JPH0355523A - Active matrix type liquid crystal display panel - Google Patents

Active matrix type liquid crystal display panel

Info

Publication number
JPH0355523A
JPH0355523A JP1192960A JP19296089A JPH0355523A JP H0355523 A JPH0355523 A JP H0355523A JP 1192960 A JP1192960 A JP 1192960A JP 19296089 A JP19296089 A JP 19296089A JP H0355523 A JPH0355523 A JP H0355523A
Authority
JP
Japan
Prior art keywords
liquid crystal
polyimide
film
display panel
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1192960A
Other languages
Japanese (ja)
Other versions
JP2605407B2 (en
Inventor
Hirobumi Wakemoto
博文 分元
Yoshihiro Matsuo
嘉浩 松尾
Hiroyoshi Takezawa
浩義 竹澤
Tsutomu Harada
努 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19296089A priority Critical patent/JP2605407B2/en
Publication of JPH0355523A publication Critical patent/JPH0355523A/en
Application granted granted Critical
Publication of JP2605407B2 publication Critical patent/JP2605407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To satisfy both of the prevention of the deterioration in the off characteristics of thin-film transistors TFT and liquid crystal orientability by forming liquid crystal oriented films into at least two-layered structures of polyimide films which vary in at least any of structure, compsn. or imidization rate. CONSTITUTION:The liquid crystal oriented films formed on substrates provided with switching elements for each of picture elements are made into at least the two-layered structures of the polyimide films which vary in at least any of the structure, compsn. or imidization rate. Namely, the lower layer film near the switching elements is formed of the polyimide with which polarization hardly arises and which is low in polarity by forming the oriented films into the two-layered constitution, by which the shift of the TFT characteristics at the time of continuous driving is suppressed. The liquid crystal orientability is improved as well by providing the polyimide film having some polarity and the excellent liquid crystal orientability as the upper layer. The deterioration in the off characteristics of the TFTs is prevented in this way without using a vapor deposition process and the active type liquid crystal display panel having the good liquid crystal orientability is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は画像表示等に用いられるアクティブマトリクス
型液晶表示パネルに関し 特に改良された配向膜に関す
ん 従来の技術 従来 液晶表示パネルの配向膜としては 耐熱仏 信頼
性に優れたポリイミドが実用材料として専ら用いられて
いも ポリイミド膜は通常テトラカルボン酸二無水物成
分とジアミン成分の反応で得られるポリアミック酸の膜
を基板上に塗布形戊眞 高温で焼戊イミド化させて得ら
れも 一般に配向膜として用いられるポリイミドは全芳
香族系ボリイミドである。また最近 液晶配向膜用とし
て、非芳香族系のテトラカルボン酸二無水物を用いたも
のも市販されていも 画素ごとに薄膜トランジスタ(T P T)やダイオー
ド等のスイッチング素子を設けたアクティブマトリック
ス型液晶表示パネル{よ 液晶テレビ等の種々のディス
プレイ装置に応用されていもこのアクティブマトリック
ス型液晶表示バネルにおいてL 配向膜が設けられてい
も 配向膜材料としては前述したように芳香族系ポリイミド
が実用材料として一般に用いられており、基板上に形成
した配向膜表面を柔らかい布などで一定方向に擦るラビ
ング処理によって、液晶の一軸配向性が付与されていも 発明が解決しようとする課題 ところで例えばTPTを用いたアクティブマトリクス型
液晶パネルにおいて、連続使用時にTPTのOFF特性
の劣化が起こり、信頼性の点で問題であも ○FF特性
が劣化するとTPTのOFF時にソース・ドレイン間を
流れるリーク電流が増加するた△ 液晶層に加わる実効
電圧が低下してしま(\ 表示画像の劣化となって現れ
も この現象にもTFT側基板上に形成した配向膜が関
係していも そこで一般に 窒化珪素等の無機蒸着膜を
バッシベーション膜としてTFT上に形成しその上に配
向膜を形成することによってTPTのOFF劣化を防止
・していも しかし このような蒸着膜の形成には真空蒸着装置を必
要とし 製造プロセスも複雑になってしま〜\ そのた
めに製造コストも高くなるという課題があも TPTのOFF特性劣化は配向膜として用いられるポリ
イミドの分子構造にも依存していも 用いるポリイミド
を適当に選択すれば OFF特性劣化を防止することは
可能であん しかし OFF特性の劣化を抑制できるポ
リイミドを配向膜として用いた場色 液晶配向性が悪く
なり、表示コントラストが低下するという課題があり九
本発明の目的は蒸着プロセスを用いずに TPTのOF
F特性劣化を防止し かつ液晶配同性も良好なアクティ
ブマトリクス型液晶表示パネルを提供することであも 課題を解決するための手段 画素ごとにスイッチング素子を設けた基板上に形成され
た液晶配向膜を、構遮 組或またはイミド化率の少なく
ともいずれかが異なるポリイミド膜へ 少なくとも2層
構戊とする。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to active matrix liquid crystal display panels used for image display, etc., and particularly relates to improved alignment films. Although highly reliable polyimide is exclusively used as a practical material, polyimide films are usually made by coating a polyamic acid film obtained by reacting a tetracarboxylic dianhydride component and a diamine component on a substrate and baking it at high temperatures. The polyimide obtained by forming a polyimide and generally used as an alignment film is a wholly aromatic polyimide. Recently, liquid crystal alignment films using non-aromatic tetracarboxylic dianhydrides have also been commercially available, but active matrix liquid crystals with switching elements such as thin film transistors (TPTs) and diodes installed in each pixel have recently become commercially available. Display panel {Yo) Even though this active matrix type liquid crystal display panel is applied to various display devices such as liquid crystal televisions and is provided with an alignment film, aromatic polyimide is used as a practical material as the alignment film material, as mentioned above. This invention is intended to solve the problem that the invention aims to solve, even though liquid crystal uniaxial alignment is imparted by a rubbing process, which is commonly used and in which the surface of an alignment film formed on a substrate is rubbed in a fixed direction with a soft cloth, etc. In active matrix liquid crystal panels, the TPT's OFF characteristics deteriorate during continuous use, which is a problem in terms of reliability. ○When the FF characteristics deteriorate, the leakage current flowing between the source and drain increases when the TPT is turned OFF. △ The effective voltage applied to the liquid crystal layer decreases (\ This may appear as a deterioration of the displayed image.Although this phenomenon is also related to the alignment film formed on the TFT side substrate, in general, an inorganic vapor-deposited film such as silicon nitride is used. It is possible to prevent OFF deterioration of the TPT by forming it as a bashivation film on the TFT and then forming an alignment film on top of it. However, forming such a deposited film requires a vacuum evaporation device and the manufacturing process is complicated. The problem is that the manufacturing cost increases.Although the deterioration of TPT's OFF characteristics also depends on the molecular structure of the polyimide used as the alignment film, if the polyimide used is selected appropriately, the deterioration of the OFF characteristics can be prevented. However, when polyimide, which can suppress the deterioration of OFF characteristics, is used as an alignment film, there is a problem that the liquid crystal alignment deteriorates and the display contrast decreases. OF TPT without using
A method for solving this problem by providing an active matrix type liquid crystal display panel that prevents deterioration of F characteristics and has good liquid crystal alignment.A liquid crystal alignment film formed on a substrate with a switching element for each pixel. The polyimide film is formed into at least two layers with different structures or imidization ratios.

