JPH0356491B2 - - Google Patents

Info

Publication number
JPH0356491B2
JPH0356491B2 JP60125436A JP12543685A JPH0356491B2 JP H0356491 B2 JPH0356491 B2 JP H0356491B2 JP 60125436 A JP60125436 A JP 60125436A JP 12543685 A JP12543685 A JP 12543685A JP H0356491 B2 JPH0356491 B2 JP H0356491B2
Authority
JP
Japan
Prior art keywords
signal
satellite
pilot
output
generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60125436A
Other languages
Japanese (ja)
Other versions
JPS61283235A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60125436A priority Critical patent/JPS61283235A/en
Publication of JPS61283235A publication Critical patent/JPS61283235A/en
Publication of JPH0356491B2 publication Critical patent/JPH0356491B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Radio Relay Systems (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は地球局送信電力制御方式に関し、特に
親局と複数の子局とが1つの衛星を介して通信す
る、準ミリ波帯など高い周波数を用いる衛星通信
システルにおける地球局送信電力制御方式に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an earth station transmission power control system, and particularly to a high-frequency earth station transmission power control system such as a sub-millimeter wave band where a master station and a plurality of slave stations communicate via one satellite. This paper relates to an earth station transmission power control method in a satellite communication system using frequencies.

〔従来の技術〕[Conventional technology]

準ミリ波帯など、降雨による伝搬送の減衰が非
常に大きい高い周波数を用いる衛星通信システム
では、アツプリンクの降雨減衰を地球局側の送信
電力を制御して補償する送信電力制御が必要とな
る。
Satellite communication systems that use high frequencies, such as sub-millimeter wave bands, where transmission attenuation due to rain is extremely large, require transmission power control to compensate for uplink rain attenuation by controlling the earth station's transmission power. .

親局と複数の子局とが通信するかかる衛星通信
システムにおける地球局送信電力制御方式とし
て、衛星折返し信号波の実効放射電力を一定しす
るように送信電力制御したパイロツト信号を親局
が送信し、子局は受信したパイロツト信号の衛星
折返し信号波の受信レベルまたは搬送波対雑音電
力比(C/Nと理記する)をもとにして送信電力
制御する方式が特開昭58−84544号公報および特
開昭58−84545号公報で公知となつている。また、
衛星からの実効放射電力が晴雨にかかわらず一定
であるビーコン信号波などの基準信号波と自局送
信の衛星折返し信号波との受信レベルまたはC/
Nを比較して親局がパイロツト信号および通信信
号の送信電力制御をする方式が特開昭58−84547
号公報で公知となつている。
As an earth station transmission power control method in such a satellite communication system in which a master station and multiple slave stations communicate, the master station transmits a pilot signal whose transmission power is controlled so as to keep the effective radiated power of the satellite return signal wave constant. , JP-A-58-84544 discloses a method in which the slave station controls the transmission power based on the reception level of the satellite return signal wave of the received pilot signal or the carrier-to-noise power ratio (denoted as C/N). and Japanese Patent Application Laid-Open No. 58-84545. Also,
The reception level or C/
A method in which the master station controls the transmission power of pilot signals and communication signals by comparing N is disclosed in Japanese Patent Laid-Open No. 58-84547
It has become publicly known in the publication No.

特開昭58−84544号公報に記載されている方式
では、パイロツト信号の衛星折返し信号波の受信
レベルまたはC/Nとアツプリンク・ダウンリン
クの降雨減衰の相関関係とから得られる制御信号
により送信電力制御して自局送信の通信信号の衛
星折返し信号波の実効放射電力を一定にする。特
開昭58−84545号公報に記載されている方式では、
パイロツト信号の衛星折返し信号波の自局送信の
通信信号の衛星折返し信号波との受信レベルまた
はC/Nの比率がある基準値に等しくなるように
送信電力制御する。いずれの方式においても、子
局送信の通信信号の衛星折返し信号波の実効放射
電力の設定値を変更するには子局での設定値の変
更が必要である。
In the method described in Japanese Unexamined Patent Publication No. 58-84544, transmission is performed using a control signal obtained from the reception level or C/N of the satellite return signal wave of the pilot signal and the correlation between uplink and downlink rain attenuation. The power is controlled to keep the effective radiated power of the satellite return signal wave of the communication signal transmitted by the own station constant. In the method described in Japanese Patent Application Laid-Open No. 58-84545,
The transmission power is controlled so that the reception level or C/N ratio of the satellite return signal wave of the pilot signal to the satellite return signal wave of the communication signal transmitted by the own station is equal to a certain reference value. In either method, in order to change the set value of the effective radiated power of the satellite return signal wave of the communication signal transmitted by the slave station, it is necessary to change the set value at the slave station.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

