JPH0355464B2 - - Google Patents

Info

Publication number
JPH0355464B2
JPH0355464B2 JP59214399A JP21439984A JPH0355464B2 JP H0355464 B2 JPH0355464 B2 JP H0355464B2 JP 59214399 A JP59214399 A JP 59214399A JP 21439984 A JP21439984 A JP 21439984A JP H0355464 B2 JPH0355464 B2 JP H0355464B2
Authority
JP
Japan
Prior art keywords
toluenesulfonyl
phenylglycine
amino acids
cuso
mobile phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59214399A
Other languages
Japanese (ja)
Other versions
JPS6193145A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59214399A priority Critical patent/JPS6193145A/en
Publication of JPS6193145A publication Critical patent/JPS6193145A/en
Publication of JPH0355464B2 publication Critical patent/JPH0355464B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Indole Compounds (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアミノ酸エナンチオマー(左右像)の
クロマトグラフイーによる分離法に係るもので、
従来高速液体グロマトグラフイーによる、アミノ
酸エナンチオマーを分離する方法としては、クロ
マトグラフイーにかける前段階でアミノ酸をジア
ステレオマー(立体異性体)へ変える方法と、キ
ラル固定相又はキラル試薬を含んだ移動相を利用
する方法とがあつた。本発明は後者に属するもの
であるが、従来法である前者はクロマトグラフイ
ーによる分離に先立つて、アミノ酸をジアステレ
オメリツクな誘導体にする必要があり、この誘導
体化操作の煩雑さのために、定量性等が問題とな
る場合が多い。また分離に際しては、ほとんどの
場合、移動相に有機溶媒を用いる順相クロマトグ
ラフイーによらなければならない。後者の場合、
従来法としては、プロリン−銅コンプレツクスを
移動相として用いる方法があるが、プロリンやヒ
ドロキシプロリンを検出することは不可能であ
る。また、アスパルテイルシクロヘキシルイミド
と銅を用いる従来法では、試薬自身が、第一級ア
ミノ基を有しているため、ニンヒドリン法やo−
フタルアルデヒド法などの、高感度検出法を適用
することは出来ないものであつた。又従来方法と
して特開昭57−176936号の如く、N−(p−トル
エンスルホニル)−L−フエニルアラニンを用い
たものが存在するが、この方法ではDL体のアラ
ニンの分離能があまりよくないものであつた。例
えば同上特開昭57−176936号公報の第3図で示す
分離状態では、D−アラニンとL−アラニンの分
離が必ずしも明確ではない欠点を有し、またDL
−セリンやDL−グルタミンの分離は困難なもの
であつた。 本発明は従来法における上述の如き欠点を除去
した、アミノ酸エナンチオマーのクロマトグラフ
イーによる分離方法に係るもので、逆相カラムを
用い移動相にキラル試薬であるN−(p−トルエ
ンスルホニル)−D−フエニルグリシン及び CuSO4・5H2Oを含ませてD及びL−アミノ酸を
分離するものであつて、N−(p−トルエンスル
ホニル)−D−フエニルグリシンは分離後、従来
遊離アミノ酸の微量検出に使われていた、オルト
フタルアルデヒドを検出試薬としてそのまま使用
でき、ピコモル(10-12mole)単位までの検出を
可能としたものである。また本キラル試薬はニン
ヒドリン反応には陰性であるため、検出にo−フ
タルアルデヒド法のかわりにニンヒドリン法を組
み合すことにより、プロリン及びヒドロキシプロ
リンのような第二級アミノ基を有するアミノ酸の
検出も可能となつている。N−(p−トルエンス
ルホニル)−D−フエニルグリシンは移動相に加
えるだけでラセミ型アミノ酸を分離でき、しかも
一級アミノ基をもつアミノ酸と反応するオルトフ
タルアルデヒドを検出試薬として使用する事がで
きる。。尚この使用に於いてはN−(P−トルエン
スルホニル)−D−フエニルグリシン試薬がアル
カリ性のため銅イオンの沈澱を生じるが、これは
試薬中へエチレンジアミン四酢酸ニナトリウムを
加える事により防止が可能となる。この方法によ
りアミノ酸のピコモル単位までの検出を行なう事
ができる。移動相中に於けるN−(p−トルエン
スルホニル)−D−フエニルグリシンと、 CuSO4・5H2Oイオンは、下記構造図に示す如
く、一種の二成分錯体、[(N−(p−トルエンス
ルホニル)−D−フエニルグリシン)2CuSO4
5H2O]であると思慮される。 又遊離アミノ酸、N−(p−トルエンスルホニ
ル)−D−フエニルグリシン及びCuSO4・5H2O
は三成分錯体をつくるものと考えられ、D型とL
型のアミノ酸は下記の如く異なつた立体構造をも
つ錯体ができると考えられる。この際、D−アミ
ノ酸を含む錯体はトランス体であり、L−アミノ
酸を含むシス錯体に比べより安定であり、クロマ
トグラフイーではより強く保持されることを意味
するものと考えられる。 N−(p−トルエンスルホニル)−D−フエニル
グリシン及びCuSO4・5H2O−Dアミノ酸 N−(p−トルエンスルホニル)−D−フエニル
グリシン及びCuSO4・5H2O−Lアミノ酸。この
分子モデルは、D−異性体よりも速くL−アミノ
酸が溶出される事実によつて説明できる。又アミ
ノ酸には、後に説明する如く、移動性の違いが生
じるが、この違いはシリカゲル上に結合されたn
−オクチル残基と、アミノ酸のα−炭素上の置換
アルキル基との間の、疎水性および立体的相互関
