JPH0355881A - Nonvolatile semiconductor memory - Google Patents

Nonvolatile semiconductor memory

Info

Publication number
JPH0355881A
JPH0355881A JP19336889A JP19336889A JPH0355881A JP H0355881 A JPH0355881 A JP H0355881A JP 19336889 A JP19336889 A JP 19336889A JP 19336889 A JP19336889 A JP 19336889A JP H0355881 A JPH0355881 A JP H0355881A
Authority
JP
Japan
Prior art keywords
layer
oxide film
gate electrode
floating gate
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19336889A
Other languages
Japanese (ja)
Inventor
Ryoji Takada
高田 量司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP19336889A priority Critical patent/JPH0355881A/en
Publication of JPH0355881A publication Critical patent/JPH0355881A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To improve the holding, rewriting, and TDDB properties of a nonvolatile semiconductor memory by providing an impurity layer of first conductivity type, which is the same as that of the substrate of the memory in the surface area facing the edge of the floating gate electrode, in an erasing area of second conductivity type. CONSTITUTION:After a deep (about 0.5-1.0mum in depth) n<+> diffusion layer 7 is formed, a thin oxide film 8, a first poly-Si layer 5, an inter-layer insulating film 11, and a second poly-Si layer 6 are formed in this order and the second and first poly-Si layers 6 and 5 are simultaneously etched. After etching, a p-type impurity layer 10 is introduced by ion implantation performed in self-aligning manner. The layer 10 finally gets into the layers 5 and 6 by 0.2-0.3mum from their edges as a result of heat treatment performed for activation. Therefore, even when a damaged layer 9 is produced by the etching, no tunnel current flows through this area and increase of trap can be prevented when leak current increases or rewriting is made. The layer 10 is connected with a p-type substrate 1 at a LOCOS edge in a direction perpendicular to the figure, and a positive hole produced by the flowing tunnel current is bypassed through the layer 10. Thus injection of positive holes into the oxide film is suppressed and the TDDB property of the thin oxide film is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、コンピュータなどの電子機器に用いられて
いる半導体不揮発性メモリに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor nonvolatile memory used in electronic equipment such as computers.

〔発明の概要〕[Summary of the invention]

この発明は、ホソトエレクトロン注入あるいはトンネル
注入を利用した浮遊ゲート型不揮発性メモリの消去領域
において、浮遊ゲート電極をエソチング加工する際に生
ずるダメージの影響を取り除き、さらに消去動作中の薄
い酸化膜への正孔注入を抑えるために、浮遊ゲート電極
エノジ部に向かい合う消去jI域の表面に消去領域と逆
の導電型の浅い不純物領域を設けたものである。この消
去領域の改良により最大書替え回数の増大が可能となる
This invention eliminates the effects of damage caused when etching a floating gate electrode in the erase region of a floating gate non-volatile memory using photoelectron injection or tunnel injection, and also eliminates the effects of damage to a thin oxide film during erase operation. In order to suppress hole injection, a shallow impurity region of a conductivity type opposite to that of the erased region is provided on the surface of the erased jI region facing the floating gate electrode edge part. This improvement of the erase area makes it possible to increase the maximum number of rewrites.

〔従来の技術〕[Conventional technology]

第2図に従来のチャネルホットエレクトロン注入型の不
揮発性メモリの平面図を示す。今ここで半導体基板をP
型と仮定して説明する。基板上にはn十拡散領域である
ソース12およびドレイン13、さらに薄い酸化膜を介
してpolysiやシリサイド等を使った浮遊ゲート電
極15と浮遊ゲート電極15に容量結合している制御ゲ
ー目6で注入,読出し部が構成されている。浮遊ゲート
電極15の下にはチャネル14が形威される。チャネル
長は一般に1μm以下と短い。消去部はソース・ドレイ
ンとは別のn+拡散領域17と浮遊ゲート電極15が交
差するように形成される。
FIG. 2 shows a plan view of a conventional channel hot electron injection type nonvolatile memory. Now P the semiconductor substrate here.
The following explanation assumes that it is a type. On the substrate, there is a source 12 and a drain 13 which are diffusion regions, and a floating gate electrode 15 made of polysilicon, silicide, etc. and a control gate 6 capacitively coupled to the floating gate electrode 15 through a thin oxide film. Injection and readout sections are configured. A channel 14 is formed below the floating gate electrode 15 . The channel length is generally short, 1 μm or less. The erase portion is formed such that an n+ diffusion region 17 other than the source/drain region and the floating gate electrode 15 intersect.