子局の回線数の増減、子局数の増減あるいは当
初の降雨条件の見積り誤差などのために、子局の
送信する通信信号の衛星折返し信号波の実効放射
電力の設定値を変更することがよくある。すでに
説明した従来の地球局送信電力制御方式において
は、この場合各子局で設定値の変更が必要とな
り、子局数が非常に多いときあるいは子局が離島
などアクセス困難な場所にあるときなどは各子局
での調整のために費用は莫大になる。
Due to an increase or decrease in the number of slave station lines, an increase or decrease in the number of slave stations, or an error in the initial estimation of rainfall conditions, the setting value of the effective radiated power of the satellite return signal wave of the communication signal transmitted by the slave station may be changed. It happens often. In the conventional earth station transmission power control method described above, in this case it is necessary to change the setting value for each slave station, and this is difficult to do when there are a large number of slave stations or when the slave stations are located in difficult-to-access locations such as remote islands. The cost would be enormous due to adjustments at each subsidiary station.

以上説明したように、従来の地球局送信電力制
御方式は子局送信の通信信号の衛星折返し信号波
の実効放射電力の設定値変更の際莫大な費用を要
するという欠点がある。
As explained above, the conventional earth station transmission power control system has the drawback that it requires a huge amount of expense when changing the set value of the effective radiated power of the satellite return signal wave of the communication signal transmitted by the slave station.

本発明の目的は、各子局での調整をすることな
しに子局送信の通信信号の衛星折返し信号波の実
効放射電力の設定値変更が可能な地球局送信電力
制御方式を提供することにある。
An object of the present invention is to provide an earth station transmission power control method that allows changing the set value of the effective radiated power of a satellite return signal wave of a communication signal transmitted by a slave station without making adjustments at each slave station. be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の地球局送信電力制御方式は、一つの衛
星を介して通信を行なう複数の地球局のうち少く
とも1つの特定地球局が、パイロツト信号を発生
する発生手段と、前記パイロツト信号および第1
の通信信号を合成する合成手段と、前記合成手段
の出力を前記衛星に送信する送信電力制御可能な
第1の送信手段と、前記衛星からの実効放射電力
が晴雨にかかわらず一定である基準信号波を受信
する基準信号受信手段と、前記パイロツト信号の
衛星折返し信号波を受信する第1のパイロツト受
信手段と、前記基準信号受信手段および前記第1
のパイロツト受信手段の出力レベルまたは搬送波
対雑音電力比を比較して前記第1の送信手段を制
御する信号を発生する比較制御手段とを具備し、
前記特定地球局を除く全部または一部の前記地球
局が、第2の通信信号を前記衛星に送信する送信
電力制御可能な第2の送信手段と、前記パイロツ
ト信号の衛星折返し信号波を受信する第2のパイ
ロツト受信手段と、前記パイロツト受信手段の出
力レベルまたは搬送波対雑音電力比をもとにして
前記第2の送信手段を制御する信号を発生する制
御手段とを具備する地球局送信電力制御方式にお
いて、前記比較制御手段は、前記第2の通信信号
の衛星折返し信号波の実効放射電力の設定値を変
更するのに対応して前記基準信号受信手段から入
力する信号のレベルもしくは搬送波対雑音電力比
または前記第1のパイロツト受信手段から入力す
る信号のレベルもしくは搬送波対雑音電力比をオ
フセツトするオフセツト手段を備え、前記発生手
段は、その出力レベルを、前記第1および第2の
通信信号の衛星折返し信号波の実効放射電力の設
定値を変更するのに対応して変更する出力レベル
変更手段を備えて構成される。
In the earth station transmission power control system of the present invention, at least one specific earth station among a plurality of earth stations communicating via one satellite includes a generating means for generating a pilot signal, and a generator for generating the pilot signal and a first earth station.
a first transmitting means capable of transmitting power control for transmitting the output of the combining means to the satellite, and a reference signal whose effective radiated power from the satellite is constant regardless of rain or shine. a reference signal receiving means for receiving a satellite return signal wave, a first pilot receiving means for receiving a satellite return signal wave of said pilot signal, said reference signal receiving means and said first
and a comparison control means for generating a signal for controlling the first transmitting means by comparing the output level or the carrier-to-noise power ratio of the pilot receiving means,
All or some of the earth stations other than the specific earth station receive a second transmission means whose transmission power is controllable for transmitting a second communication signal to the satellite, and a satellite return signal wave of the pilot signal. Earth station transmission power control comprising: second pilot receiving means; and control means for generating a signal for controlling the second transmitting means based on the output level or carrier-to-noise power ratio of the pilot receiving means. In the method, the comparison control means adjusts the level or carrier-to-noise of the signal input from the reference signal receiving means in response to changing the set value of the effective radiated power of the satellite return signal wave of the second communication signal. The generating means includes offset means for offsetting the power ratio or the level or carrier-to-noise power ratio of the signal input from the first pilot receiving means, and the generating means adjusts the output level of the signal to that of the first and second communication signals. The apparatus is configured to include an output level changing means that changes in response to changing the set value of the effective radiated power of the satellite return signal wave.