係の違いに基づくものと思われる。従つてより高
い疎水性アルキル置換基をもつたアミノ酸は、低
い疎水性のアルキル置換基をもつアミノ酸よりも
長時間カラムに保持される結果となつた。又炭素
原子数が等しい異性体の場合には、枝分かれした
側鎖をもつたアミノ酸である。バリンやロイシン
が直鎖上の側鎖をもつたノルバリンやノルロイシ
ンよりも速く溶出される。 またN−(p−トルエンスルホニル)−D−フエ
ニルグリシンの合成方法は下記成分を下記の手順
に従つて合成することによつて行なうことができ
る。 D−フエニルグリシン 3.0wt% 水 71.3wt% テトラヒドロフラン 14.1wt% トリエチルアミン 5.9wt% パラトルエンスルホニルクロリド 5.7wt% まずD−フエニルグリシン3.0wt%と 水31.7wt%、テトラヒドロフラン14.1.wt%とを
混合した後、冷却水にて冷却する。この冷却継続
中に、トリエチルアミン5.9wt%を加え、次にパ
ラトルエンスルホニルクロリド5.7wt%を30分の
間に少しづつ加え、更に90分の撹拌を行なう。次
に常温下でテトラヒドロフランの臭が気にならな
い程度まで蒸発を行なつた後に、残りの水39.6wt
%を加える。次にエーテルにより洗浄を行ない、
過剰のパラトルエンスルホニルクロリドおよびパ
ラトルエンスルホン酸を抽出除去した後、希塩酸
を加えPH3〜4にすることにより結晶が生じる。
この結晶を、メタノールと水の80wt%対20wt%
の液中で再結晶させることにより、N−(p−ト
ルエンスルホニル)−D−フエニルグリシンを得
ることができる。 本発明は以上の如く、上記製造方によるN−
(p−トルエンスルホニル)−D−フエニルグリシ
ンを、移動相として用いる事により、N−(p−
トルエンスルホニル)−D−フエニルグリシンは、
従来のN−(p−トルエンスルホニル)−L−フエ
ニルアラニンを用いる方法に比べ、アミノ酸の光
学分割における不斎識別を、より高効率にする目
的で開発された。キラルな配位子と金属イオンと
を添加する方法では、、クロマトグラフ過程にお
ける配位子交換を利用して、目的である光学対掌
体の不斎を区別するため、この配位子交換の際の
立体選択性を向上させる工夫を行なうことによ
り、分割能を大きくさせることができる。N−
(p−トルエンスルホニル)−D−フエニルグリシ
ンはN−(p−トルエンスルホニル)−D−フエニ
ルアラニンに比べ、メチレン基が1つ少ない構造
であるため、配位子交換に伴なつて形成される二
成分(binary)或は、三成分(ternary)の錯体
の銅イオンを中心とする面に対し、フエニル基が
N−(p−トルエンスルホニル)−D−フエニルグ
リシンでは直接、N−(p−トルエンスルホニル)
−D−フエニルアラニンでは、メチレン基を介し
て結合した構造をとつていることが推測される。
従つてN−(p−トルエンスルホニル)−D−フエ
ニルグリシンを用いた場合の方が、錯体の立体化
学的自由度が低下し、このため配位子交換の際の
立体選択性が高くなる。事実、N−(p−トルエ
ンスルホニル)−D−フエニルグリシンを用いた
場合、N−(p−トルエンスルホニル)−D−フエ
ニルアラニンを用いたとき、分割不可能であつた
D、L−グルタミンが、完全分割された他多くの
アミノ酸について分割効率の向上がみられた。 以下本発明の具体的実施例について説明する。 まず試薬について、 移動相にはN−(p−トルエンスルホニル)−D−
フエニルグリシンとCuSO4・5H2O(二価の銅イ
オン)を、2:1の分子比で含むアセトニトリル
−水系を用いた。移動相のPHは炭酸ナトリウム水
溶液で調整した。オルトフタルアルデヒド試薬に
はエチレンジアミン四酢酸ニナトリウムが2.5
g/となるようにふくまれている。 次にクロマトグラフシステムについて、移動相
とポストカラム試薬(この場合にはオルトフタル
アルデヒド試薬)はポンプを用いて 1.0ml/minの定速で流した。又充填材としては
化学的に結合したn−オクチルシリルシリカゲル
のうち、未反応のシラノール基をトリメチルシラ
ンでマスクして用いた。これを10cm×4.0mmI.Dの
ステンレススチール製カラムに、スラリ一方で充
填した。この充填カラムを30℃または80℃に保温
してクロマトグラフイーを行なつた。カラム溶出
液はT字型多技管を用いてオルトフタルアルデヒ
ト試薬と混ぜあわせ、50cm×0.5mmI.Dのテフロン
チユーブ製反応コイル中で反応させた。溶出物の
蛍光強度は分光蛍光モニターを用いて340ナノメ
ーターで蛍光を励起させ、455ナノメーターで測
定した。 その結果は次の如きものであるが、説明の都合
上以下に使用する記号は、 K′=キヤパシテイー比 α=分離フアクター(相対保持力) R=分離能 を示している。これらの値は、移動相のPH、移動
相中のN−(p−トルエンスルホニル)−D−フエ
ニルグリシンおよびCuSO4・5H2O錯体や、アセ
トントリルの濃度により変化するものである。ま
たK′とαはPH5からPH7の範囲で高くなり、大
部分のアミノ酸はこのPHの範囲で分離が可能であ
る。但しアラニン、アスパラギン酸、グルタミン
酸、アスパラギンのラセミ体はPH6又はそれ以上
で分離が可能である。 第1表はキヤパシテイー比K′、分離フアクタ
ーα、フリーエネルギーの差(△△G°=−
RTlnα)およびアセトニトリル濃度の関係を示
すものである。移動相には1mMのN−(p−ト
ルエンスルホニル)−D−フエニルグリシン及び
0.5mMのCuSO4・5H2OをPH6.0として含む水溶
性にアセトニトリルを表示の通りのwt%で加え
たものを用いた。
The present invention relates to a method for separating amino acid enantiomers (left and right images) by chromatography.