作用 本発明は配向膜ポリイミドを少なくとも2層構戊とし 
スイッチング素子に近い下層膜によって、連続駆動時の
TPT特性のシフトを抑制し 上層膜によって液晶配向
性も良好なパネルを作製できる。
Function The present invention has an alignment film composed of at least two layers of polyimide.
The lower layer film close to the switching element suppresses shifts in TPT characteristics during continuous driving, and the upper layer film makes it possible to produce a panel with good liquid crystal orientation.

TPTのOFF特性が劣化する原因として、配向膜の分
極が考えられも その分極機構として、配向膜ポリイミ
ド中に存在する極性基の配向分極魚 電極からの電荷注
入が考えられも TFT上に配向膜が存在する場色 液晶パネルの駆動時
に発生するDC電圧成分の影響で配向膜の分極が起こり
、この分極の結果発生した電界によってTPTの特性が
シフトすることが考えられも いずれにしてもこのような分極が起こる原因を分子構造
の面からみると、分子構造中に含まれる極性基が配向す
ること東 極性基が電荷のトラップ中心となっているこ
とが考えられも そこで、配向膜を2層構成として、スイッチング素子に
近い下層膜をこのような分極の起こりにくL\ つまり
極性の低いポリイミドで形戊することによって、連続駆
動時のTPT特性のシフトを抑制できも しかしこのようなポリイミドは一般に液晶配向性の点で
は劣っていも 高分子配向膜による液晶の配向はラビン
グなどによって延伸配向された表面の高分子と液晶が相
互作用することによって達或されも 極性基が存在しな
い非極性高分子の場念 液晶と配向膜間にクーロン力は
働かず、クロンカに比べて弱い分散力だけが働くことに
なる。
The polarization of the alignment film may be the cause of the deterioration of the OFF characteristics of TPT.The polarization mechanism may be due to charge injection from the polar groups present in the alignment film polyimide electrode. It is possible that polarization of the alignment film occurs due to the influence of the DC voltage component generated when driving the liquid crystal panel, and that the electric field generated as a result of this polarization shifts the characteristics of the TPT. Looking at the cause of this polarization from the perspective of molecular structure, it is thought that the polar groups contained in the molecular structure are oriented. In terms of structure, it is possible to suppress the shift in TPT characteristics during continuous driving by forming the lower layer near the switching element with a polyimide that does not cause such polarization, that is, has low polarity. Although the liquid crystal orientation is generally inferior in terms of liquid crystal orientation, the alignment of the liquid crystal by a polymer alignment film is achieved by the interaction between the liquid crystal and the polymer on the surface that has been stretched and oriented by rubbing, etc. Molecular field theory Coulomb force does not work between the liquid crystal and alignment film, and only dispersion force, which is weaker than Kronka's, works.