〔実施例〕〔Example〕

以下実施例を示す図面を参照して本発明につい
て詳細に説明する。
The present invention will be described in detail below with reference to drawings showing embodiments.

第1図・第2図は、本発明の地球局送信電力制
御方式の一実施例による親局・子局を示すブロツ
ク図である。
FIGS. 1 and 2 are block diagrams showing a master station and a slave station according to an embodiment of the earth station transmission power control method of the present invention.

第1図に示す親局は、パイロツト信号発生器
(PILOSCと略記する)1と、その出力を入力し
パイロツト信号101を出力する減衰器(ATT
と略記する)2と、パイロツト信号101および
複数の通信信号102を合成して出力する合成器
(COMBと略記する)3と、その出力およびD−
A変換器(D/Aと略記する)26の出力を入力
する可変利得増幅器(V.G.AMPと略記する)4
と、その出力を入力する送信周波数変換器(U/
Cと略記する)5と、その出力を入力する電力増
幅器(PAと略記する)6と、その出力を入力す
るアンテナ(ANTと略記する)7と、その出力
を入力する低雑音増幅器(LNAと略記する)8
と、その出力を2分して出力する分配器(HYB
と略記する)9と、その出力の一方を入力する受
信周波数変換器(D/Cと略記する)10と、そ
の出力を入力するビーコン受信器(BCNRECと
略記する)12と、オフセツト信号発生器
(OFF SETと略記する)15と、その出力およ
びBCNREC12の出力を入力するC/N検出器
(C/NDETと略記する)14と、その出力を入
力するA−D変換器(A/Dと略記する)17
と、その出力を入力し信号103を出力するC/
N補正器(C/NCOMPと略記する)19と、
HYB9の出力の他方を入力するD/C11と、
その出力を入力するパイロツト受信器(PILREC
と略記する)13と、その出力を入力するC/
NDET16と、その出力を入力し信号104を
出力するA/D18と、信号103および信号1
04を入力するデイジタル差分器(SUBと略記
する)20と、サンブルクロツク発振器
(SAMPLCLKと略記する)22と、その出力お
よびSUB20の出力を入力するゲート回路
(GATEと略記する)21と、レジスタ(REGと
略記する)24と、出力およびGATE21の出
力を入力し出力をREG24に入力する加算器
(ADDと略記する)23と、その出力を入力する
非線形制御電圧補正器(AMPCOMPと略記す
る)25と、その出力を入力するD/A26とを
備え構成されている。
The master station shown in FIG.
) 2, a synthesizer (abbreviated as COMB) 3 that synthesizes and outputs the pilot signal 101 and a plurality of communication signals 102, and its output and D-
A variable gain amplifier (abbreviated as VGAMP) 4 inputting the output of the A converter (abbreviated as D/A) 26
and a transmission frequency converter (U/
A power amplifier (abbreviated as PA) 6 that inputs its output, an antenna (abbreviated as ANT) 7 that inputs its output, and a low noise amplifier (abbreviated as LNA) that inputs its output. abbreviated) 8
and a divider (HYB) that divides the output into two and outputs it.
) 9, a reception frequency converter (abbreviated as D/C) 10 that inputs one of its outputs, a beacon receiver (abbreviated as BCNREC) 12 that inputs its output, and an offset signal generator. (abbreviated as OFF SET) 15, a C/N detector (abbreviated as C/NDET) 14 to which its output and the output of BCNREC 12 are input, and an A-D converter (A/D and abbreviated) 17
and C/ which inputs the output and outputs the signal 103.
N corrector (abbreviated as C/NCOMP) 19;
D/C11 which inputs the other output of HYB9,
A pilot receiver (PILREC) inputs its output.
(abbreviated as ) 13 and C/ that inputs its output.
NDET16, A/D18 which inputs its output and outputs signal 104, signal 103 and signal 1
04, a sample clock oscillator (SAMPLCLK) 22, a gate circuit (GATE) 21 that inputs its output and the output of SUB20, and a register. (abbreviated as REG) 24, an adder (abbreviated as ADD) 23 that inputs the output and the output of GATE 21 and inputs the output to REG 24, and a nonlinear control voltage corrector (abbreviated as AMPCOMP) that inputs the output. 25, and a D/A 26 that inputs the output thereof.