Conventional methods for separating amino acid enantiomers using high-performance liquid chromatography include methods for converting amino acids into diastereomers (stereoisomers) prior to chromatography, and transfer using a chiral stationary phase or chiral reagent. There was a method using phase. The present invention belongs to the latter, but the former method, which is a conventional method, requires diastereomeric derivatives of amino acids prior to separation by chromatography, and this derivatization operation is complicated. , quantitative nature, etc. are often a problem. In most cases, separation must be performed by normal phase chromatography using an organic solvent as a mobile phase. In the latter case,
A conventional method uses a proline-copper complex as a mobile phase, but it is impossible to detect proline or hydroxyproline. In addition, in the conventional method using aspartyl cyclohexylimide and copper, the reagent itself has a primary amino group, so the ninhydrin method and o-
Highly sensitive detection methods such as the phthalaldehyde method could not be applied. Furthermore, as a conventional method, there is a method using N-(p-toluenesulfonyl)-L-phenylalanine, as disclosed in JP-A No. 57-176936, but this method has a poor ability to separate alanine in the DL form. It was something I didn't have. For example, the separation state shown in FIG. 3 of JP-A No. 57-176936 has the disadvantage that the separation of D-alanine and L-alanine is not always clear;
-Separation of serine and DL-glutamine was difficult. The present invention relates to a method for separating amino acid enantiomers by chromatography, which eliminates the above-mentioned drawbacks of conventional methods. - Phenylglycine and CuSO 4.5H 2 O are included to separate D and L-amino acids, and N-(p-toluenesulfonyl)-D-phenylglycine is conventionally separated from free amino acids after separation. Ortho-phthalaldehyde, which had been used for trace detection, can be used as is as a detection reagent, making it possible to detect down to picomole (10 -12 mole) units. Furthermore, since this chiral reagent is negative for ninhydrin reactions, it is possible to detect amino acids with secondary amino groups such as proline and hydroxyproline by combining the ninhydrin method instead of the o-phthalaldehyde method. is also becoming possible. N-(p-toluenesulfonyl)-D-phenylglycine can separate racemic amino acids just by adding it to the mobile phase, and orthophthalaldehyde, which reacts with amino acids with primary amino groups, can be used as a detection reagent. . . In addition, in this use, the N-(P-toluenesulfonyl)-D-phenylglycine reagent is alkaline and causes precipitation of copper ions, but this can be prevented by adding disodium ethylenediaminetetraacetate to the reagent. It becomes possible. This method allows detection of amino acids down to picomole units. N-(p-toluenesulfonyl)-D-phenylglycine and CuSO 4 .5H 2 O ion in the mobile phase are a kind of binary complex, [(N-(p -Toluenesulfonyl)-D-phenylglycine) 2 CuSO 4 .
