JP2722695B2 - Method for producing water-absorbing polymer - Google Patents

Method for producing water-absorbing polymer

Info

Publication number
JP2722695B2
JP2722695B2 JP1199806A JP19980689A JP2722695B2 JP 2722695 B2 JP2722695 B2 JP 2722695B2 JP 1199806 A JP1199806 A JP 1199806A JP 19980689 A JP19980689 A JP 19980689A JP 2722695 B2 JP2722695 B2 JP 2722695B2
Authority
JP
Japan
Prior art keywords
polymerization
aqueous solution
water
monomer
absorbing polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1199806A
Other languages
Japanese (ja)
Other versions
JPH0364301A (en
Inventor
義和 森
昌三 小山
岡田  稔
秀紀 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP1199806A priority Critical patent/JP2722695B2/en
Publication of JPH0364301A publication Critical patent/JPH0364301A/en
Application granted granted Critical
Publication of JP2722695B2 publication Critical patent/JP2722695B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 (イ)発明の目的 「産業上の利用分野」 本発明は吸水性ポリマーの新規な製造法に関するもの
であり、該吸水性ポリマーは生理用品、おむつ、使い捨
て雑巾等の衛生用品や保水剤等の農園芸用品として使用
されている他、汚泥の凝固、建材の結露防止、油類の脱
水等の用途にも用いられているものでもあり、本発明
は、それら各種の業界および吸水性ポリマーを製造する
化学業界において広く利用されるものである。
DETAILED DESCRIPTION OF THE INVENTION (A) Object of the Invention "Industrial application field" The present invention relates to a novel method for producing a water-absorbing polymer, and the water-absorbing polymer is used for sanitary articles, diapers, disposable rags and the like. In addition to being used as agricultural and horticultural products such as sanitary products and water retention agents, it is also used for applications such as solidification of sludge, prevention of dew condensation of building materials, dehydration of oils, etc. It is widely used in the industry and in the chemical industry for producing water-absorbing polymers.

「従来の技術」 従来吸水性ポリマーとしては、カルボキシメチルセル
ロース架橋物、ポリオキシエチレン架橋物、澱粉−アク
リロニトリルグラフト共重合体の加水分解物、澱粉−ア
クリル酸グラフト共重合体、アクリル酸塩重合体架橋
物、アクリル酸塩系共重合体架橋物等が知られている。
[Prior art] Conventionally, water-absorbing polymers include carboxymethylcellulose crosslinked products, polyoxyethylene crosslinked products, starch-acrylonitrile graft copolymer hydrolysates, starch-acrylic acid graft copolymers, and acrylate polymer crosslinked products. Products, acrylate-based copolymer crosslinked products, and the like are known.

これらの内、アクリル酸塩重合体架橋物及びアクリル
酸塩系共重合体架橋物は吸水能、保水能及び品質安定性
等を満足し得るものであるが、その重合方法には種々の
問題点がある。
Among these, crosslinked acrylate polymer and crosslinked acrylate copolymer can satisfy water absorption capacity, water retention capacity, quality stability, etc., but the polymerization method has various problems. There is.

即ち、アクリル酸塩重合体架橋物又はアクリル酸塩系
共重合体架橋物等の製造法として、水溶液重合、逆相乳
化重合、逆相懸濁重合等の各種重合方法が採用されてい
るが、これらの方法の何れも下記の様な問題点を有して
いる。
That is, as a method for producing a crosslinked acrylate polymer or a crosslinked acrylate copolymer, various polymerization methods such as aqueous solution polymerization, reversed-phase emulsion polymerization, and reversed-phase suspension polymerization have been adopted. Each of these methods has the following problems.

例えば、逆相乳化重合、逆相懸濁重合等の場合は、重
合工程に有機溶媒を用いることが必須であるが、有機溶
媒の使用は、突発的重合や重合温度管理のミス等の発生
により、反応系の温度や圧力が異常に上昇し、爆発、火
災を招く危険性あるいは作業環境を悪化する等の問題が
ある。
For example, in the case of reverse-phase emulsion polymerization, reverse-phase suspension polymerization, and the like, it is essential to use an organic solvent in the polymerization step. In addition, there is a problem that the temperature and pressure of the reaction system abnormally rise, which may cause explosion and fire, or deteriorate the working environment.

一方、水溶液重合の場合は、反応制御が容易な点から
バッチ式で熱重合させる方法が主流であるが、収量の向
上を目的として、高濃度の単量体水溶液を重合させよう
とすると、重合反応は、烈しく進行し、反応熱によって
系の温度は急激に上昇して沸騰状態になり、水蒸気の放
出が妨げられるため、反応が暴走してゲルにポップコー
ン現象が発生する。更に、溶液の粘度上昇によって、重
合速度が著しく増大するゲル効果現象も加わり、温度制
御が一層困難で、好ましい品質の製品が得られ難くな
る。又、製品の取り出し等の作業性も著しく劣る様にな
る。
On the other hand, in the case of aqueous solution polymerization, the method of performing thermal polymerization in a batch system is the mainstream from the viewpoint of easy reaction control.However, in order to improve the yield, when polymerizing a high-concentration aqueous monomer solution, The reaction proceeds intensely, and the heat of the reaction rapidly raises the temperature of the system to a boiling state, thereby preventing the release of water vapor, so that the reaction runs away and a popcorn phenomenon occurs in the gel. In addition, a gel effect phenomenon, in which the polymerization rate is remarkably increased due to the increase in the viscosity of the solution, is added, so that it is more difficult to control the temperature, and it is difficult to obtain a product of favorable quality. In addition, workability such as taking out of the product is remarkably deteriorated.