第2図に示す子局は、複数の通信信号201を
合成して出力するCOMB3aと、その出力およ
びD/A26aの出力を入力するV.G.AMP4a
と、その出力を入力するU/C5aと、その出力
を入力するPA6aと、その出力を入力する
ANT7aと、その出力を入力するLNA8aと、
その出力を入力するD/C11aと、その出力を
入力するPILREC13aと、その出力を入力する
C/NDET16aと、SAMPLCLK22aと、
その出力およびC/NDET16aの出力を入力
するGATE21aと、信号202を入力する
REG24aと、その出力およびGATE21aの
出力を入力し信号202を出力するADD23a
と、信号202を入力する送信電力制御器
(TPCCONTと略記する)27と、その出力を入
力するD/A26aとを構成されている。第2図
において参照番号に「a」を付記したものは第1
図における同一の数字の参照番号をもつものと単
体としての動作が同じである。
The slave station shown in FIG. 2 includes a COMB 3a that synthesizes and outputs a plurality of communication signals 201, and a VGAMP 4a that inputs the output and the output of the D/A 26a.
, U/C5a that inputs that output, PA6a that inputs that output, and U/C5a that inputs that output.
ANT7a and LNA8a which inputs its output,
D/C11a inputting the output, PILREC13a inputting the output, C/NDET16a inputting the output, SAMPLCLK22a,
GATE21a inputs its output and the output of C/NDET16a, and inputs signal 202.
ADD23a that inputs REG24a, its output, and the output of GATE21a and outputs signal 202
, a transmission power controller (abbreviated as TPCCONT) 27 to which the signal 202 is input, and a D/A 26a to which the output thereof is input. In Figure 2, reference numbers with “a” added are the first
The operation as a single unit is the same as those having the same reference numerals in the figures.

まず第1図に示す親局の動作について説明す
る。
First, the operation of the master station shown in FIG. 1 will be explained.

PILOS1で発生した減衰量設定変更の可能な
ATT2でレベル設定されたパイロツト信号10
1は、COMB3で子局向けの通信信号102と
合成された後、電圧制御のV.G.AMP4を通り
U/C5で準ミリ波帯に変換され、PA6を経て
ANT7から衛星に送信される。一方、衛星から
のビーコン信号波とパイロツト信号101の衛星
折返し信号波とは、ANT7で受信されLNA8で
増幅されてからHYB9で2分され、その一方は
D/C10およびBCNREC12を経てC/
NDET14に入る。OFFSET15は、C/
NDET14のC/N出力を、設定変更可能なオ
フセツトの比率(当初の設定値をC1とする)で
C1倍にオフセツトする。HYB9の出力の他方は
D/C11およびPILREC13を通つてC/
NDET16に入る。C/NDET14,16の対
数変換されたC/N出力はA/D17,18でデ
イジタル変換された後、その一方はビーコン信号
波とパイロツト信号101の衛星折返し信号波の
周波数の違いによるダウンリンク減衰量の相違を
補正するC/NCOMP19を経て、SUB20に
導かれ、その出力は一定時間ごとにGATE21
でサンプルされてADD23に送られる。ADD2
3は、入力をREG24に蓄えられている値(前
のサンプル時のADD23出力)に加算して出力
すると共に再びREG24に蓄える。このように
してADD23・REG24はGATE21の出力を
デイジタル積分する。この積分値であるデイジタ
ル信号は、V.G.AMP4の非線形制御電圧特性を
補正し制御特性を改善するためのAMPCOMP2
5およびD/A26を通つてV.G.AMP4の制御
信号となる。これによりアンテナ7が放射するパ
イロツト信号101の送信波はSUB20の出力
が零となるよう、すなわち信号103と信号10
4等が等しくなるように電力制御されて衛星入力
レベルが一定になり、パイロツト信号101の衛
星折返し信号波の実効放射電力を降雨の有無にか
かわらず一定にすることができる。
It is possible to change the attenuation setting that occurred in PILOS1.
Pilot signal 10 with level set at ATT2
1 is combined with the communication signal 102 for the slave station at COMB3, passes through voltage-controlled VGAMP4, is converted to a quasi-millimeter wave band at U/C5, and passes through PA6.
Sent from ANT7 to the satellite. On the other hand, the beacon signal wave from the satellite and the satellite return signal wave of the pilot signal 101 are received by ANT7, amplified by LNA8, and then divided into two by HYB9, one of which is sent to C/C through D/C10 and BCNREC12.
Enter NDET14. OFFSET15 is C/
The C/N output of NDET14 is set by the offset ratio that can be changed (the initial setting value is C 1 ).
C Offset by 1x . The other output of HYB9 is connected to C/C through D/C11 and PILREC13.
Enter NDET16. After the logarithmically converted C/N outputs of the C/NDETs 14 and 16 are digitally converted by the A/Ds 17 and 18, one of them undergoes downlink attenuation due to the difference in frequency between the beacon signal wave and the satellite return signal wave of the pilot signal 101. The output is sent to SUB20 through C/NCOMP19, which corrects the difference in quantity, and the output is sent to GATE21 at regular intervals.
is sampled and sent to ADD23. ADD2
3 adds the input to the value stored in the REG 24 (the output of the ADD 23 at the time of the previous sample), outputs the result, and stores it in the REG 24 again. In this way, ADD23 and REG24 digitally integrate the output of GATE21. This integrated value digital signal is used to correct the nonlinear control voltage characteristics of VGAMP4 and improve the control characteristics of AMPCOMP2.
5 and D/A 26 to become a control signal for VGAMP4. As a result, the transmission wave of the pilot signal 101 radiated by the antenna 7 is so that the output of the SUB 20 becomes zero, that is, the signal 103 and the signal 10
The power is controlled so that the satellite input level becomes constant, and the effective radiation power of the satellite return signal wave of the pilot signal 101 can be made constant regardless of the presence or absence of rain.