5H 2 O]. Also free amino acids, N-(p-toluenesulfonyl)-D-phenylglycine and CuSO 4.5H 2 O
is thought to form a ternary complex, with D-type and L-type
It is thought that complexes with different tertiary structures can be formed with these types of amino acids as shown below. In this case, the complex containing the D-amino acid is a trans form, which is considered to mean that it is more stable and more strongly retained in chromatography than the cis complex containing the L-amino acid. N-(p-toluenesulfonyl)-D-phenylglycine and CuSO 4.5H 2 O-D amino acid N-(p-toluenesulfonyl)-D-phenylglycine and CuSO4.5H2O - L amino acids. This molecular model can be explained by the fact that the L-amino acid elutes faster than the D-isomer. Also, as explained later, there is a difference in the mobility of amino acids, and this difference is due to the n bonded on silica gel.
This appears to be due to the difference in hydrophobicity and steric interaction between the -octyl residue and the substituted alkyl group on the α-carbon of the amino acid. Therefore, amino acids with more hydrophobic alkyl substituents were retained on the column for longer periods of time than amino acids with less hydrophobic alkyl substituents. In the case of isomers having the same number of carbon atoms, they are amino acids with branched side chains. Valine and leucine elute faster than norvaline and norleucine, which have linear side chains. Furthermore, N-(p-toluenesulfonyl)-D-phenylglycine can be synthesized by synthesizing the following components according to the following procedure. D-phenylglycine 3.0wt% Water 71.3wt% Tetrahydrofuran 14.1wt% Triethylamine 5.9wt% Para-toluenesulfonyl chloride 5.7wt% First, 3.0wt% D-phenylglycine, 31.7wt% water, and 14.1wt% tetrahydrofuran are mixed. After that, cool it with cooling water. While this cooling continues, 5.9 wt% of triethylamine is added, then 5.7 wt% of para-toluenesulfonyl chloride is added little by little over 30 minutes, and stirring is continued for an additional 90 minutes. Next, after evaporating the tetrahydrofuran at room temperature until the odor is no longer noticeable, the remaining water is 39.6wt.
Add %. Next, wash with ether,
After extracting and removing excess para-toluenesulfonyl chloride and para-toluenesulfonic acid, dilute hydrochloric acid is added to adjust the pH to 3 to 4 to form crystals.
This crystal was mixed with 80wt% of methanol and 20wt% of water.
N-(p-toluenesulfonyl)-D-phenylglycine can be obtained by recrystallizing it in a liquid. As described above, the present invention provides N-
By using (p-toluenesulfonyl)-D-phenylglycine as the mobile phase, N-(p-
Toluenesulfonyl)-D-phenylglycine is