この問題点の解消、即ち反応の温度制御を容易にする
ため比較的低温度で重合反応させるという方法も考えら
れているが、その方法では反応時間が長くなるため生産
効率が低いという欠点が生ずる。
To solve this problem, that is, a method of carrying out a polymerization reaction at a relatively low temperature in order to facilitate the control of the reaction temperature has been considered, but this method has a disadvantage that the reaction time is long and the production efficiency is low. .

一方、こうした生産性の問題を解決すべき、比較的高
濃度の単量体水溶液をあらかじめ加温しておき、これに
重合反応開始剤を添加して外部加熱を行うことなく、エ
ンドレスベルト上等で連続的に重合させると共に水分を
気化させるという、乾燥工程も要しない生産効率の高い
製造方法も提案されているが、この方法においては、生
産効率が高い反面、苛酷な重合条件に基づく重合熱によ
る水の蒸発のため、得られる樹脂が多孔質となる傾向が
あり、得られた樹脂は、保水率が低く加圧時に一旦吸収
した水が放出される、いわゆる、もどり現象を生じると
いう問題点があり、更に、低分子量物が多く生成するた
めに吸水時にべとつき感が生じるという問題点もある。
On the other hand, a relatively high-concentration aqueous monomer solution, which should solve such productivity problems, is heated in advance, and a polymerization reaction initiator is added to the aqueous solution without external heating. A high production efficiency production method that does not require a drying step, in which continuous polymerization is performed and moisture is vaporized, has also been proposed.In this method, the production heat is high, but the polymerization heat based on severe polymerization conditions is high. The resulting resin tends to be porous due to the evaporation of water, and the obtained resin has a low water retention rate and the water once absorbed upon pressurization is released, which is a problem that a so-called return phenomenon occurs. In addition, there is also a problem in that a large amount of low molecular weight substances are generated, so that a sticky feeling is generated at the time of water absorption.

又、高濃度の単量体水溶液と重合反応開始剤の添加方
法として、流体の噴射力で混合する方法の提案もある
が、噴射孔付近で単量体が重合し噴射孔を閉塞させる恐
れがあり、長期間安定に重合操作を続けることは不可能
ではないが、そのためには細心の注意と努力を必要とし
ている。
Also, as a method of adding a high-concentration aqueous monomer solution and a polymerization reaction initiator, there has been proposed a method of mixing with a jetting force of a fluid, but there is a possibility that the monomer is polymerized near the injection hole and the injection hole is blocked. Yes, it is not impossible to continue the polymerization operation stably for a long period of time, but this requires careful attention and effort.

なお、これらいずれの製造方法であっても、得られた
樹脂の吸水速度向上のためには、後架橋、表面処理等を
行う必要がある。
In any of these production methods, it is necessary to perform post-crosslinking, surface treatment, and the like in order to improve the water absorption rate of the obtained resin.

「発明が解決しようとする課題」 本発明は、アクリル酸又はアクリル酸塩等のα,β−
不飽和カルボン酸又はその塩を主体とする単量体を重合
して吸水性ポリマーとする際の上記問題点を解消し、生
産性、作業性に優れ、物性面の優れた吸水性ポリマーが
得られる製造方法を提供することにある。
"Problem to be Solved by the Invention" The present invention relates to an α, β-
The above problems when polymerizing a monomer mainly composed of an unsaturated carboxylic acid or a salt thereof into a water-absorbing polymer are solved, and a water-absorbing polymer having excellent productivity, workability, and excellent physical properties is obtained. To provide a manufacturing method.

(ロ)発明の構成 「課題を解決するための手段」 本発明者は、前記の如き実状に鑑み、上記目的を達成
すべく、種々検討した結果、従来吸水性ポリマーの製造
では実質的に行われたことのない加圧重合により、反応
系における沸騰を防止しながら重合するという方法によ
れば、アクリル酸又はアクリル酸塩等のα,β−不飽和
カルボン酸又はその塩を主体とする単量体水溶液から、
上記問題点を解消し、生産性、作業性に優れ、物性面の
優れた吸水性ポリマーが得られることを見出して、その
発明に関して先に出願を起った(特願昭63−281353
号)。
(B) Configuration of the Invention "Means for Solving the Problems" In view of the above-mentioned circumstances, the present inventors have conducted various studies in order to achieve the above-mentioned object. According to a method in which polymerization is carried out while preventing boiling in a reaction system by pressure polymerization which has never been described, a simple reaction comprising α, β-unsaturated carboxylic acid such as acrylic acid or acrylate or a salt thereof as a main component. From aqueous solution
The inventors have found that a water-absorbing polymer excellent in productivity, workability and physical properties can be obtained by solving the above-mentioned problems, and filed an application for the invention (Japanese Patent Application No. 63-281353).
issue).

更に、本発明者等は検討を続け、該重合において反応
器に供給する単量体水溶液を滴下状態で行うと、通常必
ず必要とされている、単量体水溶液中の酸素を窒素に置
換する工程(窒素置換工程)を省略することが出来、よ
り生産性が向上することを見出して、本発明を完成した
のである。
Further, the present inventors have continued the study, and in the polymerization, when the monomer aqueous solution to be supplied to the reactor is dropped, the oxygen in the monomer aqueous solution, which is always necessarily required, is replaced with nitrogen. The inventors have found that the step (nitrogen substitution step) can be omitted and that the productivity is further improved, and the present invention has been completed.