ビーコン信号波の実効放射電力をB、受信C/
Nを(C/N)Bとし、パイロツト信号101の衛
星折返し信号波の実効放射電力をP、受信C/N
を(C/N)Pとすると P/B=(C/N)P/(C/N)B ……(1) であり、また信号103,104が等しくなるこ
とから (C/N)B・C1=(C/N)P ……(2) となり、したがつて P=B・C1 ……(3) となるから、第1図に示す親局はパイロツト信号
101の衛星折返し信号波の実効放射電力をビー
コン信号波の実効放射電力のC1倍に保つ。
The effective radiated power of the beacon signal wave is B, received C/
Let N be (C/N) B , the effective radiated power of the satellite return signal wave of the pilot signal 101 be P, and the received C/N
If (C/N) P , then P/B=(C/N) P /(C/N) B ...(1), and since the signals 103 and 104 are equal, (C/N) B・C 1 = (C/N) P ...(2), and therefore P = B・C 1 ...(3) Therefore, the master station shown in FIG. Keep the effective radiated power of the wave at C 1 times the effective radiated power of the beacon signal wave.

パイロツト信号101の電力をPとし、通信信
号102の電力をt1、衛星折返し信号波の実効放
射電力をT1とし t1=p・C2 ……(4) とするようにATT2の減衰量を当初設定すると、 T1/P=t1/P ……(5) だから T1=P・C2=B・C1・C2 ……(6) となり、通信信号102の衛星折返し信号波の実
効放射電力も降雨の有無にかかわらず一定とな
り、そのレベルはPのC2倍に保たれる。
The attenuation of ATT2 is set so that the power of the pilot signal 101 is P, the power of the communication signal 102 is t 1 , and the effective radiation power of the satellite return signal wave is T 1 , t 1 = p・C 2 ...(4) When initially set, T 1 /P = t 1 /P ... (5) Therefore, T 1 = P・C 2 = B・C 1・C 2 ... (6), and the satellite return signal wave of the communication signal 102 The effective radiated power of P is also constant regardless of the presence or absence of rain, and its level is maintained at twice P as C.

次に第2図に示す局の動作について説明する。 Next, the operation of the station shown in FIG. 2 will be explained.

この子局は特開昭58−84544号公報に記載され
ている送信電力制御方式を用いており、親局向け
の通信信号201は、V.G.AMP4a・U/C5
a・PA6aを経てANT7aから衛星に送信さ
れる。一方、第1図に示す親局のパイトロツト信
号101の衛星折返し信号波は、ANT7aで受
信されるLNA8a・D/C11a・PILREC1
3aを経てC/NDET16aに入る。C/
NDET16aのC/N出力はGATE21aでサ
ンプルされた後ADD23a・REG24aでデイ
ジタル積分される信号202となる。
This slave station uses the transmission power control method described in Japanese Patent Application Laid-Open No. 58-84544, and the communication signal 201 for the master station is VGAMP4a/U/C5.
a. Transmitted from ANT7a to the satellite via PA6a. On the other hand, the satellite return signal wave of the pilot signal 101 of the master station shown in FIG.
3a and enters C/NDET16a. C/
The C/N output of the NDET 16a becomes a signal 202 which is sampled by the GATE 21a and then digitally integrated by the ADD 23a and REG 24a.