浮遊ゲート電極15への電子の注入はソース・ドレイン
間に5V程度のバイアスを印加し、制御ゲート電極16
に10〜15Vで数msecの書込みパルスVCGを与
えると、チャネル電流が流れ、一部のホノトエレクトロ
ンが浮遊ゲート電極15に注入される。
Electrons are injected into the floating gate electrode 15 by applying a bias of about 5 V between the source and drain, and
When a write pulse VCG of 10 to 15 V and a duration of several msec is applied to , a channel current flows and some photoelectrons are injected into the floating gate electrode 15 .

浮遊ゲート電極l5から電子を抜き取るためには、制御
ゲート電極16を○■にし、消去領域17に15〜20
V程度の消去パルスVEILを与え、トンネル電流によ
り消去される。
In order to extract electrons from the floating gate electrode l5, the control gate electrode 16 is made ○■, and the erase area 17 is
An erase pulse VEIL of approximately V is applied, and erasing is performed by a tunnel current.

槌来の消去部の断面構造図を第3図に示す。まずn1拡
散層17をイオンインプランテーション等により形威し
、薄い酸化膜18 (50〜150人)を希釈酸化等に
より形戒する。次に浮遊ゲート電極15となる第1 p
olysiをデボジノトし、眉間絶縁膜を間に挟んで第
2 polysiをデボジ,トする。この後ドライエノ
チングにより、第1 polysiと第2polyS+
を一度にエノチングし、浮遊ゲート電極15と制御ゲー
ト電極16を形威している。
A cross-sectional structural diagram of Tsuchiki's erasing section is shown in FIG. 3. First, the n1 diffusion layer 17 is shaped by ion implantation or the like, and the thin oxide film 18 (50 to 150 layers) is shaped by diluted oxidation or the like. Next, the first p which becomes the floating gate electrode 15
Deposit the polysi, and then deposit the second polysi with the glabella insulating film in between. After this, by dry enoching, the first polysi and the second polyS+
are etched at once to form the floating gate electrode 15 and control gate electrode 16.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第1に従来の消去部の構造では、ドライエノチングによ
る酸化膜表面のダメージl9があり、浮遊ゲート電極1
5のエノジ部でのリーク電流増大や書替えの際にトラノ
プの増大を引き起こすことである。第2に消去する際に
、トンネル電流がn+拡散領域内で多量の正孔電子対を
発生し、高い工不ルギーの正孔が薄い酸化膜中に注入、
トラノブされることである。この正孔注入は薄い酸化膜
のTDDB特性を悪化させる。
First, in the conventional eraser structure, there is damage l9 on the oxide film surface due to dry etching, and the floating gate electrode 1
This causes an increase in leakage current in the energy section of No. 5 and an increase in toranop during rewriting. Second, during erasing, the tunnel current generates a large number of hole-electron pairs in the n+ diffusion region, and the holes with high energy efficiency are injected into the thin oxide film.
It is to be raped. This hole injection deteriorates the TDDB characteristics of the thin oxide film.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、あらかしめ深いn十拡散層を設けておき、p
olysiエノチング後に、浮遊ゲート電極に自己整合
的に浅いP型不純物層を形戒するものである。P型不純
物層はエノチングダメージのあるpolysiエソジよ
り0.2〜0.3一内側に広がるため、n十拡散領域ま
でダメージ層はとどかない。またこのP型不純物層は、
基板と同電位になる.〔作用〕 P型不純物層を自己整合的に有するのでトンネル電流は
この領域には流れずエソチングダメージによるトラップ
の影響はほとんどなくなる。さらに、P型不純物層はト
ンネル電流により発生した高エネルギーの正孔のバイパ
スとして働くため薄い酸化膜への正孔注入を印えること
ができる。
In the present invention, a deep n0 diffusion layer is provided, and p
After olysi etching, a shallow P-type impurity layer is formed in a self-aligned manner on the floating gate electrode. Since the P-type impurity layer spreads 0.2 to 0.3 mm inward from the etched-damaged polysilicon layer, the damaged layer does not reach the n0 diffusion region. Moreover, this P-type impurity layer is
It has the same potential as the substrate. [Function] Since the P-type impurity layer is self-aligned, no tunnel current flows in this region, and the influence of traps caused by etching damage is almost eliminated. Furthermore, since the P-type impurity layer acts as a bypass for high-energy holes generated by tunnel current, hole injection into the thin oxide film can be detected.