即ち、本発明はα,β−不飽和カルボン酸又はその塩
を主体とする単量体水溶液を、不活性気体により加圧さ
れた重合反応器へ滴下状態で供給するとともに、該加圧
により水性媒体の沸騰を防止しつつ重合しゲル状重合体
を得ることを特徴とする吸水性ポリマーの製造方法に関
するものである。
That is, the present invention supplies a monomer aqueous solution mainly containing an α, β-unsaturated carboxylic acid or a salt thereof dropwise to a polymerization reactor pressurized with an inert gas, The present invention relates to a method for producing a water-absorbing polymer, which comprises polymerizing a medium while preventing boiling of a medium to obtain a gel polymer.

本発明におけるα,β−不飽和カルボン酸又はその塩
とは、アクリル酸、メタクリル酸、イタコン酸、マレイ
ン酸等に代表される不飽和カルボン酸又は該カルボン酸
のナトリウム、カリウム等の金属塩等のことであり、そ
れらを主体とする単量体水溶液とは、それらの単量体の
1種又は2種以上からなるか、それらと他の親水性単量
体、例えばアクリルアミド、2−ヒドロキシエチル(メ
タ)アクリレート、2−(メタ)アクリロイルエタンス
ルホン酸、2−アクリルアミド2−エチルプロパンスル
ホン酸ソーダ、ジメチルアミノエチルアクリレートの四
級塩等のビニル系親水性単量体、架橋構造を導入し得る
N,N−メチレンビスアクリルアミド、エチレングリコー
ルジアクリレートなどの親水性多官能単量体との水溶液
混合体のことである。もちろん該単量体水溶液として、
従来より吸水性ポリマーの製造に用いられている澱粉や
セルロース等の添加されているものであっても良い。
The α, β-unsaturated carboxylic acid or a salt thereof in the present invention refers to an unsaturated carboxylic acid represented by acrylic acid, methacrylic acid, itaconic acid, maleic acid or the like, or a metal salt of the carboxylic acid such as sodium or potassium. The monomer aqueous solution containing these as a main component is composed of one or more of those monomers, or contains them and other hydrophilic monomers such as acrylamide, 2-hydroxyethyl A vinyl-based hydrophilic monomer such as (meth) acrylate, 2- (meth) acryloylethanesulfonic acid, 2-acrylamide sodium 2-ethylpropanesulfonate, a quaternary salt of dimethylaminoethyl acrylate, and a crosslinked structure can be introduced.
It is an aqueous solution mixture with a hydrophilic polyfunctional monomer such as N, N-methylenebisacrylamide and ethylene glycol diacrylate. Of course, as the monomer aqueous solution,
It may be added with starch, cellulose or the like conventionally used in the production of water-absorbing polymers.

本発明にとり好ましい単量体水溶液は、アクリル酸と
アクリル酸アルカリ金属塩を20重量%以上含む単量体水
溶液であり、アクリル酸とアクリル酸アルカリ金属塩の
割合(モル比)が0〜80:20〜100のものである。尚、ア
クリル酸とアクリル酸アルカリ金属塩の混合物は、アク
リル酸をアルカリ金属塩で部分中和することにより、任
意のものが極めて容易に調製され、本発明に用いられ
る。
A preferred monomer aqueous solution for the present invention is a monomer aqueous solution containing at least 20% by weight of acrylic acid and an alkali metal acrylate, and the ratio (molar ratio) of acrylic acid to the alkali metal acrylate is 0 to 80: 20-100. In addition, a mixture of acrylic acid and an alkali metal acrylate is very easily prepared by partially neutralizing acrylic acid with an alkali metal salt and used in the present invention.

本発明における、前記単量体水溶液の重合反応器への
供給は滴下状態で行われるのであるが、その具体的な方
法として格別なものがあるわけではなく、供給管口から
直接水滴状態で滴下する方法、供給管口にスプレーノズ
ルを設けて噴霧する方法等が採用される。
In the present invention, the supply of the monomer aqueous solution to the polymerization reactor is carried out in a dropping state, but there is no particular method as a specific method, and the monomer solution is dropped in a water drop state directly from the supply port. And a method of spraying by providing a spray nozzle at the supply pipe opening.

滴下される単量体水溶液の液滴径としては5μ〜2000
μであるものが好ましく、10μ以上1000μ以下の径の液
滴として滴下するのが本発明にとりより好ましい。径が
5μ未満の液滴として滴下すると、排ガス系へのミスト
同伴率が大きくなり、配管を閉塞する恐れが生じ、2000
μを越える液滴では、加圧下であっても、窒素置換の効
果がなく、均一で安定な重合を行うことが困難になる。
The droplet diameter of the monomer aqueous solution to be dropped is 5 μ to 2000.
is preferable, and it is more preferable for the present invention to drop as a droplet having a diameter of 10 μm to 1,000 μm. If the droplet is dropped as a droplet having a diameter of less than 5 μm, the mist entrainment rate to the exhaust gas system increases, and the pipe may be clogged.
With a droplet exceeding μ, even under pressure, there is no effect of nitrogen substitution, and it is difficult to perform uniform and stable polymerization.

