc., and can produce even better effects than conventional ones.

Claims (1)

【特許請求の範囲】[Claims] 1、α,β−不飽和カルボン酸又はその塩を主体とする
単量体水溶液を、多官能単量体の共存下に、加圧により
水性媒体の沸騰を防止しつつ重合することを特徴とする
吸水性ポリマーの製造方法。
1. It is characterized by polymerizing an aqueous monomer solution mainly composed of α,β-unsaturated carboxylic acid or its salt in the coexistence of a polyfunctional monomer while preventing boiling of the aqueous medium by applying pressure. A method for producing a water-absorbing polymer.
JP19322989A 1989-07-26 1989-07-26 Method for producing water-absorbing polymer Expired - Lifetime JP2745703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19322989A JP2745703B2 (en) 1989-07-26 1989-07-26 Method for producing water-absorbing polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19322989A JP2745703B2 (en) 1989-07-26 1989-07-26 Method for producing water-absorbing polymer

Publications (2)

Publication Number Publication Date
JPH0356513A true JPH0356513A (en) 1991-03-12
JP2745703B2 JP2745703B2 (en) 1998-04-28

Family

ID=16304473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19322989A Expired - Lifetime JP2745703B2 (en) 1989-07-26 1989-07-26 Method for producing water-absorbing polymer

Country Status (1)

Country Link
JP (1) JP2745703B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034377A1 (en) * 1994-06-13 1995-12-21 Nippon Shokubai Co., Ltd. Water absorbent, process for producing the same, and absorbent article containing the same
EP0855232A3 (en) * 1997-01-27 1999-06-30 Nippon Shokubai Co., Ltd. Process for classifying particulate hydrophilic polymer and sieving device
USRE38444E1 (en) 1994-06-13 2004-02-24 Nippon Shokubai Co., Ltd. Absorbing agent, process of manufacturing same, and absorbent product containing same
KR20160149227A (en) 2014-04-25 2016-12-27 가부시키가이샤 닛폰 쇼쿠바이 Method for producing polyacrylic acid (salt)-based water-absorbent resin

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034377A1 (en) * 1994-06-13 1995-12-21 Nippon Shokubai Co., Ltd. Water absorbent, process for producing the same, and absorbent article containing the same
US5760080A (en) * 1994-06-13 1998-06-02 Nippon Shokubai Co., Ltd. Absorbing agent, process of manufacturing same, and absorbent product containing same
US6054541A (en) * 1994-06-13 2000-04-25 Nippon Shokubai Co., Ltd. Process of manufacturing precursor of an absorbing agent
US6180724B1 (en) 1994-06-13 2001-01-30 Nippon Shokubai Co., Ltd. Process for manufacturing an absorbing agent and absorbent material
USRE38444E1 (en) 1994-06-13 2004-02-24 Nippon Shokubai Co., Ltd. Absorbing agent, process of manufacturing same, and absorbent product containing same
EP0855232A3 (en) * 1997-01-27 1999-06-30 Nippon Shokubai Co., Ltd. Process for classifying particulate hydrophilic polymer and sieving device
US6164455A (en) * 1997-01-27 2000-12-26 Nippon Shokubai Co., Ltd. Process for classifying particulate hydrophilic polymer and sieving device
KR20160149227A (en) 2014-04-25 2016-12-27 가부시키가이샤 닛폰 쇼쿠바이 Method for producing polyacrylic acid (salt)-based water-absorbent resin
US9868800B2 (en) 2014-04-25 2018-01-16 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water-absorbent resin

Also Published As

Publication number Publication date
JP2745703B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
EP0878488B1 (en) Method for production of hydrophilic resin
US7049366B2 (en) Acrylic acid composition and its production process, and process for producing water-absorbent resin using this acrylic acid composition, and water-absorbent resin
DE69828756T2 (en) Process for the preparation of a water-absorbent resin
US4647617A (en) Water absorbent crosslinked polymer and a method of producing the same containing cellulosis fibers
WO2001098382A1 (en) Process for production of water-absorbent resin
JP2877255B2 (en) Manufacturing method of water absorbent resin with excellent durability
NL8602749A (en) PROCESS FOR PREPARING A POROUS POLYMER AND ABSORBENT ARTICLES MADE THEREFROM.
JP2003246810A5 (en)
JPWO2007126002A1 (en) Method for producing water absorbent resin
JPH02191604A (en) Water-absorbing resin and production thereof
JP2000026510A (en) Production of resin and water-absorbing resin
JPS6136763B2 (en)
JP3349768B2 (en) Method and composition for producing acrylate polymer
CN105297428A (en) Preparation method of high-hydroscopicity complex
JP2954360B2 (en) Manufacturing method of water-absorbing composite
JPH0356513A (en) Production of water-absorptive polymer
EP0206808A2 (en) Continuous method for preparing polyacrylate resins
JP2001220415A (en) Method for producing water absorbing resin
JP2722695B2 (en) Method for producing water-absorbing polymer
JPH02170808A (en) Production of water-absorbing polymer
JPH02129207A (en) Preparation of water-absorbing polymer
JP2679280B2 (en) Method for producing water-absorbing polymer
JP2015178608A (en) Method for producing polyacrylic acid (salt)-based water-absorbing resin
JP3544372B2 (en) Acrylate-based polymer and sanitary material using the same
JPS63275607A (en) Manufacture of water-absorptive resin