It was developed for the purpose of making the non-selective discrimination in the optical resolution of amino acids more efficient than the conventional method using N-(p-toluenesulfonyl)-L-phenylalanine. In the method of adding chiral ligands and metal ions, the ligand exchange during the chromatographic process is used to distinguish between the target optical enantiomers. The resolving power can be increased by taking measures to improve the stereoselectivity. N-
(p-Toluenesulfonyl)-D-phenylglycine has one less methylene group than N-(p-toluenesulfonyl)-D-phenylalanine, so it is formed as a result of ligand exchange. In the case of N-(p-toluenesulfonyl)-D-phenylglycine, the phenyl group is directly N- (p-toluenesulfonyl)
-D-phenylalanine is presumed to have a structure in which it is bonded via a methylene group.
Therefore, when N-(p-toluenesulfonyl)-D-phenylglycine is used, the degree of stereochemical freedom of the complex is lowered, and therefore the stereoselectivity during ligand exchange is higher. . In fact, when N-(p-toluenesulfonyl)-D-phenylglycine was used, when N-(p-toluenesulfonyl)-D-phenylalanine was used, the D,L- Glutamine was completely cleaved, and improvements in the cleavage efficiency of many other amino acids were observed. Specific examples of the present invention will be described below. First, regarding the reagents, the mobile phase contains N-(p-toluenesulfonyl)-D-
An acetonitrile-water system containing phenylglycine and CuSO 4 .5H 2 O (divalent copper ion) at a molecular ratio of 2:1 was used. The pH of the mobile phase was adjusted with an aqueous sodium carbonate solution. The orthophthalaldehyde reagent contains 2.5% disodium ethylenediaminetetraacetate.
It is included so that it becomes g/. Next, in the chromatographic system, the mobile phase and post-column reagent (ortho-phthalaldehyde reagent in this case) were flowed at a constant rate of 1.0 ml/min using a pump. As a filler, chemically bonded n-octylsilyl silica gel was used, with unreacted silanol groups masked with trimethylsilane. This slurry was packed into a 10 cm x 4.0 mm I.D stainless steel column. Chromatography was performed while keeping this packed column at 30°C or 80°C. The column eluate was mixed with an orthophthalaldehyde reagent using a T-shaped multi-tech tube, and reacted in a 50 cm x 0.5 mm I.D Teflon tube reaction coil. The fluorescence intensity of the eluate was measured using a spectrofluorescence monitor, with fluorescence excited at 340 nanometers and 455 nanometers. The results are as follows, and for convenience of explanation, the symbols used below indicate: K'=capacity ratio α=separation factor (relative retention power) R=separation power. These values vary depending on the pH of the mobile phase, the