本発明において、加圧により重合時の水性媒体の沸騰
を防止する手段を採用する際の加圧圧力は単量体水溶液
或いは単量体水溶液と単量体水溶液の重合により生成し
た重合体を含む反応系(水性溶液)の沸騰、特に水性媒
体の沸騰を防止することができる圧力であれば、いかな
る圧力であってもよく、加圧により、ゲルも沸騰するこ
となく、均一なゲルを生成し得る。
In the present invention, the pressure applied when employing a means for preventing the aqueous medium from boiling during polymerization by pressure includes a monomer aqueous solution or a polymer formed by polymerization of a monomer aqueous solution and a monomer aqueous solution. The pressure may be any pressure as long as it can prevent the boiling of the reaction system (aqueous solution), particularly the boiling of the aqueous medium, and the pressurization produces a uniform gel without boiling the gel. obtain.

反応系(水性溶液)の沸騰圧力は、単量体水溶液濃度
及び重合開始温度によって、種々変動するので、それに
応じて、沸騰を防止するに足る圧力を適宜設定して重合
を行えば良いのであるが、一般的には沸騰圧力より0.5K
g/cm2G以上の加圧下に重合させるのが好ましく、2Kg/cm
2G以上の加圧下に重合するのがより好ましい。加圧の上
限は、得られる吸水性ポリマーの特性によって制限され
ることはなく、主として製造設備化における経済性およ
び操作の難易性等から定められるものである。
Since the boiling pressure of the reaction system (aqueous solution) fluctuates variously depending on the concentration of the aqueous monomer solution and the polymerization initiation temperature, the polymerization may be carried out by appropriately setting a pressure sufficient to prevent boiling according to the pressure. But generally 0.5K above boiling pressure
g / cm 2 It is preferable to polymerize under pressure of 2 G or more, 2 kg / cm
It is more preferable to polymerize under a pressure of 2 G or more. The upper limit of the pressurization is not limited by the properties of the obtained water-absorbing polymer, but is determined mainly from the viewpoint of economical efficiency and difficulty in operation in manufacturing equipment.

加圧は重合温度が高くなり水性媒体が沸騰するのを防
止するために行われるのであるから、単量体水溶液或い
は単量体水溶液と単量体水溶液の重合により生成した重
合体を含む反応系(水溶液)の沸騰を押さえる程度で良
いが、操作の容易性からは、重合期間中の最大沸騰圧力
より高い一定圧力を常時加えて重合するのが望ましい。
The pressurization is performed to prevent the polymerization temperature from becoming high and the aqueous medium from boiling, so that the reaction system containing the monomer aqueous solution or the polymer formed by the polymerization of the monomer aqueous solution with the monomer aqueous solution is used. It is sufficient that the boiling of the (aqueous solution) is suppressed, but from the viewpoint of easiness of operation, it is desirable to constantly apply a constant pressure higher than the maximum boiling pressure during the polymerization period.

単量体水溶液の重合は好ましく連続的に行われるが、
その際の単量体濃度については、単量体が溶解度の関係
から水溶液から析出しない範囲において任意に調整する
ことが出来、それも本発明の特長となるものである。当
然、それは析出濃度付近での重合をも可能とするもので
あり、それは生産効率を最大限に向上させ得るものであ
る。
The polymerization of the monomer aqueous solution is preferably performed continuously,
At this time, the monomer concentration can be arbitrarily adjusted within a range in which the monomer does not precipitate from the aqueous solution due to the solubility, which is also a feature of the present invention. Naturally, it also allows polymerization near the precipitation concentration, which can maximize production efficiency.

たとえば、アクリル酸の部分中和塩(中和度70%:ア
クリル酸とアクリル酸塩の混合物)の水に対する溶解度
は、常温で48%であり、本発明によれば、その様な濃度
での重合反応も可能にするものである。
For example, the solubility of a partially neutralized salt of acrylic acid (degree of neutralization: 70% of a mixture of acrylic acid and acrylate) in water is 48% at room temperature, and according to the present invention, at such a concentration, It also enables a polymerization reaction.

重合開始濃度については、特に制限はなく、使用する
触媒系に応じて設定すれば良く、反応速度が著しく低下
しない温度に設定すれば問題はない。
The polymerization initiation concentration is not particularly limited and may be set according to the catalyst system to be used, and there is no problem if the temperature is set at a temperature at which the reaction rate does not significantly decrease.

開始剤としては、過硫酸塩、過酸化水素、こはく酸過
酸化物、t−ブチルパーオキシマレイン酸などの過酸化
物の一種又は二種以上、或いはこれら過酸化物と亜硫酸
ソーダ、アスコルビン酸、エリソルビン酸ナトリウムな
どの還元剤を組み合わせたレドックス系開始剤およびア
ゾ化合物などが用いられ、添加量は通常単量体に対して
0.05〜0.5重量%である。
As the initiator, one or two or more peroxides such as persulfate, hydrogen peroxide, succinic peroxide, t-butylperoxymaleic acid, or these peroxides and sodium sulfite, ascorbic acid, Redox initiators and azo compounds combined with a reducing agent such as sodium erythorbate are used.
It is 0.05 to 0.5% by weight.