〔実施例〕〔Example〕

第l図は本発明の基本的な消去部の断面構造図である。 FIG. 1 is a cross-sectional structural diagram of the basic erasing section of the present invention.

まず、あらかしめ深い(0.5〜i.o 即位でよい)
n+拡散層7を形威しておき、薄い酸化膜8、第1 p
olysi 5、層間絶縁If! i 1、第’l p
olysi6の順に形成し、第2 polysi 6と
第1 polysi 5を同時にエッチングする。この
後、自己整合的にP型不純物層10をインブラにより導
入する。P型不純物層10は活性化の為の熱処理で最終
的には0.2〜0.3一程度polysi 5および6
の工,ジより内側に入り込む。従ってエノチングのダメ
ージ層9があったとしても、この領域をトンネル電流は
流れない。P型不純物層lOは図に対して垂直方向のし
acosエッジでP型基板1と継がるため、トンネル電
流が流れることによって発生した正札は、このP型不純
物層10を通してバイパスされる。
First of all, it is deep (0.5~i.o enthronement is fine)
Leaving the n+ diffusion layer 7 intact, a thin oxide film 8 and the first p
olysi 5, interlayer insulation If! i 1, 'l p
polysi 6 is formed in this order, and the second polysi 6 and the first polysi 5 are etched simultaneously. Thereafter, a P-type impurity layer 10 is introduced by an injector in a self-aligned manner. The P-type impurity layer 10 is finally heated to about 0.2 to 0.31 polysi 5 and 6 by heat treatment for activation.
Go deeper inside. Therefore, even if there is an etching damage layer 9, no tunnel current flows through this region. Since the P-type impurity layer 1O is connected to the P-type substrate 1 at the acos edge in the direction perpendicular to the figure, the genuine tag generated by the flow of tunnel current is bypassed through this P-type impurity layer 10.

第4図はn型領域とP型領域をDiffusion S
elfAlign (D S A)技術を用いて形威し
たものである。
Figure 4 shows the n-type region and the p-type region as diffusion S.
It was realized using elfAlign (DSA) technology.

第5図は薄い酸化膜のエソチング窓で消去領域を決める
場合の断面構造図である。この場合にも、エソチングに
よるダメージ層あるいは段差によるストレスが存在する
。この場合に表面に導入したP型不純物71510は第
1図,第4図と同様に働く。
FIG. 5 is a cross-sectional structural diagram when an erasing area is determined by an etching window of a thin oxide film. In this case as well, there is stress due to the damaged layer or level difference due to ethoching. In this case, the P-type impurity 71510 introduced into the surface works in the same manner as in FIGS. 1 and 4.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明により、消去部の薄い酸化膜に
発生するダメージ層の影響をなくすことができ、リーク
の低減とトラノプの減少をもたらし、さらにトンネル電
流により発生した正孔をバイパスさせることができる。
As described above, according to the present invention, it is possible to eliminate the influence of the damaged layer generated in the thin oxide film in the erased area, thereby reducing leakage and toranop, and further bypassing holes generated by tunnel current. I can do it.

これにより、保持特性,書替え特性.TDDB特性を向
上させることができる。
This improves retention characteristics and rewrite characteristics. TDDB characteristics can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は不揮発性メモリの消去部の断面構造図、第2図
は従来の不揮発性メモリの平面図、第3図は他の従来の
消去部の断面構造図、第4図はDSA技術により形威し
た消去部の断面構造図、第5図はエッチング窓で決める
消去部の断面構造図である. 1 ・ ・ ・ P型基牟反 5・・・第1 polysi 6・・・第2 polysi 士 7・・・n 拡散層 8・・・薄い酸化膜 9・ ・・ダメージ層 10・・・P型不′4@物層 11・・・層間絶縁膜 工2・・・ソース領域 13・・・ドレイン領域 ・チャネル領域 ・浮遊ゲート電極 ・制御ゲート電極 ・消去拡散領域 ・薄い消去酸化膜 ・ダメージ層 ・P型基板
Fig. 1 is a cross-sectional structural diagram of an erasing section of a nonvolatile memory, Fig. 2 is a plan view of a conventional nonvolatile memory, Fig. 3 is a sectional structural diagram of another conventional erasing section, and Fig. 4 is a cross-sectional structural diagram of an erasing section of a nonvolatile memory. Figure 5 is a cross-sectional structural diagram of the erased part determined by the etched window. 1 ・ ・ ・ P type substrate 5...first polysi 6...second polysi 7...n diffusion layer 8...thin oxide film 9...damage layer 10...P type Non'4@material layer 11...Interlayer insulating film 2...Source region 13...Drain region, channel region, floating gate electrode, control gate electrode, erase diffusion region, thin erase oxide film, damaged layer... P type board