concentration of N-(p-toluenesulfonyl)-D-phenylglycine, CuSO 4 .5H 2 O complex, and acetonetrile in the mobile phase. Furthermore, K' and α become high in the PH5 to PH7 range, and most amino acids can be separated within this PH range. However, racemic forms of alanine, aspartic acid, glutamic acid, and asparagine can be separated at pH 6 or higher. Table 1 shows the capacity ratio K', the separation factor α, and the difference in free energy (△△G°=-
This shows the relationship between RTlnα) and acetonitrile concentration. The mobile phase contained 1mM N-(p-toluenesulfonyl)-D-phenylglycine and
An aqueous solution containing 0.5 mM CuSO 4 .5H 2 O at pH 6.0 to which acetonitrile was added at the indicated wt% was used.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図Aは、N−(p−トルエンスルホニル)−
D−フエニルアラニンおよびCuSO4・5H2O容離
剤を、また第1図BはN−(p−トルエンスルホ
ニル)−D−フエニルグリシンおよびCuSO4
5H2O溶離剤を用いたD.L−セリン、D.Lグルタミ
ンの分離状態を示すものであり、移動相にAは、
1mMの、N−(p−トルエンスルホニル)−D−
フエニルアラニンおよび0.5mMのCuSO4・5H2O
をPH6.0で用い、図中の各アミノ酸を0.25mM用
いた。またBには1mMの、N−(p−トルエン
スルホニル)−D−フエニルグリシンおよび0.5m
MのCuSO4・5H2OをPH6.0で用い、図中の各アミ
ノ酸を0.25mM用いた。この結果により本発明の
優れた分離能が明らかとなる。第2図はN−(P
−トルエンスルホニル)−D−フエニルグリシン
及びCuSO4・5H2O溶離剤を用いたD.L.アミノ酸
の分離状態を示すもので、カラムは30℃に保温
し、移動相には10%アセトニトリル、1mMのN
−(p−トルエンスルホニル)−D−フエニルグリ
シン、及び0.5mMのCuSO4・5H2OをPH6.0で用
い、図中の各アミノ酸を約0.5ナノモル注入した。
第3図はN−(p−トルエンスルホニル)−D−フ
エニルグリシン及びCuSO4・5H2O溶離剤を用い
たD.L.アミノ酸の分離状態を示すもので、カラム
は80℃に保温し、移動相に0.0075%Na2CO3、1
%アセトニトリル、1mMのN−(P−トルエン
スルホニル)−D−フエニルグリシンおよび0.5m
MのCuSO4・5H2Oを用い、図中の各アミノ酸を
0.5ナノモル注入した。
Figure 1A shows N-(p-toluenesulfonyl)-
D-phenylalanine and CuSO 4 .5H 2 O eluent, and FIG .
This shows the separation state of DL-serine and DL glutamine using 5H 2 O eluent, and A is the mobile phase.
1 mM of N-(p-toluenesulfonyl)-D-
Phenylalanine and 0.5mM CuSO4.5H2O
was used at pH 6.0, and each amino acid in the figure was used at 0.25 mM. B also contained 1mM of N-(p-toluenesulfonyl)-D-phenylglycine and 0.5mM of N-(p-toluenesulfonyl)-D-phenylglycine.
M CuSO 4 .5H 2 O was used at pH 6.0, and each amino acid in the figure was used at 0.25 mM. This result reveals the excellent separation ability of the present invention. Figure 2 shows N-(P
-Toluenesulfonyl)-D-phenylglycine and CuSO4.5H2O eluent.The column was kept at 30 , and the mobile phase was 10% acetonitrile, 1mM N
-(p-Toluenesulfonyl)-D-phenylglycine and 0.5 mM CuSO 4 .5H 2 O were used at pH 6.0, and about 0.5 nmole of each amino acid shown in the figure was injected.
Figure 3 shows the separation of DL amino acids using N-(p-toluenesulfonyl)-D-phenylglycine and CuSO 4.5H 2 O eluent. The column was kept at 80°C and the mobile phase to 0.0075% Na 2 CO 3 , 1
% acetonitrile, 1mM N-(P-toluenesulfonyl)-D-phenylglycine and 0.5mM
Using CuSO 4 5H 2 O of M, each amino acid in the figure is
0.5 nmole was injected.