加圧連続装置の例としては、堅型円筒形の加圧反応槽
が挙げられ、各原料は反応器上部より一定量連続的に供
給され、重合反応により生じたゲルは同じく連続的に下
部より抜き出される。反応器内圧力コントロールは、窒
素ガス等の不活性ガス圧および圧力調整弁により行う。
As an example of the pressurized continuous apparatus, there is a rigid cylindrical pressurized reaction tank, each raw material is continuously supplied in a fixed amount from the upper part of the reactor, and the gel generated by the polymerization reaction is also continuously continuously supplied from the lower part. It is extracted. The pressure in the reactor is controlled by the pressure of an inert gas such as nitrogen gas and a pressure regulating valve.

反応器に供給された原料は急速に重合し、約10分で反
応温度ピークに達する。生成したゲルは反応により発生
した蒸気圧と前記加圧力により、ピストンフローで反応
器内を押し出されてゆき、所定の熟成時間経過の後、系
外の大気中に排出される。取り出されたゲルは、目的に
応じて、細断され、乾燥粉砕される。
The raw material supplied to the reactor polymerizes rapidly and reaches a reaction temperature peak in about 10 minutes. The generated gel is pushed out of the reactor by a piston flow due to the vapor pressure generated by the reaction and the pressure, and is discharged into the atmosphere outside the system after a predetermined aging time. The removed gel is shredded, dried and pulverized according to the purpose.

「作用」 重合反応を、単量体水溶液を不活性気体により加圧さ
れた重合反応器へ、滴下状態で供給するとともに、該加
圧により水性媒体の沸騰を防止しつつ行うという本発明
によれば、窒素置換工程を要せず、ゲルの沸騰を押さ
え、沸点を気にせずに、高濃度の単量体水溶液でも制御
良く、回分式でも連続的でも重合反応を進めることが出
来、又、吸水性ポリマーの均一なゲルを生成することが
出来る。更に、加圧下で反応させているので反応完結後
のゲルの取り出しも、自圧を利用して連続的に容易に行
うということも出来、生産性、作業性よく吸水性ポリマ
ーを製造することが出来る。特に加圧のためとは推定さ
れるが、加圧重合で得られる吸水性ポリマーのゲルは無
数の細かい気泡を内包し、吸水性ポリマーの吸水速度を
大幅に向上し、かつ、継粉になりにくいものになるとい
う予測しえない優れた性能を有する吸水性ポリマーが得
られる。そしてこれは、高濃度重合することにより、よ
り顕著になる。
"Action" According to the present invention, a polymerization reaction is performed while a monomer aqueous solution is supplied dropwise to a polymerization reactor pressurized by an inert gas, and the pressure is prevented from boiling the aqueous medium. If, for example, a nitrogen replacement step is not required, the boiling of the gel is suppressed, and the boiling point is not considered, the polymerization reaction can be advanced even in a batch type or continuously, even in a high-concentration aqueous monomer solution without concern for the boiling point. A uniform gel of the water-absorbing polymer can be produced. Furthermore, since the reaction is performed under pressure, it is possible to easily and continuously take out the gel after the completion of the reaction using the self-pressure, and to produce a water-absorbing polymer with good productivity and workability. I can do it. Although it is presumed to be especially for pressurization, the gel of the water-absorbing polymer obtained by pressure polymerization contains a myriad of fine bubbles, greatly improving the water absorption rate of the water-absorbing polymer, and becoming a powder. A water-absorbing polymer having an unexpectedly excellent performance that is difficult to obtain is obtained. And this becomes more remarkable by high concentration polymerization.

さらに、連続重合することにより、物性の変動の少な
いゲルを生成することが可能となり、吸水能力も優れた
ゲルを得ることも可能にするものである。
Further, by performing continuous polymerization, it is possible to produce a gel with little change in physical properties, and it is also possible to obtain a gel having excellent water absorption ability.

一般に、吸水性ポリマー粉末は、その粒度が細かけれ
ば細かい程、表面積が大きくなり、このため吸水速度が
向上するが、ある粒度までくると、吸水中に、粒子同志
がくっつき合って、継粉になり、これが吸水速度を下げ
る原因となる。このため、無機系の微粉を表面にコーテ
ィングしたり、表面架橋をする等の後処理によって、こ
れを解決しようとしているが、加圧連続重合によれば、
このような工程もなくすことが出来る。
In general, the finer the particle size of the water-absorbing polymer powder, the larger the surface area, and the higher the water absorption rate.However, when a certain particle size is reached, the particles are stuck together during the water absorption, and the sprinkling occurs. , Which causes a decrease in the water absorption rate. For this reason, the inorganic fine powder is coated on the surface, or by post-treatment such as surface cross-linking, this is intended to be solved, but according to the pressure continuous polymerization,
Such a step can be eliminated.

「実施例」 実施例1 アクリル酸35.3部に水22.8部加えて得た水溶液に濃度
32%の苛性ソーダ水溶液42部をかきまぜながら加えて中
和した。20℃まで冷却したこの水溶液を、毎分38.45g連
続的に、窒素ガスにより4Kg/cm2Gに加圧された、表面を
フッ素樹脂加工を行った内径100mm、高さ700mmの円筒状
の加圧重合反応器に、スプレーノズルを用い45μの液滴
径で噴霧添加し、重合させた。
"Examples" Example 1 Aqueous solution obtained by adding 22.8 parts of water to 35.3 parts of acrylic acid
The mixture was neutralized by adding 42 parts of a 32% aqueous solution of caustic soda with stirring. 38.45 g of this aqueous solution cooled to 20 ° C. was continuously pressurized to 4 kg / cm 2 G with nitrogen gas at a rate of 4 kg / cm 2 G per minute. The mixture was spray-added to the pressure polymerization reactor at a droplet diameter of 45 μm using a spray nozzle to carry out polymerization.