すでに説明したように、パイロツト信号101
の衛星折返し信号波の実効放射電力Pは降雨の有
無にかかわらず一定に保たれている。したがつて
その受信C/Nはダウンリンクの降雨減衰によつ
てきまり、一方アツプリンクとダウンリンクの降
雨減衰は相関関係があるから、TPCCONT27
はこの相関関係と信号202とからアツプリンク
の降雨減衰を補償する信号を発生し、これがD/
A26aを通つてV.G.AMP4aの制御信号とな
る。これによつてANT7aが放射する通信信号
201の送信波はアツプリンクの降雨減衰を補償
するように電力制御されて、通信信号波201の
衛星折返し信号波の実効放射電力(T2とする)
は降雨の有無にかかわらず一定となる。そのレベ
ルはパイロツト信号101の衛星折返し信号波の
実効放射電力Pとアツプリンク・ダウンリンクの
降雨減衰の相関関係とTPCCONT27の設定と
によつてきまる。したがつて T2=f(P) ……(7) あるいは P=f-1(T2) ……(8) と表現できる。
As already explained, the pilot signal 101
The effective radiated power P of the satellite return signal wave is kept constant regardless of the presence or absence of rain. Therefore, the received C/N depends on the downlink rain attenuation, and on the other hand, since the uplink and downlink rain attenuation are correlated, TPCCONT27
generates a signal from this correlation and signal 202 that compensates for uplink rain attenuation, which
It passes through A26a and becomes a control signal for VGAMP4a. As a result, the power of the transmission wave of the communication signal 201 radiated by the ANT7a is controlled to compensate for uplink rain attenuation, and the effective radiation power of the satellite return signal wave of the communication signal wave 201 (assumed to be T 2 )
is constant regardless of the presence or absence of rainfall. The level depends on the correlation between the effective radiated power P of the satellite return signal wave of the pilot signal 101 and the rain attenuation of the uplink and downlink, and the setting of the TPC CONT 27. Therefore, it can be expressed as T 2 = f (P) ... (7) or P = f -1 (T 2 ) ... (8).

さて、通信信号102,201の衛星折返し信
号波の実効放射電力を当初の設定値T1・T2から
T′1・T′2に設定変更する場合、パイロツト信号1
01の電力pを当初の設定値のT1・P′/(T′1
P)倍に、OFFSET15のオフセツトの比率を
当初の設定値のP′/P倍に設定変更する。
Now, the effective radiated power of the satellite return signal waves of communication signals 102 and 201 can be calculated from the initial setting values T 1 and T 2.
When changing the setting to T' 1 /T' 2 , pilot signal 1
01 power p is the initial setting value T 1・P′/(T′ 1
P) times, change the setting of the offset ratio of OFFSET15 to P'/P times the initial setting value.

ただし、 P′=f-1(T′2) ……(8′) である。これらの設定変更により2式の定数C1
がC1・P′/Pに変るから、パイロツト信号10
1の衛星折返し信号波の実効放射電力は3式より B(C1・P′/P)=B・C1(P′1/P)=P′1 ……(3′) となる。したがつて通信信号201の衛星折返し
信号波の実効放射電力は8′式よりT′2に設定変更
される。一方4式の定数C2がC2・T′1・P/
(T1・P′)に変るから通信信号102の衛星折返
し信号波の実効放射電力は6式と3′式から P′1・C2・T′1・P/(T1・P′)=P・C2・T′
1/T1=T′1……(6′) となりT′1に設定変更される。
However, P′=f -1 (T′ 2 ) ...(8′). By changing these settings, the constant C 1 of the two equations
changes to C 1・P′/P, so the pilot signal 10
The effective radiated power of the satellite return signal wave of No. 1 is calculated from equation 3 as follows: B(C 1・P′/P)=B・C 1 (P′ 1 /P)=P′ 1 ……(3′). Therefore, the effective radiation power of the satellite return signal wave of the communication signal 201 is changed to T' 2 from equation 8'. On the other hand, the constant C 2 in equation 4 is C 2・T′ 1・P/
(T 1・P′), so the effective radiated power of the satellite return signal wave of the communication signal 102 is P′ 1・C 2・T′ 1・P/(T 1・P′) from equations 6 and 3′. = P・C 2・T′
1 /T 1 = T' 1 ... (6'), and the setting is changed to T' 1 .