そのため液晶配向力が弱く、良好な配向が得られないと
考えられも そこで上層にある程度の極性を有し 液晶配向性の優れ
たポリイミド膜を設けることによって、液晶配向性も良
好なパネルを作製できも実施例 アクティブマトリックス型液晶表示パネルにおいて設け
られてい水 配向膜材料のポリイミド(.t.テトラカ
ルボン酸二無水物とジアミンが縮合重合した構造をもっ
ていも 一般のポリイミドはこれらがいずれも芳香族系であム また最近 半導体のパッシベーション膜用や液晶配向膜
用として、非芳香族系のテトラカルボン酸二無水物を用
いたものも市販されている力曳 ジアミン成分として非
芳香族系を用いたものは用いられていな(1 ポリイミドは印刷怯 耐熱怯 液晶配向組 長期信頼性
など優れた特性を有しており、配向膜材料に用いるメリ
ットは大きb1 本発明(よ 配向膜に用いるポリイミドの構造組或また
はイミド化率の少なくともいずれかが異な太 少なくと
も2層構戊を特徴とすもここで構造と(友 ポリイミド
を構戊するテトラカルボン酸二無氷物成分とジアミン成
分の分子構造を意味すも 組或と(上 異なるポリイミドまたはポリイミド以外の
第3の戒分との共重合体または混合物の場合の組或比を
意味すも 以下に示す実施例および比較例において、スイッチング
素子の一例として、逆スタガー構造のアモルファスシリ
コンTPTを有するアクティブマトリクス型フルカラー
液晶パネルを用いf,そのサイX 構戒は対角1.1イ
ンチ、ゲートライン数220木 ソースライン数352
本であも対向電極はR,  G,  Bのカラーフィル
ター上に全面電極として形威されており、TFT側基板
と対向基板の間隙に液晶が充填されている。
Therefore, it is thought that the liquid crystal alignment force is weak and good alignment cannot be obtained, but by providing a polyimide film with a certain degree of polarity and excellent liquid crystal alignment in the upper layer, it is possible to create a panel with good liquid crystal alignment. The polyimide used as the material for the water alignment film provided in the active matrix type liquid crystal display panel of the example has a structure of condensation polymerization of tetracarboxylic dianhydride and diamine, but in general polyimide, both of these are aromatic. Also, recently, products using non-aromatic tetracarboxylic dianhydride are commercially available for use in semiconductor passivation films and liquid crystal alignment films. (1) Polyimide has excellent properties such as printing flaw resistance, heat flaw resistance, liquid crystal alignment layer, and long-term reliability, and the advantages of using it as an alignment film material are significant. Or, it is characterized by a thick or at least two-layer structure in which at least one of the imidization ratios is different. In the Examples and Comparative Examples shown below, as an example of a switching element, An active matrix type full color liquid crystal panel with staggered structure amorphous silicon TPT is used, its size is 1.1 inches diagonally, 220 gate lines and 352 source lines.
In the book, the counter electrode is in the form of a full-surface electrode on the R, G, and B color filters, and the gap between the TFT side substrate and the counter substrate is filled with liquid crystal.