Claims (1)

【特許請求の範囲】[Claims] 1 N−(p−トルエンスルホニル)−D−フエニ
ルグリシン及びCuSO4・5H2Oを移動相として用
い、アミノ酸エナンチオマーを逆相クロマトグラ
フイーにより分離する事を特徴とするアミノ酸エ
ナンチオマーのクロマトグラフイーによる分離
法。
1 Chromatography of amino acid enantiomers, characterized in that amino acid enantiomers are separated by reversed phase chromatography using N-(p-toluenesulfonyl)-D-phenylglycine and CuSO 4 .5H 2 O as a mobile phase. separation method.
JP59214399A 1984-10-15 1984-10-15 Method of separating amino acid enantiomer by chromatography Granted JPS6193145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59214399A JPS6193145A (en) 1984-10-15 1984-10-15 Method of separating amino acid enantiomer by chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59214399A JPS6193145A (en) 1984-10-15 1984-10-15 Method of separating amino acid enantiomer by chromatography

Publications (2)

Publication Number Publication Date
JPS6193145A JPS6193145A (en) 1986-05-12
JPH0355464B2 true JPH0355464B2 (en) 1991-08-23

Family

ID=16655141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59214399A Granted JPS6193145A (en) 1984-10-15 1984-10-15 Method of separating amino acid enantiomer by chromatography

Country Status (1)

Country Link
JP (1) JPS6193145A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005099855A1 (en) * 2004-04-07 2005-10-27 Waters Investments Limited Compositions and methods for separating enantiomers
CN103664670A (en) * 2012-09-06 2014-03-26 济南大学 Method for extracting and separating phenylalanine by using N-alkyl-L-phenylalanine methyl ester
CN104163770B (en) * 2013-05-16 2016-03-30 湖南理工学院 A kind of method adopting multistage centrifugal extractor extracting and separating 4-oil of mirbane glycine enantiomorph

Also Published As

Publication number Publication date
JPS6193145A (en) 1986-05-12

Similar Documents

Publication Publication Date Title
EP0057092B1 (en) Process for racemizing an optically active alpha-amino acid or a salt thereof
CN101970100B (en) Novel chiral selectors and stationary phases for separating enantiomer mixtures
US4851382A (en) Separation medium
EP0442584B1 (en) Process for the preparation of an optically active amino acid amide
EP0119804B1 (en) Novel method for optical resolution of dl-alpha-amino acid or (+)-alpha-phenylethanesulfonic acid
JPS592694A (en) Production of free alpha-amino acid
Hoffman et al. A simple, stereoselective synthesis of ketomethylene dipeptide isosteres
JPH0355464B2 (en)
Hemmi et al. Total synthesis of FK-156 isolated from a Streptomyces as an immunostimulating peptide: application of a novel copper chelate amino protection
JP3178831B2 (en) How to separate amino acids
JP3493206B2 (en) Process for producing optically active β-amino acids
EP0336818B1 (en) Process for refining amino acids
EP0302624B1 (en) A method for racemization of optically active serine
Yamazaki et al. Chiral Separation of Carboxymethyl Derivatives of Amines by Liquid Chromatography on Reversed‐phase Silica Gel Coated with N‐n‐Dodecyl‐L‐hydroxyproline
JP4548756B2 (en) Purification method of amino acid amide
Toyota et al. Chromatographic separation of diastereomeric schiff base copper (II), nickel (II), and zinc (II) chelates from α-amino acid racemates
JPH0558972A (en) Separation and purification of amino acid
JP3179512B2 (en) Penicillamine derivatives, chirality discriminating agents and separating agents
JP3663643B2 (en) Process for producing optically active 1- (2,4-dichlorophenyl) ethylamine
JP2629375B2 (en) Method for producing amino-protected dopa or dopa derivative
JPH0780822B2 (en) Method for separating and purifying amino acids
JPS6011023B2 (en) Chromatographic separation method of amino acid enantiomers
JP2565034B2 (en) Novel dopa derivative and its production method
Reißer et al. Conjugate Addition of Amidoalkyl Zinc-Copper Reagents to a Propyne Iminium Triflate
JPH01119339A (en) Filler for optical isomer separation