このようにして、第1図・第2図に示す親局・
子局は親局におけるATT2・OFFTSET15の
設定値を変更することだけで、通信信号102,
201の衛星折返し信号波の実効放射電力を設定
変更することができ、子局における設定値変更を
要しない。
In this way, the master station and
The slave station can transmit communication signals 102 and 102 by simply changing the setting values of ATT2 and OFFTSET15 in the master station.
The setting of the effective radiation power of the satellite return signal wave of No. 201 can be changed, and there is no need to change the setting value at the slave station.

なお、第1図に示す親局において、OFFSET
15でオフセツトするのはD/C10・
BCNREC12・A/D17またはC/NCOMP
19のいずれか1つでもよく、またD/C11・
PILREC13・C/NDET16またはA/D18
のいずれか1つをOFFSET15の行うオフセツ
トと逆の比率でオフセツトするようにしていたて
もよい。また第1図・第2図に示す親局・子局に
おいて、C/NDET14,16,16aのかわ
りにレベル検出器を用いることもでき、さらに
V.G.AMP4・4aの制御信号を作るのにデイジ
タル積分を用いるかわりに低域波器などによる
アナログ積分を用いることもできる。第2図に示
す子局は〔従来の技術〕の項ですでに説明した特
開昭58−84545号公報に記載されている送信電力
制御方式を用いてもよい。
In addition, in the master station shown in Figure 1, OFFSET
The offset with 15 is D/C10.
BCNREC12/A/D17 or C/NCOMP
Any one of 19 may be used, and D/C11.
PILREC13/C/NDET16 or A/D18
It is also possible to offset any one of them at a ratio opposite to that performed by the OFFSET 15. In addition, level detectors can be used instead of C/NDET14, 16, 16a in the master station and slave station shown in Figures 1 and 2.
Instead of using digital integration to create the VGAMP4/4a control signal, analog integration using a low-frequency wave generator or the like can be used. The slave station shown in FIG. 2 may use the transmission power control method described in Japanese Patent Application Laid-Open No. 58-84545, which has already been explained in the section ``Prior Art''.

さらにまた、本発明は親局がバツクアツプ局な
どを含む複数局である場合にも用いることがで
き、子局の一部はより複雑な送信電力制御方式を
用いてもよい。
Furthermore, the present invention can be used even when the master station is a plurality of stations including a backup station, and some of the slave stations may use a more complicated transmission power control method.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明の地球局送
信電力制御方式は親局のパイロツト信号電力とビ
ーコン受信器あるいはパイロツト受信器の出力レ
ベルまたはC/Nのオフセツト値とを設定変更可
能にするという手段を用いるので、本発明の地球
局送信電力制御方式を用いれば子局における設定
変更なしに親局および子局の通信信号の衛星折返
し信号波の実効放射電力の設定変更ができるとい
う効果がある。
As explained in detail above, the earth station transmission power control method of the present invention allows the setting of the pilot signal power of the master station and the output level or C/N offset value of the beacon receiver or pilot receiver to be changed. Since the earth station transmission power control method of the present invention is used, it is possible to change the setting of the effective radiated power of the satellite return signal wave of the communication signal of the master station and the slave station without changing the setting at the slave station. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図・第2図は、本発明の地球局送信電力制
御方式の一実施例による親局・子局を示すブロツ
ク図である。
FIGS. 1 and 2 are block diagrams showing a master station and a slave station according to an embodiment of the earth station transmission power control method of the present invention.

Claims (1)