液晶表示モードは電圧無印加時に光を遮断するネガタイ
プのTNモードを用いた 液晶パネルのギャップ(友 用いた液晶材料の屈折率の
異方性か板 グーチとタリーの式によって計算されるコ
ントラストの最適値に設定し?.第1図は実施例および
比較例に用いた液晶パネルの一画素の等価回路であも 
第2図はゲートラインの駆動電圧波形を示したものであ
もゲート電圧Vgを変化させてTPTをON、OFF+
− ソース信号vSを液晶及び補助容量に充電すも 第
2図に示すとおりTPTの○N電圧は14V,OFF電
圧は−7Vであ,&  TFTはO■でOFFできるよ
うに設計されており、OF’F電圧が−7■に設定して
あるのlよ 7VのOFFマージンを見込んだ設定であ
も しかし第2図に示す駆動信号を連続して印加していると
、OFFマージンが減少してくも つまり、TPTを実
際にOFFできる電圧レベルがマイナス側へシフトすも
 そして、ついには−7■よりも小さくなり、設定した
OFF電圧レベルではTPTをOFFできなくなってし
まう。こうなるとTPTのON時に充電された電荷を保
持でき哄 液晶にかかる電圧が低下してしま〜\ 正常
な表示ができなくなも これが液晶パネルを連続駆動した場合のTPT特性の劣
化現象であも な抵 連続駆動によってTPTをONす
るための電圧レベルはほとんど変化しなへ このようなTPTのOFF特性劣化を調べる尺度として
Vg(−)を次のように定義した液晶パネルを最大透過
状態とL,VgのOFF電圧レベルをマイナス側からプ
ラス側に変化させた線 画像に影響を与えない最低の電
圧値をVg(−)としfあ Vg(−)がマイナス側へ
シフトlA −7Vよりも低くなってしまうとTPTを
完全にOFFすることができなくなり、輝度低下が起こ
も 第2図の駆動波形を連続して加えた場合のVg(−)の
シフトはイミド化率と関係があり、イミド化率が高くな
るほどシフト量が小さくなる傾向があも しかし芳香族系のジアミン戊分からなるポリイミドでは
イミド化率lOO%の場合においてL 連続駆動によっ
てVg(−)は−7vより小さくなってしま(\ 信頼
性上問題であも 以下に実施例と比較例を挙げて、本発明をより詳細に説
明すも 実施例l 配向膜に下記構造式のテトラカルボン酸二無水物成分と
ジアミン成分からなる全芳香族系ポリイミドAを用いt
ら ポリイミ ドAの酸二無水物成分 まf,TPT付きの基板上に下層膜としてポリイミドA
のイミド化率が95%の膜(250℃で焼或)を印刷法
によってIOOOA厚に形威しさらにその上に同じくポ
リイミドAのイミド化率60%の膜(170℃で焼或)
を印刷法によって1000A厚に形成しtラ  ラビン
グによる配向処理を行い上記の液晶パネルを作製した 
対向電極上の配向膜にもポリイミドAのイミド化率60
%の膜を用いtも この液晶パネルを60℃で10時間連続駆動したときの
Vg(−)を調べtも また 液晶パネルの電圧無印加の状態と電圧印加による
最大透過状態の表示コントラスト(フォトマルチプライ
ヤーの光電流の出力比)も測定し表lに示した 比較例1 配向膜としてTFT付きの基板上にポリイミドAのイミ
ド化率60%の膜を、印刷法によって1000A厚に形
戊しtも 実施例lと同様にして、60℃で10時間連続駆動した
ときのVg(−)およびコントラストを表1に示しtも 比較例2 配向膜としてTFT付きの基板上に ポリイミドAのイ
ミド化率95%の膜を、印刷法によって1000A厚に
形成し九 実施例1と同様にして、 60℃で10時間連続駆動し
たときのVg(−)およびコントラストを表1に示しt
ら 比較例3 配向膜としてTPT付きの基板上に ポリイミドAのイ
ミド化率が60%の膜を印刷法によって100OA厚に
形成し さらにその上に同じくポリイミドAのイミド化
率95%の膜を印刷法によってIOOOA厚に形成し九
 ラビングによる配向処理を行い上記の液晶パネルを作
製し丸砥 対向電極上の配向膜にもポリイミドAのイミ
ド化率60%の膜を用い九 これは対向基板にカラーフ
ィルタが形成されているたべ ポリイミドの焼或温度を
高くすることがでず、イミド化率を高くできないためで
あも 一般に カラーフィルタの耐熱温度は200℃以
下なので、あまり高イミド化率を得ることはできな(ち 比較例2においても同様に 対向電極上の膜のイミド化
率は60%であも 以下余白 表 1 表1より、比較例lのイミド化率が低い膜の単層構成で
1よ コントラストは高い力<.Vg(−)が非常に小
さくなっており、TPTのOFF特性劣化が大きいこと
がわかん 一X  比較例2のイミド化率が高い膜の単層構成で(
よ 比較例1とは逆にVg(−)のシフトは小さい力t
 液晶配向性が悪いために コントラストが低くなって
いも これらに対して実施例1の配向膜2層構成のパネルでG
友 Vg(−)、コントラストともに良好な値を示しt
ら ところ力曳 実施例1と逆の2層構成にした比較例3で
(&Vg(−)、コントラストともに悪くなっていも また 液晶に接する配向膜のイミド化率がTFT付き基
板側と対向基板側で異なる比較例2及び3のパネルで(
よ 液晶と配向膜界面の性質の違いによると考えられる
内部電場が発生しtラ  このためフリッカや輝度低下
が起こっtも このような現象{上 組或の異なるポリイミドを用いた
場合も発生するの弘 液晶に接する配向膜+友 TFT
付き基板側と対向基板側で同一組磁同一イミド化率にす
ることが好ましL〜このように配向膜{よ 液晶配向t
.TFTのOFF特性劣化だけでなく、パネルの非対称
性負液晶パネルの誘電損失などにも関係していもこれら
についてL 要求される特性を配向膜単層構成で満足す
ることは非常に難しL〜本発明の配向膜積層構成(よ 
このような問題の解決において鯨 非常に効果的である
The liquid crystal display mode uses a negative type TN mode that blocks light when no voltage is applied. Figure 1 shows the equivalent circuit of one pixel of the liquid crystal panel used in the example and comparative example.
Figure 2 shows the drive voltage waveform of the gate line.The TPT is turned on and off by changing the gate voltage Vg.
- Charge the source signal VS to the liquid crystal and auxiliary capacitor.As shown in Figure 2, the TPT's ○N voltage is 14V, the OFF voltage is -7V, and the &TFT is designed to be turned off at 0■. The OFF'F voltage is set to -7■.If the setting allows for an OFF margin of 7V, but if the drive signal shown in Figure 2 is continuously applied, the OFF margin will decrease. In other words, although the voltage level at which the TPT can actually be turned off shifts to the negative side, it eventually becomes smaller than -7■, and the TPT cannot be turned off at the set OFF voltage level. If this happens, the charge charged when the TPT is turned on will not be retained, and the voltage applied to the liquid crystal will drop~\ Normal display may no longer be possible, but this may be due to the deterioration of the TPT characteristics when the liquid crystal panel is continuously driven. The voltage level for turning on the TPT hardly changes due to continuous driving of the resistor.As a measure to investigate the deterioration of the OFF characteristic of the TPT, the liquid crystal panel with Vg(-) defined as follows is set to the maximum transmission state and L. , a line that changes the OFF voltage level of Vg from the negative side to the positive side. The lowest voltage value that does not affect the image is Vg (-). Vg (-) shifts to the negative side lA lower than -7V If this happens, the TPT cannot be completely turned off, and even if the brightness decreases, the shift in Vg (-) when the drive waveform shown in Figure 2 is continuously applied is related to the imidization rate. The higher the imidization rate, the smaller the shift amount.However, in polyimide made of aromatic diamine, when the imidization rate is lOO%, Vg(-) becomes smaller than -7V due to L continuous driving ( \ Even though there is a problem with reliability, the present invention will be explained in more detail by giving Examples and Comparative Examples below. Using wholly aromatic polyimide A,