尚、前記単量体水溶液にはメチレンビスアクリルアミ
ド(以下MBAMという)の3%水溶液を毎分1.06g、過硫
酸アンモニウム(以下APSという)の6.56%水溶液を毎
分0.5%、エリソルビン酸ナトリウム(エルビットN:商
品名藤沢薬品工業株式会社製)の0.328%水溶液を毎分
0.5gの割合で供給した。
The monomer aqueous solution was 1.06 g / min of a 3% aqueous solution of methylenebisacrylamide (hereinafter referred to as MBAM), 0.5% / min of a 6.56% aqueous solution of ammonium persulfate (hereinafter referred to as APS), and sodium erythorbate (Elbit N). : 0.328% aqueous solution of Fujisawa Pharmaceutical Co., Ltd.) per minute
It was supplied at a rate of 0.5 g.

重合反応器の液面を、下部排出口より300mmの位置で
保つ様、連続的にゲルを排出させた。排出は、系の加圧
のみで容易に行えた。
The gel was continuously discharged so that the liquid level in the polymerization reactor was maintained at a position of 300 mm from the lower outlet. The discharge was easily performed only by pressurizing the system.

なお、この混合物は、中和度70%、単量体見掛け濃度
48%である。
This mixture has a neutralization degree of 70% and an apparent monomer concentration.
48%.

系の温度は135℃まで上昇し、約10分間で重合反応が
終了した。
The temperature of the system rose to 135 ° C., and the polymerization reaction was completed in about 10 minutes.

得られたゲルは乳白色の弾力のあるゲルであった。 The resulting gel was a milky white elastic gel.

生成物を細断し、120℃の熱風乾燥器中で乾燥し、乾
燥物を粉砕して樹脂粉末を得た。この粉末樹脂をふるい
分けをし、60〜100meshの粒度のものを選別した。
The product was shredded and dried in a hot air dryer at 120 ° C., and the dried product was pulverized to obtain a resin powder. The powdered resin was sieved to select particles having a particle size of 60 to 100 mesh.

吸水速度の測定(1) ガラスフィルター(11G2)と50mlビュレットをゴム管
で接続し、0.9%NaCl水溶液を入れ、フィルター下部の
空気を十分抜いたのち、フィルター表面が液で滲みる程
度に液面をビュレットを上下して合わせる。60〜100mes
hの粒度の粉末試料0.1gを精秤し、これをフィルターに
均一になるようばらまき、1分後の吸水量を測定する
(以下この方法をCAP法という)。
Measurement of water absorption rate (1) Connect a glass filter (11G2) and a 50 ml burette with a rubber tube, pour 0.9% NaCl aqueous solution, and sufficiently remove the air under the filter. Raise and lower the bullet. 60-100mes
0.1 g of a powder sample having a particle size of h is precisely weighed and distributed uniformly on a filter, and the amount of water absorbed after 1 minute is measured (hereinafter, this method is referred to as a CAP method).

吸水速度の測定(2) 100mlビーカーに0.9%NaCl水溶液50ml入れ600rpmでマ
グネチックターラーで回転する。これに、60〜100mesh
の濃度の粉末試料2gを入れ、溶液表面が平らになる時間
を読む。測定後継粉(白い固まり)状態をチェックする
(以下この方法を渦巻法という)。
Measurement of water absorption rate (2) Place 50 ml of 0.9% NaCl aqueous solution in a 100 ml beaker and rotate with a magnetic stirrer at 600 rpm. In this, 60-100mesh
Add 2 g of powder sample with a concentration of and read the time until the solution surface is flat. Check the state of the flour after the measurement (white lump) (hereinafter, this method is referred to as a spiral method).

飽和倍率の測定 300mlビーカーに60〜100meshの粒度の粉末試料0.1gを
精秤し、投入する。これに0.9%NaCl水溶液200ml入れ、
マグネチックスターラーで3時間攪拌する。3時間後、
100meshの金網マス(70×70×70mm)で濾過し、5分間
放置したのち、ペーパータオルで金網の水を拭い、重量
測定する。
Measurement of saturation magnification 0.1 g of a powder sample having a particle size of 60 to 100 mesh is precisely weighed and put into a 300 ml beaker. Put 200 ml of 0.9% NaCl aqueous solution into this,
Stir for 3 hours with a magnetic stirrer. Three hours later,
Filter with a 100 mesh wire mesh (70 × 70 × 70 mm), leave for 5 minutes, wipe the water of the wire mesh with a paper towel, and weigh.

比較例1 実施例1のスプレーノズルを内径4φの開口部を持つ
配管に変更し、連続的に流下せしめた以外は、実施例1
と同様に重合を行った。
Comparative Example 1 Example 1 was repeated except that the spray nozzle of Example 1 was changed to a pipe having an opening having an inner diameter of 4φ, and was allowed to continuously flow down.
Polymerization was carried out in the same manner as described above.

重合は不均一で大半が未重合となった。 The polymerization was non-uniform and mostly unpolymerized.

実施例2 スプレーノズルを0.2φの穴が13ヶあいたノズルに変
更した以外は、実施例1と同様に重合を行った。重合反
応には12分間要した。
Example 2 Polymerization was carried out in the same manner as in Example 1, except that the spray nozzle was changed to a nozzle having 13 holes of 0.2φ. The polymerization reaction took 12 minutes.