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板表面に互いに間隔を置いて設け
られた第2導電型のソースおよびドレイン領域と、前記
ソース領域と前記ドレイン領域との間の前記半導体基板
表面のチャネル領域と前記チャネル上に酸化膜を介して
設けられた浮遊ゲート電極と、前記浮遊ゲート電極に容
量結合し電位を制御する制御ゲート電極と、前記半導体
基板上に前記ソースおよびドレイン領域とは間隔を置い
て設けられた第2導電型の消去領域とから構成され、前
記消去領域内で前記浮遊ゲート電極のエッジと向かい合
う表面領域に第1導電型の不純物層を設けたことを特徴
とする半導体不揮発性メモリ。
source and drain regions of a second conductivity type provided at intervals on the surface of a semiconductor substrate of a first conductivity type; a channel region on the surface of the semiconductor substrate between the source region and the drain region; a floating gate electrode provided through an oxide film on the semiconductor substrate, a control gate electrode capacitively coupled to the floating gate electrode to control the potential, and the source and drain regions provided on the semiconductor substrate at intervals. an erase region of a second conductivity type, and an impurity layer of a first conductivity type is provided in a surface region facing an edge of the floating gate electrode within the erase region.
JP19336889A 1989-07-24 1989-07-24 Nonvolatile semiconductor memory Pending JPH0355881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19336889A JPH0355881A (en) 1989-07-24 1989-07-24 Nonvolatile semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19336889A JPH0355881A (en) 1989-07-24 1989-07-24 Nonvolatile semiconductor memory

Publications (1)

Publication Number Publication Date
JPH0355881A true JPH0355881A (en) 1991-03-11

Family

ID=16306750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19336889A Pending JPH0355881A (en) 1989-07-24 1989-07-24 Nonvolatile semiconductor memory

Country Status (1)

Country Link
JP (1) JPH0355881A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19600544A1 (en) * 1995-06-15 1996-12-19 Mitsubishi Electric Corp EEPROM with n=type source and p=type drain regions

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19600544A1 (en) * 1995-06-15 1996-12-19 Mitsubishi Electric Corp EEPROM with n=type source and p=type drain regions
US5877524A (en) * 1995-06-15 1999-03-02 Mitsubishi Denki Kabushiki Kaisha Non-volatile semiconductor memory device
US6172397B1 (en) 1995-06-15 2001-01-09 Mitsubishi Denki Kabushiki Kaisha Non-volatile semiconductor memory device
DE19600544C2 (en) * 1995-06-15 2001-12-13 Mitsubishi Electric Corp Non-volatile semiconductor memory devices with a p-channel type memory cell

Similar Documents

Publication Publication Date Title
KR100385041B1 (en) Eeprom memory cell and method of fabricating the same
JPH02129968A (en) Semiconductor integrated circuit device
JPH07221209A (en) Flash eeprom cell that has gap between floating gate and drain for high hot electron injection efficiency for program
JP2855518B2 (en) Structure and manufacturing method of flash memory
JP2758577B2 (en) EEPROM and its manufacturing method
JPH0878552A (en) Method of forming single transistor memory cell structure and self-matching single transistor memory cell structure
US6111286A (en) Low voltage low power n-channel flash memory cell using gate induced drain leakage current
US7663180B2 (en) Semiconductor device
JPH09252059A (en) Semiconductor device
JP2819975B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JPH07130894A (en) Eeprom flash memory cell, memory device and their manufacture
JP3144552B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JP2842169B2 (en) Nonvolatile semiconductor memory device
US6025229A (en) Method of fabricating split-gate source side injection flash memory array
JPH0878541A (en) Method of forming single transistor memory cell structure and self-matching single transistor memory cell structure
US5278787A (en) Semiconductor device and method of manufacturing the same
JP2964636B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JPH0355881A (en) Nonvolatile semiconductor memory
JPH06104451A (en) Nonvolatile semiconductor storage device
JPH02295169A (en) Nonvolatile semiconductor memory
JP2964619B2 (en) Semiconductor memory device and method of manufacturing the same
JPS6029232B2 (en) Non-volatile semiconductor memory device
JP3139633B2 (en) Method of manufacturing MOS type semiconductor memory device
JP3185746B2 (en) Nonvolatile semiconductor memory device
JP2799711B2 (en) Non-volatile storage element