The acid dianhydride component of polyimide A was added as a lower layer film on a substrate with TPT.
A film with an imidization rate of 95% (sintered at 250°C) was formed to a thickness of IOOOA by a printing method, and then a film of polyimide A with an imidization rate of 60% (sintered at 170°C) was formed on top of it.
was formed to a thickness of 1000A by a printing method, and subjected to alignment treatment by rubbing to produce the above liquid crystal panel.
The imidization rate of polyimide A is also 60 for the alignment film on the counter electrode.
% film was used, and Vg(-) was investigated when this liquid crystal panel was driven continuously at 60°C for 10 hours. Comparative Example 1 A film with an imidization rate of 60% of polyimide A was formed on a substrate with a TFT as an alignment film to a thickness of 1000A by a printing method. Table 1 shows Vg(-) and contrast when continuously driven at 60°C for 10 hours in the same manner as in Example 1. Comparative Example 2 Polyimide A was imidized on a substrate with TFT as an alignment film. Table 1 shows the Vg(-) and contrast when a film with a 95% yield was formed to a thickness of 1000A by a printing method and continuously driven at 60°C for 10 hours in the same manner as in Example 1.
Comparative Example 3: A film with a polyimide A imidization rate of 60% was formed to a thickness of 100 OA by a printing method on a TPT-equipped substrate as an alignment film, and then a polyimide A film with an imidization rate of 95% was printed on top of it. The above liquid crystal panel was fabricated by alignment treatment by rubbing, and a film with an imidization ratio of polyimide A of 60% was used for the alignment film on the counter electrode. This is because it is not possible to increase the baking temperature of the polyimide in which the filter is formed, and the imidization rate cannot be increased.Generally, the heat resistance temperature of color filters is 200℃ or less, so it is difficult to obtain a high imidization rate. (Similarly in Comparative Example 2, the imidization rate of the film on the counter electrode is 60%. 1. The contrast is very small for high force <.Vg(-), which indicates that the OFF characteristic deterioration of TPT is large.
Contrary to Comparative Example 1, the shift of Vg(-) is caused by a small force t.
Even though the contrast is low due to poor liquid crystal alignment, the panel with the two-layer alignment film structure of Example 1 has a G
Both Vg(-) and contrast showed good values.
In Comparative Example 3, which had a two-layer structure opposite to Example 1, even though the contrast was poor (&Vg(-)), the imidization rate of the alignment film in contact with the liquid crystal was different between the TFT-equipped substrate side and the counter substrate side. In the panels of Comparative Examples 2 and 3, which differ in (
An internal electric field is generated, which is thought to be due to the difference in the properties of the interface between the liquid crystal and the alignment film.This causes flicker and a decrease in brightness.Similar phenomena also occur when polyimides of different compositions are used. Hiroshi Alignment film in contact with liquid crystal + friend TFT
It is preferable to make the same imidization rate of the same magnet on the side of the attached substrate and the side of the counter substrate.
.. It is extremely difficult to satisfy the required characteristics with a single layer structure of alignment film, even though it is related not only to the deterioration of the OFF characteristics of TFTs but also to the asymmetric nature of the panel and the dielectric loss of negative liquid crystal panels. Inventive alignment film laminated structure (like
Whales are very effective in solving such problems.