生成物を細断し、120℃の熱風乾燥器中で乾燥し、乾
燥物を粉砕して樹脂粉末を得た。この粉末樹脂をふるい
分けをし、60〜100meshの粒度のものを選別した。
The product was shredded and dried in a hot air dryer at 120 ° C., and the dried product was pulverized to obtain a resin powder. The powdered resin was sieved to select particles having a particle size of 60 to 100 mesh.

実施例3 アクリル酸22.1部に水33.7部加えて得た水溶液に濃度
32%の苛性ソーダ水溶液26.2部をかきまぜながら加えて
中和した。20℃まで冷却したこの水溶液を、毎分28.24g
連続的に、窒素ガスにより3Kg/cm2Gに加圧された、表面
をフッ素樹脂加工を行った内径100mm、高さ700mmの円筒
状の加圧重合反応器に、内径1φの開口部を持つ配管末
端より2000μの液滴径で滴下した。尚、前記単量体水溶
液には、MBAMの3%水溶液を毎分0.689g、APSの5.05%
水溶液を毎分0.356g、エルビットNの0.126%水溶液を
毎分0.356gの割合で供給し重合させた。
Example 3 Aqueous solution obtained by adding 33.7 parts of water to 22.1 parts of acrylic acid
The mixture was neutralized by adding 26.2 parts of a 32% aqueous solution of caustic soda with stirring. 28.24 g of this aqueous solution cooled to 20 ° C per minute
Continuously pressurized to 3 Kg / cm 2 G with nitrogen gas, a cylindrical pressure polymerization reactor with an inner diameter of 100 mm and a height of 700 mm, the surface of which has been treated with a fluororesin, has an opening with an inner diameter of 1φ It was dropped at a droplet diameter of 2000 μ from the end of the pipe. In the monomer aqueous solution, 0.689 g of a 3% aqueous solution of MBAM per minute and 5.05% of APS were used.
An aqueous solution was supplied at a rate of 0.356 g / min, and a 0.126% aqueous solution of Elbit N was supplied at a rate of 0.356 g / min for polymerization.

重合反応器の液面を、下部排出口より340mmの位置で
保つ様、連続的にゲルを排出させた。排出は、系の加圧
のみで容易に行えた。
The gel was continuously discharged so that the liquid level of the polymerization reactor was maintained at a position of 340 mm from the lower discharge port. The discharge was easily performed only by pressurizing the system.

なお、この混合物は、中和度70%、単量体見掛け濃度
30%である。
This mixture has a neutralization degree of 70% and an apparent monomer concentration.
30%.

系の温度は90℃まで上昇し、約21分間で重合反応が終
了した。
The temperature of the system rose to 90 ° C., and the polymerization reaction was completed in about 21 minutes.

得られたゲルは乳白色の弾力のあるゲルであった。 The resulting gel was a milky white elastic gel.

生成物を細断し、120℃の熱風乾燥器中で乾燥し、乾
燥物を粉砕して樹脂粉末を得た。この粉末樹脂をふるい
分けをし、60〜100meshの粒度のものを選別した。
The product was shredded and dried in a hot air dryer at 120 ° C., and the dried product was pulverized to obtain a resin powder. The powdered resin was sieved to select particles having a particle size of 60 to 100 mesh.

吸水性能の測定 以上の様にして得た樹脂粉末について吸水性能を測定
し第1表にまとめた。
Measurement of water absorption performance The water absorption performance of the resin powder obtained as described above was measured and summarized in Table 1.

第1表で明らかな様に、加圧連続重合したものは、吸
水速度が向上し、何等吸水後のゲルに継粉は発生しな
い。特に高濃度で加圧重合したものは、後処理を行わな
くても、吸水速度が飛躍的に向上する。
As is evident from Table 1, in the case of continuous polymerization under pressure, the water absorption rate is improved, and there is no sprinkling of the gel after any water absorption. In particular, those obtained by pressure polymerization at a high concentration have a remarkably improved water absorption rate without post-treatment.

(ハ)発明の効果 本発明は次の様な優れた効果を示す。(C) Effects of the Invention The present invention exhibits the following excellent effects.

1.連続重合を生産性、作業性よく行うことが出来、吸水
性ポリマーを効率よく得ることができる。
1. Continuous polymerization can be performed with good productivity and workability, and a water-absorbing polymer can be obtained efficiently.

2.高濃度水溶液反応が可能で均一な吸水性ポリマーを得
ることができる。
2. Uniform water-absorbing polymer capable of high-concentration aqueous solution reaction can be obtained.

3.反応熱の除熱装置が不要である。3. No heat removal device for reaction heat is required.

4.無数の微細な気泡を有する吸水性ポリマーが得られ、
後処理等を行わなくとも吸水速度の速い吸水性ポリマー
を得ることができる。
4. A water-absorbing polymer with countless fine bubbles is obtained,
A water-absorbing polymer having a high water-absorbing rate can be obtained without performing post-treatment or the like.

5.ゲルの取り出しが容易に行なえる。5. Easy removal of gel.

6.高濃度で重合できるため、乾燥工程が大幅に短縮で
き、設備規模もエネルギーコストも押さえられる。
6. Since polymerization can be performed at a high concentration, the drying process can be greatly reduced, and the equipment scale and energy cost can be reduced.