【特許請求の範囲】 1 一つの衛星を介して通信を行う複数の地球局
のうち少くとも1つの特定地球局が、 パイロツト信号を発生する発生手段と、 前記パイロツト信号および第1の通信信号を合
成する合成手段と、 前記合成手段の出力を前記衛星に送信する送信
電力制御可能な第1の送信手段と、 前記衛星からの実効放射電力が晴雨にかかわら
ず一定である基準信号波を受信する基準信号受信
手段と、 前記パイロツト信号の衛星折返し信号波を受信
する第1のパイロツト受信手段と、 前記基準信号受信手段および前記第1のパイロ
ツト受信手段の出力レベルまたは搬送波対雑音電
力比を比較して前記第1の送信手段を制御する信
号を発生する比較制御手段と、 を具備し、 前記特定地球局を除く全部または一部の前記地
球局が、 第2の通信信号を前記衛星に送信する送信電力
制御可能な第2の送信手段と、 前記パイロツト信号の衛星折返し信号波を受信
する第2のパイロツト受信手段と、 前記パイロツト受信手段の出力レベルまたは搬
送波対雑音電力比をもとにして前記第2の送信手
段を制御する信号を発生する制御手段と を具備する地球局送信電力制御方式において、 前記比較制御手段は、前記第2の通信信号の衛
星折返し信号波の実効放射電力の設定値を変更す
るのに対応して前記基準信号受信手段から入力す
る信号のレベルもしくは搬送波対雑音電力比また
は前記第1のパイロツト受信手段から入力する信
号のレベルもしくは搬送波対雑音電力比をオフセ
ツトするオフセツト手段を備え、 前記発生手段は、その出力レベルを、前記第1
および第2の通信信号の衛星折返し信号波の実効
放射電力の設定値を変更するのに対応して変更す
る出力レベル変更手段を備える ことを特徴とする地球局送信電力制御方式。
[Scope of Claims] 1. At least one specific earth station among a plurality of earth stations that communicate via one satellite comprises: generating means for generating a pilot signal; and generating means for generating a pilot signal and a first communication signal. combining means for combining; first transmitting means capable of controlling transmission power for transmitting the output of the combining means to the satellite; and receiving a reference signal wave whose effective radiated power from the satellite is constant regardless of whether it is rain or shine. comparing the output level or carrier-to-noise power ratio of the reference signal receiving means, the first pilot receiving means for receiving the satellite return signal wave of the pilot signal, and the reference signal receiving means and the first pilot receiving means; and a comparison control means for generating a signal for controlling the first transmission means, wherein all or some of the earth stations except the specific earth station transmit a second communication signal to the satellite. a second transmitting means capable of controlling transmission power; a second pilot receiving means for receiving a satellite return signal wave of the pilot signal; In the earth station transmission power control system, the earth station transmission power control method includes a control means for generating a signal for controlling the second transmission means, wherein the comparison control means includes a set value of the effective radiated power of the satellite return signal wave of the second communication signal. offset means for offsetting the level or carrier-to-noise power ratio of the signal input from the reference signal receiving means or the level or carrier-to-noise power ratio of the signal input from the first pilot receiving means in response to changing the reference signal receiving means; , the generating means is configured to change the output level to the first
and an earth station transmission power control system, comprising an output level changing means that changes in response to changing a set value of effective radiated power of a satellite return signal wave of a second communication signal.
JP60125436A 1985-06-10 1985-06-10 Control system for transmission power of earth station Granted JPS61283235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60125436A JPS61283235A (en) 1985-06-10 1985-06-10 Control system for transmission power of earth station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60125436A JPS61283235A (en) 1985-06-10 1985-06-10 Control system for transmission power of earth station

Publications (2)

Publication Number Publication Date
JPS61283235A JPS61283235A (en) 1986-12-13
JPH0356491B2 true JPH0356491B2 (en) 1991-08-28

Family

ID=14910041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60125436A Granted JPS61283235A (en) 1985-06-10 1985-06-10 Control system for transmission power of earth station

Country Status (1)

Country Link
JP (1) JPS61283235A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100605978B1 (en) * 1999-05-29 2006-07-28 삼성전자주식회사 Transceiver apparatus and method for continuous outer loop power control in dtx mode of cdma mobile communication system
JP6504562B2 (en) * 2015-07-03 2019-04-24 日本無線株式会社 Communication diagnostic system and communication diagnostic method

Also Published As

Publication number Publication date
JPS61283235A (en) 1986-12-13

Similar Documents

Publication Publication Date Title
US5222246A (en) Parallel amplifiers with combining phase controlled from combiner difference port
US4570265A (en) Random frequency offsetting apparatus for multi-transmitter simulcast radio communications systems
JPH02246523A (en) Transmission power controller for radio equipment
US4660042A (en) Cancellation system for transmitter interference with nearby receiver
JPH04372234A (en) Transmission power control system
GB2120906A (en) Frequency converter
JPS6377226A (en) Communication system
JPH0356491B2 (en)
JP2954181B1 (en) Single frequency broadcast wave repeater
JPS583613B2 (en) Satellite communication method
KR20050025089A (en) Frequency-selective phase/delay control for an amplifier
JP2679445B2 (en) Transmission power control method
US3991372A (en) Circuit for reversing doppler signal modifying a carrier
JPH02104131A (en) Transmitter
JPH05218924A (en) Transmission power control system
JPH06244763A (en) Satellite communication equipment
JPS61195028A (en) Repeater for communication satellite
JP2504214B2 (en) Automatic Level Control Method for Micro Satellite Communication Equipment
JP2819666B2 (en) Receiver
JP2001127574A (en) Automatic power control circuit
JPS627223A (en) Transmission power compensating device
JPH0473902B2 (en)
JPH025631A (en) Transmission power control system for satellite communication
SU1688417A1 (en) Wide band corrector
JPH0374539B2 (en)