これらの結果かぺ 実施例1の配向膜構戊が優れている
ことが明かであも 実施例1ではイミド化率が60%及び95%の場合につ
いて例を示した力丈 一般にイミド化率が高い膜を下層
に設1ナ、イミド化率の低い膜を上層に設けることス 
良好な特性が得られも実施例2 配向膜に下記構造式の芳香族系テトラカルボン酸二無水
物成分と非芳香族系ジアミン成分からなるポリイミドB
を用い氾 ポリイミドBの酸二無水物成分 ポリイミ ドBのジアミン戊分 ま−i  TFT付きの基板上に下層膜としてポリイミ
ドBのイミド化率が90%の膜を印刷法によってIOO
OA厚に形成し さらにその上に実施例lで用いたポリ
イミドAのイミド化率60%の膜を印刷法によってIO
OOA厚に形成したラビングによる配向処理を行い上記
の、液晶パネルを作製しtも 対向電極上の配向膜にもポリイミドAのイミド化率60
%の膜を用いtも この液晶パネルを60℃で10時間連続駆動したときの
Vg(−)を調べtも また 液晶パネルの電圧無印加の状態と電圧印加による
最大透過状態の表示コントラスト(フォトマルチブライ
ヤーの光電流の出力比〉も測定し表2に示しtも 比較例4 配向膜としてTFT付きの基板上に ポリイミドBのイ
ミド化率90%の膜を、印刷法によって1000A厚に
形成しtも 実施例2と同様にして、 60℃で10時間連続駆動し
たときのVg(−)およびコントラストを表2に示しt
ら 実施例3 配向膜としてTFT付きの基板上に 下記の非芳香族系
テトラカルボン酸二無水物成分と芳香族系ジアミン成分
からなるポリイミドCのイミド化率100%の膜を、印
刷法によってIOOOA厚に形戒しtも ボリイミ ドCの酸二無水物成分 さらにその上に実施例1で用いたポリイミドAのイミド
化率60%の膜を、印刷法によって100OA厚に形成
しtも 実施例2と同様にして、60℃で10時間連続駆動した
ときのVg(−)およびコントラストを表2に示しtも 表  2 表2より、非芳香族系のジアミン成分を含有するポリイ
ミドBの単層構成の比較例4で+’i’rFTのOFF
特性劣化防止に対して非常に効果的であることがわかも しかしこの場合k 単層構成では液晶配同性が充分でな
く、コントラストが低(〜 実施例2のように2層構成とすることでTPTのOFF
特性劣化防止 液晶配向性をともに満足できも これ(友 実施例3においても同様であもここで注目す
べきこと(上 実施例2において非芳香族系のジアミン
成分を含有するポリイミドBを下層膜に用いた場合、T
PTのOFF特性劣化の程度が実施例1及び実施例3に
比べて、とくに小さくなっていることであも この結果
より、下層膜への非芳香族系のジアミン成分を含有する
ポリイミドの使用<&TPTのOFF特性劣化の防止に
とくに効果的であることがわかん ここでは具体的な実施例として、非芳香族系のジアミン
成分に脂環式ジアミン、とくにシクロヘキサン環を含む
例を示しtも  しかし シクロヘキサン環以外の脂環
式ジアミン、または鎖式脂肪族ジアミンでも同様にTP
TのOFF特性劣化の防止に効果があも また 配向膜用ポリイミドは基板との接着性を向上させ
るさせる目的等のために シリコンを含む非芳香族系の
ジアミンを共重合させることが多L〜 このようなジア
ミンも非芳香族系であるので、TPTのOFF特性劣化
の防止に効果があも そして、目的に応じて、その他の
戒分との共重合化も 混合も可能であも 非芳香族ジアミンを用いた場合、一般にガラス転移温度
が低下する傾向があり、低温焼戊で高イミド化率が達或
できも 従って、TPTのOFF特性劣化の防止に対し
て大きな効果が得られも急 非芳香族系ジアミン戒分を
ふくむポリイミドを配向膜に用いてL イミド化率が低
い場合はやはりTPTのOFF特性劣化防止の効果は充
分とはいえなし〜 液晶配向の安定性等の観点からも少
なくとも50%以上のイミド化率で使用することが好ま
しItち さらに 接着性等の改善などの目的のために第3番目の
層を設けることも可能であり、その場合にも本発明の効
果《よ なんら損なわれることはなもち 発明の効果 本発明のアクティブマトリクス型液晶表示パネル{上 
画素ごとにスイッチング素子を設けた基板上に形成され
た液晶配向膜を、構ゑ 組或またはイミド化率の少なく
ともいずれかが異なるポリイミド膜Q 少なくとも2層
構成としたものであるた&  TPTのOFF特性劣化
を防止し かつ液晶配同性も良好なアクティブマトリク
ス型液晶表示パネルを提供できる。
These results show that although it is clear that the alignment film structure of Example 1 is superior, in Example 1, examples are shown for cases where the imidization rate is 60% and 95%. A film with a high imidization rate is provided in the lower layer, and a film with a low imidization rate is provided in the upper layer.
Although good properties were obtained, Example 2 Polyimide B consisting of an aromatic tetracarboxylic dianhydride component and a non-aromatic diamine component having the following structural formula was used as the alignment film.
Using the acid dianhydride component of polyimide B, the diamine of polyimide B is separated using IOO as a lower layer film on a substrate with TFT by a printing method.
A film of 60% imidization rate of polyimide A used in Example 1 was formed on the OA thickness by a printing method.
The above-mentioned liquid crystal panel was manufactured by performing alignment treatment by rubbing formed to OOA thickness, and the imidization rate of polyimide A was 60 in the alignment film on the counter electrode.
% film was used, and Vg(-) was investigated when this liquid crystal panel was driven continuously at 60°C for 10 hours. The photocurrent output ratio of the multi-briar was also measured and shown in Table 2. Comparative Example 4 A film with an imidization rate of 90% of polyimide B was formed to a thickness of 1000A by a printing method on a substrate with a TFT as an alignment film. Table 2 shows Vg(-) and contrast when t was continuously driven at 60°C for 10 hours in the same manner as in Example 2.
Example 3 A film with an imidization rate of 100% of polyimide C consisting of the following non-aromatic tetracarboxylic dianhydride component and aromatic diamine component was coated with IOOOA by a printing method on a substrate equipped with a TFT as an alignment film. Regarding the thickness, a film of 60% imidization rate of polyimide A used in Example 1 was formed on top of the acid dianhydride component of polyimide C to a thickness of 100 OA using a printing method. Table 2 shows Vg(-) and contrast when continuously driven at 60°C for 10 hours in the same manner as t. +'i'rFT OFF in Comparative Example 4
However, in this case, the single-layer structure does not have sufficient liquid crystal conformation and the contrast is low (~ By using a two-layer structure as in Example 2, TPT OFF
Prevention of property deterioration Even if the liquid crystal orientation is satisfied, it is also the same in Example 3, but it should be noted here (Above) In Example 2, polyimide B containing a non-aromatic diamine component was used as the lower layer. When used in T
The degree of deterioration in the OFF characteristics of PT is particularly small compared to Examples 1 and 3. From these results, it is clear that the use of polyimide containing a non-aromatic diamine component in the lower layer film is &TPT is found to be particularly effective in preventing deterioration of the OFF characteristics.Here, as a specific example, we will show an example in which the non-aromatic diamine component contains an alicyclic diamine, particularly a cyclohexane ring. Similarly, TP can be applied to alicyclic diamines other than rings or chain aliphatic diamines.
Polyimide for alignment films is often copolymerized with non-aromatic diamines containing silicon to improve adhesion to the substrate. Since such diamines are also non-aromatic, they are effective in preventing deterioration of the OFF characteristics of TPT.Also, depending on the purpose, copolymerization or mixing with other substances is possible, but they are non-aromatic. When group diamines are used, the glass transition temperature generally tends to decrease, and a high imidization rate can be achieved by low-temperature annealing. If a polyimide containing a non-aromatic diamine is used as an alignment film and the L imidation rate is low, the effect of preventing the deterioration of TPT's OFF characteristics cannot be said to be sufficient. Also from the viewpoint of stability of liquid crystal alignment, etc. It is preferable to use it at an imidization rate of at least 50%.Furthermore, it is also possible to provide a third layer for the purpose of improving adhesion, etc., and the effects of the present invention can also be achieved in that case. 《The effects of the invention are not impaired in any way.《The active matrix type liquid crystal display panel of the present invention
The liquid crystal alignment film formed on the substrate provided with a switching element for each pixel has a polyimide film Q having at least two layers with different configurations or imidization rates.& TPT OFF It is possible to provide an active matrix liquid crystal display panel that prevents characteristic deterioration and has good liquid crystal coordination.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例に用いた液晶パネルの一画素の等価回路
& 第2図はゲートラインの駆動電圧波形Vgのパルス
印加状態込
Figure 1 shows the equivalent circuit of one pixel of the liquid crystal panel used in the example, and Figure 2 shows the pulse application state of the gate line drive voltage waveform Vg.