7.窒素置換工程を省略出来、生産性を更に向上させるこ
とができる。
7. The nitrogen replacement step can be omitted, and the productivity can be further improved.

8.本発明で得られた吸水性ポリマーは、前記した優れた
特性の故に、生理用品、おむつ、使い捨て雑巾等の衛生
用品や保水剤等の農園芸用品さらには、汚泥の凝固、建
材の結露防止、油類の脱水等に用いられて、従来のもの
よりさらに優れた効果を奏し得る。
8. The water-absorbing polymer obtained by the present invention is excellent in the above-mentioned properties, and is used for sanitary products such as sanitary products, diapers, disposable rags, agricultural and horticultural products such as water retention agents, sludge solidification, and condensation of building materials. It is used for prevention, dehydration of oils, and the like, and can exert more excellent effects than conventional ones.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭52−80387(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-52-80387 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】α,β−不飽和カルボン酸叉はその塩を主
体とする単量体水溶液を、不活性気体により加圧された
重合反応器へ滴下状態で供給するとともに、該加圧によ
り水性媒体の沸騰を防止しつつ重合しゲル状重合体を得
ることを特徴とする吸水性ポリマーの製造方法。
1. A monomer aqueous solution mainly comprising an α, β-unsaturated carboxylic acid or a salt thereof is supplied dropwise to a polymerization reactor pressurized with an inert gas, and the pressurized water is supplied to the polymerization reactor. A method for producing a water-absorbing polymer, wherein a gel-like polymer is obtained by polymerization while preventing boiling of an aqueous medium.
JP1199806A 1989-08-01 1989-08-01 Method for producing water-absorbing polymer Expired - Lifetime JP2722695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1199806A JP2722695B2 (en) 1989-08-01 1989-08-01 Method for producing water-absorbing polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1199806A JP2722695B2 (en) 1989-08-01 1989-08-01 Method for producing water-absorbing polymer

Publications (2)

Publication Number Publication Date
JPH0364301A JPH0364301A (en) 1991-03-19
JP2722695B2 true JP2722695B2 (en) 1998-03-04

Family

ID=16413942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1199806A Expired - Lifetime JP2722695B2 (en) 1989-08-01 1989-08-01 Method for producing water-absorbing polymer

Country Status (1)

Country Link
JP (1) JP2722695B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1926756B1 (en) 2005-09-07 2015-03-25 Basf Se Polymerization method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG2013095260A (en) * 2011-08-03 2014-03-28 Sumitomo Seika Chemicals Water absorbing resin particles, method for manufacturing water absorbing resin particles, absorption body, absorptive article, and water-sealing material
WO2015163438A1 (en) 2014-04-25 2015-10-29 株式会社日本触媒 Method for producing polyacrylic acid (salt)-based water-absorbent resin
RU2721501C1 (en) 2017-07-28 2020-05-19 Кимберли-Кларк Ворлдвайд, Инк. Hygienic absorbent product for women, containing nanoporous superabsorbent particles
KR102568226B1 (en) 2017-12-11 2023-08-18 주식회사 엘지화학 Super absorbent polymer and preparation method for the same
KR102418591B1 (en) 2018-11-13 2022-07-07 주식회사 엘지화학 Super absorbent polymer and preparation method for the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280387A (en) * 1975-12-26 1977-07-06 Nippon Paint Co Ltd Preparation of water-dispersed resins

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1926756B1 (en) 2005-09-07 2015-03-25 Basf Se Polymerization method

Also Published As

Publication number Publication date
JPH0364301A (en) 1991-03-19

Similar Documents

Publication Publication Date Title
JP5378790B2 (en) Method for producing water absorbent resin
US5380808A (en) Process for producing water-absorbing resins
JP5175195B2 (en) Liquid dripping method
KR970009231B1 (en) Process for the preparation of water-absorptive resin
JP4227650B2 (en) Spray polymerization method
WO2001098382A1 (en) Process for production of water-absorbent resin
JPH0764897B2 (en) Continuous production method of crosslinked fine gel polymer.
US8399585B2 (en) Process for producing water-absorbing polymer particles with improved blood absorbance by polymerizing droplets of a monomer solution
WO2012176342A1 (en) Method for producing water-absorbent resin
EP2599797A1 (en) Process for production of water-absorbable resin
JP2722695B2 (en) Method for producing water-absorbing polymer
US9724670B2 (en) Water absorbent polymers and a process for their preparation
US6187828B1 (en) Continuous process for manufacturing superabsorbent polymer
JP2002105125A (en) Method for producing water-absorbing resin
JP2679280B2 (en) Method for producing water-absorbing polymer
JPH0678390B2 (en) Production of water-absorbing polymer
JP2781208B2 (en) Manufacturing method of water absorbent resin
JP2745703B2 (en) Method for producing water-absorbing polymer
WO2019074099A1 (en) Water-absorbent resin and absorbent article
JP2642436B2 (en) Manufacturing method of water absorbent resin
JP2013227377A (en) Method for producing water absorbing resin
JPH02129207A (en) Preparation of water-absorbing polymer
JP7130670B2 (en) A discontinuous method for the production of superabsorbent particles by polymerization of an aqueous monomer solution dispersed in a hydrophobic solvent
JP2002212331A (en) Method for producing highly water-absorbing resin particle
KR102555560B1 (en) Discontinuous production method of superabsorbent particles by polymerization of an aqueous monomer solution dispersed in a hydrophobic solvent