Claims (3)

【特許請求の範囲】[Claims] (1)画素ごとにスイッチング素子を設けた基板上に形
成された液晶配向膜が、構造、組成またはイミド化率の
少なくともいずれかが異なるポリイミド膜の少なくとも
2層構成であることを特徴とするアクティブマトリクス
型液晶表示パネル。
(1) An active liquid crystal alignment film formed on a substrate provided with a switching element for each pixel is composed of at least two layers of polyimide films having different structures, compositions, or imidization rates. Matrix type liquid crystal display panel.
(2)スイッチング素子に近い下層膜が上層膜よりも高
イミド化率であることを特徴とする特許請求の範囲1項
に記載のアクティブマトリクス型液晶表示パネル。
(2) The active matrix liquid crystal display panel according to claim 1, wherein the lower layer film close to the switching element has a higher imidization rate than the upper layer film.
(3)スイッチング素子に近い下層膜がポリイミドの構
成単位の一つであるジアミン成分として非芳香族系のジ
アミンを含有するポリイミドで形成されていることを特
徴とする特許請求の範囲1項に記載のアクティブマトリ
クス型液晶表示パネル。
(3) The lower layer film close to the switching element is formed of polyimide containing a non-aromatic diamine as a diamine component which is one of the structural units of polyimide. active matrix type liquid crystal display panel.
JP19296089A 1989-07-25 1989-07-25 Active matrix type liquid crystal display panel Expired - Fee Related JP2605407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19296089A JP2605407B2 (en) 1989-07-25 1989-07-25 Active matrix type liquid crystal display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19296089A JP2605407B2 (en) 1989-07-25 1989-07-25 Active matrix type liquid crystal display panel

Publications (2)

Publication Number Publication Date
JPH0355523A true JPH0355523A (en) 1991-03-11
JP2605407B2 JP2605407B2 (en) 1997-04-30

Family

ID=16299897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19296089A Expired - Fee Related JP2605407B2 (en) 1989-07-25 1989-07-25 Active matrix type liquid crystal display panel

Country Status (1)

Country Link
JP (1) JP2605407B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111514A (en) * 1996-10-04 1998-04-28 Nissan Chem Ind Ltd Forming method of liquid crystal orienting film
JP2000047212A (en) * 1998-07-29 2000-02-18 Matsushita Electric Ind Co Ltd Liquid crystal display panel and its production
WO2010061491A1 (en) * 2008-11-27 2010-06-03 シャープ株式会社 Orientation film, liquid crystal display having orientation film, and method for forming orientation film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269318A (en) * 1989-04-11 1990-11-02 Citizen Watch Co Ltd Production of oriented film for ferroelectric liquid crystal element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269318A (en) * 1989-04-11 1990-11-02 Citizen Watch Co Ltd Production of oriented film for ferroelectric liquid crystal element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111514A (en) * 1996-10-04 1998-04-28 Nissan Chem Ind Ltd Forming method of liquid crystal orienting film
JP2000047212A (en) * 1998-07-29 2000-02-18 Matsushita Electric Ind Co Ltd Liquid crystal display panel and its production
WO2010061491A1 (en) * 2008-11-27 2010-06-03 シャープ株式会社 Orientation film, liquid crystal display having orientation film, and method for forming orientation film
JP5198580B2 (en) * 2008-11-27 2013-05-15 シャープ株式会社 Alignment film, liquid crystal display device having alignment film, and method of forming alignment film
US8597739B2 (en) 2008-11-27 2013-12-03 Sharp Kabushiki Kaisha Orientation film, liquid crystal display having orientation film, and method for forming orientation film

Also Published As

Publication number Publication date
JP2605407B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
US6344889B1 (en) Liquid crystal display and method of manufacturing the same
JP5986720B2 (en) Liquid crystal display
US6177968B1 (en) Optical modulation device with pixels each having series connected electrode structure
US5666217A (en) Liquid crystal device
JP2001281671A (en) Liquid crystal display device
JPH0731326B2 (en) Liquid crystal display
JP2743460B2 (en) Liquid crystal cell alignment agent
JP2003026918A (en) Material for oriented liquid crystal film, liquid crystal display element, process for producing it and liquid crystal display device
JP2003005187A (en) Liquid crystal display device
JPH0355523A (en) Active matrix type liquid crystal display panel
JPH0344625A (en) Active matrix type liquid crystal display panel
JPH03200219A (en) Liquid crystal element
JPH1138415A (en) Liquid crystal display element
JPH05341292A (en) Liquid crystal oriented film and liquid crystal display element
JP2002040437A (en) Liquid crystal display panel
JPH02171721A (en) Liquid crystal display device
JP4519691B2 (en) Liquid crystal display panel and liquid crystal display device including the same
KR20070060258A (en) Liquid crystal display
KR20120091886A (en) Liquid crystal display
JPS6365423A (en) Field effect type liquid crystal display panel
JPH0457028A (en) Active matrix type liquid crystal device
JPH0633059A (en) Liquid crystal display element and method for driving the same
JPS61186932A (en) Liquid crystal element
JP2001188233A (en) Liquid crystal display device
JPH09311315A (en) Ferroelectric liquid crystal element and ferroelectric liquid crystal material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees