JPH0355126B2 - - Google Patents

Info

Publication number
JPH0355126B2
JPH0355126B2 JP58202118A JP20211883A JPH0355126B2 JP H0355126 B2 JPH0355126 B2 JP H0355126B2 JP 58202118 A JP58202118 A JP 58202118A JP 20211883 A JP20211883 A JP 20211883A JP H0355126 B2 JPH0355126 B2 JP H0355126B2
Authority
JP
Japan
Prior art keywords
phase difference
measurement
eye
target
measurement target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58202118A
Other languages
Japanese (ja)
Other versions
JPS6092732A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58202118A priority Critical patent/JPS6092732A/en
Publication of JPS6092732A publication Critical patent/JPS6092732A/en
Publication of JPH0355126B2 publication Critical patent/JPH0355126B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、眼の屈折力を他覚的に測定する眼屈
折力測定装置に関する。殊に、本発明は、測定タ
ーゲツトを被検眼の眼底に投影し、そのターゲツ
ト像の眼底における結像状態により眼屈折力を知
るようになつた眼屈折力測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an eye refractive power measurement device that objectively measures the refractive power of an eye. In particular, the present invention relates to an eye refractive power measuring device that projects a measurement target onto the fundus of an eye to be examined and determines the eye refractive power based on the state of formation of the target image on the fundus.

〔従来技術〕 従来の眼屈折力測定装置として、出願人が既に
特開昭58−15839号で提案したものがある。この
眼屈折力測定装置は、測定ターゲツトからの一対
の光束を選択的に被検眼眼底へ投影するための測
定ターゲツト投影光学系と、前記一対の光束を光
軸回りに回転させる手段とを有し、径線に沿つて
ターゲツトを投影して、該ターゲツトの該径線上
での結像状態を測定ターゲツト結像光学系により
検出し、その検出信号により前記一対の光束の中
心を含む径線方向での被検眼の屈折度に変換する
もので、構造が簡易化されまた測定速度が速い特
徴がある。
[Prior Art] As a conventional eye refractive power measuring device, there is one already proposed by the applicant in Japanese Patent Laid-Open No. 15839/1983. This eye refractive power measuring device includes a measurement target projection optical system for selectively projecting a pair of light beams from a measurement target onto the fundus of the eye to be examined, and means for rotating the pair of light beams around an optical axis. , a target is projected along the radial line, the imaging state of the target on the radial line is detected by a measurement target imaging optical system, and the detection signal is used to project the target on the radial line, and the detection signal is used to project the target on the radial line. This converts the refractive power of the subject's eye into the refractive power of the subject's eye.The structure is simplified and the measurement speed is fast.

〔従来技術の欠点〕[Disadvantages of conventional technology]

しかし、上記した眼屈折力測定装置は、被検者
がまばたきをする際に測定することを想定されて
いず、被検者が測定時にまばたきをしたときには
測定不能又は、誤測定の原因となるものであつ
た。
However, the above-mentioned eye refractive power measuring device is not designed to measure when the test subject blinks, and if the test subject blinks during measurement, it may be impossible to measure or may cause erroneous measurements. It was hot.

〔本発明の目的〕[Object of the present invention]

本発明は、前述したような、ターゲツト投影方
式の眼屈折力測定装置において、まばたきによる
誤測定を防止できるようにすることを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to prevent erroneous measurements caused by blinking in a target projection type eye refractive power measurement apparatus as described above.

〔発明の構成〕[Structure of the invention]

上記の目的を達成するため、本発明による眼屈
折力測定装置は、複数のターゲツトとターゲツト
からの光束を被検眼眼底の少なくとも4つの径線
方向へ投影するための測定ターゲツト投影光学系
と、眼底に投影された測定ターゲツト像からの光
束を結像させる測定ターゲツト結像光学系と、前
記結像光学系により結像されたターゲツト像位置
を2次元的に検出する検出装置と、前記検出装置
の出力から、前記少なくとも4つの径線方向の測
定位相差をそれぞれ演算する測定位相差演算手段
と、前記検出装置の出力に応じて近似位相差曲線
を演算し、近似位相差を求める近似位相差演算手
段と、各径線方向に応じた測定位相差と近似位相
差との差を求める偏差検出手段と、上記偏差検出
手段で検出した偏差を予め定められた最大許容偏
差とを比較する比較手段と、比較手段の出力が前
記最大許容偏差を越える偏差を示すときにこれに
対応する測定位相差を除いて眼屈折力の決定を行
なう手段とから構成される。
In order to achieve the above object, an eye refractive power measurement apparatus according to the present invention includes a plurality of targets, a measurement target projection optical system for projecting the light flux from the targets in at least four radial directions of the fundus of the eye to be examined, and a measurement target imaging optical system for forming a light beam from a measurement target image projected on a target image; a detection device for two-dimensionally detecting the position of the target image formed by the imaging optical system; measurement phase difference calculation means for calculating each of the measured phase differences in the at least four radial directions from the output; and approximate phase difference calculation for calculating an approximate phase difference curve according to the output of the detection device to obtain an approximate phase difference. means, deviation detection means for determining the difference between the measured phase difference and the approximate phase difference according to each radial direction, and comparison means for comparing the deviation detected by the deviation detection means with a predetermined maximum allowable deviation. , means for determining the eye refractive power by removing the corresponding measured phase difference when the output of the comparing means indicates a deviation exceeding the maximum allowable deviation.

本発明は測定ターゲツト投影方式であつて、こ
の測定ターゲツトの眼底上での少なくとも4径線
方向の結像位置を検出する型式に適用されるもの
であり、少なくとも、4つの測定ターゲツトを異
なる径線上に有し、この測定ターゲツトを光軸上
に移動させたときの移動前後のターゲツト像位置
変動量を検出し眼屈折力を求める形式にも、ある
いは測定ターゲツトを光軸中心に少なくとも4つ
の径線方向に回転させて各径線ごとのターゲツト
像位置を検出する形式にも適用できる。
The present invention is a measurement target projection method, which is applied to a type that detects the image formation position of the measurement target on the fundus in at least four radial directions. The measurement target may be moved along the optical axis, and the amount of change in the target image position before and after the movement is detected to determine the eye refractive power, or the measurement target may be moved along the optical axis along at least four radial lines. It can also be applied to a format in which the target image position is detected for each radial line by rotating the target image in the same direction.

以下、本発明の眼屈折力測定装置の測定原理を
図について説明する。第1図を参照すると、ター
ゲツトTと対物レンズ2とからなる測定ターゲツ
ト投影光学系が設けられ、ターゲツトTは、第1
図に実線および点線で示すように分離された投影
光束により被検眼Eの眼底に一つの径線に沿つて
投影される。このためには、たとえばターゲツト
Tを絞り開口により形成し、その背後に光軸を挾
んで径線方向に離隔して2個の光源I1,I2を設
け、レンズ2を介してターゲツトTを被検眼Eに
投影すればよい。本発明においては、ターゲツト
の投影は、少くとも4つの径線に沿つて行なわれ
るのであるが、その方法としては、たとえば上述
の光源を少なくとも4つの径線に沿つて少くとも
4組設けるか、あるいは光源の対を光軸まわりに
回転させて少なくとも4つの径線に沿つた位置に
置けばよい。このように各径線に沿つて投影され
たターゲツトTの眼底における像O1,O2からの
反射光は、測定ターゲツト結像光学系を構成する
レンズ3により検出装置4の受光面上に結像され
る。検出装置4は、眼底におけるターゲツト像
O1,O2の位置に関係する信号を出力し、その出
力は測定位相差演算手段5と近似位相差演算手段
6に入力される。測定位相差演算手段5は、検出
装置4出力から、各径線におけるターゲツト像
O1,O2の距離に関する信号を、第2図に示すよ
うに、その径線方向の測定位相差A,B,C,D
として出力する。近似位相差演算手段6は検出装
置4からの出力に基づいて光軸を中心とする180゜
の範囲における位相差を第2図にEで示すように
近似的に演算決定する。次いで、測定位相差演算
手段5および近似位相差演算手段6の出力は偏差
検出手段7に入力され、この偏差検出手段7は各
径線における測定位相差A,B,C,Dと近似位
相差Eとを比較して、その差に相当する偏差信号
を発生する。この偏差信号は、比較手段8におい
て最大許容偏差信号と比較され、偏差信号が大き
いときは、その径線の測定位相差を除いて残りの
径線の測定位相差に基づいて、屈折力の決定を屈
折力決定手段9が行なう。たとえば、第2図にお
いて、測定位相差Dと近似位相差Eとの差が最大
許容値より大きいばあいには、残りの測定位相差
A,B,Cにより眼屈折力が決定される。
Hereinafter, the measurement principle of the eye refractive power measuring device of the present invention will be explained with reference to the drawings. Referring to FIG. 1, a measurement target projection optical system consisting of a target T and an objective lens 2 is provided.
As shown by solid lines and dotted lines in the figure, the separated projection light beams are projected onto the fundus of the eye E to be examined along one radial line. For this purpose, for example, the target T is formed by a diaphragm aperture, two light sources I 1 and I 2 are provided behind the aperture and spaced apart in the radial direction with the optical axis in between, and the target T is illuminated through the lens 2. What is necessary is to project it onto the eye E to be examined. In the present invention, the projection of the target is performed along at least four radial lines, for example, by providing at least four sets of the above-mentioned light sources along at least four radial lines; Alternatively, the pair of light sources may be rotated around the optical axis and placed at positions along at least four radial lines. The reflected light from the fundus images O 1 and O 2 of the target T projected along each radial line is focused onto the light receiving surface of the detection device 4 by the lens 3 that constitutes the measurement target imaging optical system. imaged. The detection device 4 detects a target image in the fundus of the eye.
A signal related to the positions of O 1 and O 2 is output, and the output is input to the measured phase difference calculation means 5 and the approximate phase difference calculation means 6. The measurement phase difference calculation means 5 calculates a target image in each meridian from the output of the detection device 4.
As shown in Figure 2, the signals related to the distances O 1 and O 2 are measured using phase differences A, B, C, and D in the radial direction.
Output as . Approximate phase difference calculation means 6 approximately calculates and determines the phase difference in a range of 180° centered on the optical axis based on the output from detection device 4, as shown by E in FIG. Next, the outputs of the measured phase difference calculating means 5 and the approximate phase difference calculating means 6 are inputted to the deviation detecting means 7, and this deviation detecting means 7 calculates the measured phase differences A, B, C, D and the approximate phase difference in each meridian. E and a deviation signal corresponding to the difference is generated. This deviation signal is compared with the maximum permissible deviation signal in the comparing means 8, and when the deviation signal is large, the refractive power is determined based on the measured phase difference of the remaining radials excluding the measured phase difference of that radial. The refractive power determination means 9 performs this. For example, in FIG. 2, if the difference between the measured phase difference D and the approximate phase difference E is larger than the maximum allowable value, the eye refractive power is determined by the remaining measured phase differences A, B, and C.

本発明においては、位相差演算手段、近似位相
差演算手段、偏差検出手段、比較手段および屈折
力決定手段の全部または一部は、一つのマイクロ
コンピユータに適当なプログラムを加えて実施す
ることができる。
In the present invention, all or part of the phase difference calculation means, approximate phase difference calculation means, deviation detection means, comparison means, and refractive power determination means can be implemented by adding an appropriate program to one microcomputer. .

〔発明の効果〕〔Effect of the invention〕

本発明は、上述のように、少くとも4つの径線
について得られた測定位相差を、それら位相差に
基づく近似位相差と比較し、その結果得られた偏
差により、それらの測定位相差が屈折力決定に使
用できるかどうかを判別するので、被検眼が検眼
中にまばたきをした場合であつても、そのまばた
きが最終結果として、決定される眼屈折力に大き
な影響を与え誤測定となることを防止できる。
As described above, the present invention compares the measured phase differences obtained for at least four meridians with an approximate phase difference based on those phase differences, and the resulting deviation allows those measured phase differences to be It determines whether the eye can be used to determine refractive power, so even if the subject's eye blinks during the eye examination, the blinking will have a large effect on the determined eye refractive power, resulting in erroneous measurements. This can be prevented.

〔実施例の説明〕[Explanation of Examples]

光学系の構成 第3図は、本発明の一実施例を示す光学系の概
略図である。第3図に示す光学系は、測定ターゲ
ツトを被検眼眼底に投影するターゲツト投影光学
系50と、被検眼眼底の測定ターゲツト像を測定
光学系51に投影するターゲツト受光光学系52
と、被検眼の視準線を固定する固視目標系53
と、被検眼と本装置との位置関係を示す照準光学
系54とから構成され、以下各光学系について詳
説する。
Configuration of Optical System FIG. 3 is a schematic diagram of an optical system showing an embodiment of the present invention. The optical system shown in FIG. 3 includes a target projection optical system 50 that projects a measurement target onto the fundus of the eye to be examined, and a target light receiving optical system 52 that projects a measurement target image of the fundus of the eye to be examined onto a measurement optical system 51.
and a fixation target system 53 that fixes the line of sight of the eye to be examined.
and an aiming optical system 54 that indicates the positional relationship between the eye to be examined and this device, and each optical system will be explained in detail below.

ターゲツト投影用光学系50は、第3図に示す
ように、光軸を中心に配置された一対の赤外線光
源11a,11bとして赤外線光源11a,11
bからの光をそれぞれ集光する集光レンズ12
a,12b、平行光を作るコリメータレンズ13
と、円形開口絞り14を有する測定ターゲツト1
5と、結像レンズ16と、投影用結像レンズ17
と、赤外光に関するハーフミラー18及び長波長
部の赤外光を反射し可視部とこれに近接した赤外
光を透過する特性を有するダイクロイツクミラー
19とから構成される。上記一対の赤外線光源1
1a,11bは高速度で交互に点灯し、また該両
源11a,11bは一体となつて光軸を中心に回
転可能に構成され、かつ測定ターゲツト15は光
軸方向へ移動可能に構成される。一対の赤外線光
源11a,11bからの光は、それぞれ集光レン
ズ12a,12bによつて集光され、さらにコリ
メータレンズ13により平行光にされて円形開口
絞り14に斜に入射する。円形開口絞り14を通
過した光は、結像レンズ16により点P1の位置
に結像した後、投影用結像レンズ17を通り、ハ
ーフミラー18及びダイクロイツクミラー19に
より反射されて被検眼Eに入射する。ここで、赤
外線光源11a,11bの像は被検眼Eの瞳孔位
置に結像し、また測定ターゲツト15の円形開口
絞り14の像は被検眼の眼底P2に結像する。そ
して、測定ターゲツト15と被検眼Eの眼底P2
とが共役な位置関係にあるときには、赤外線光源
11aからの光によつて照射された円形開口絞り
14の像と、赤外線光源11bからの光によつて
照射された円形開口絞り14の像とが、眼底P2
の同一位置に結像される。他方、測定ターゲツト
5と被検眼Eの眼底P2とが共役な位置関係にな
いときには、上記各赤外線光源からの光によつて
照射された円形開口絞り14の像が眼底P2の分
離した2ヶ所にそれぞれ結像する。本発明におい
ては、光軸上に固定された測定ターゲツト15の
円形開口絞り14の眼底P2における像が、赤外
線光源11a及び11bの交互点灯によつて合致
するか分離するかを弁別し、分離している時には
その分離距離を測定し、その測定置及びその時の
測定ターゲツトの位置から被検眼を屈折力を演出
する。
As shown in FIG. 3, the target projection optical system 50 includes a pair of infrared light sources 11a and 11b arranged around the optical axis.
A condenser lens 12 that condenses the light from b
a, 12b, collimator lens 13 that creates parallel light
and a measurement target 1 having a circular aperture stop 14
5, an imaging lens 16, and a projection imaging lens 17
It is composed of a half mirror 18 relating to infrared light, and a dichroic mirror 19 having a characteristic of reflecting infrared light in the long wavelength region and transmitting visible light and infrared light in the vicinity thereof. The above pair of infrared light sources 1
1a and 11b are turned on alternately at high speed, and both the sources 11a and 11b are configured to be rotatable together around the optical axis, and the measurement target 15 is configured to be movable in the optical axis direction. . Light from a pair of infrared light sources 11a and 11b is focused by condensing lenses 12a and 12b, respectively, and further collimated by a collimator lens 13 and obliquely incident on a circular aperture stop 14. The light that has passed through the circular aperture diaphragm 14 is imaged at a point P1 by the imaging lens 16, passes through the projection imaging lens 17, is reflected by the half mirror 18 and the dichroic mirror 19, and is directed to the eye E. incident on . Here, the images of the infrared light sources 11a and 11b are formed on the pupil position of the eye E to be examined, and the image of the circular aperture stop 14 of the measurement target 15 is formed on the fundus P2 of the eye to be examined. Then, the measurement target 15 and the fundus P 2 of the eye E to be examined
When they are in a conjugate positional relationship, the image of the circular aperture stop 14 illuminated by the light from the infrared light source 11a and the image of the circular aperture stop 14 illuminated by the light from the infrared light source 11b are , fundus P 2
imaged at the same location. On the other hand, when the measurement target 5 and the fundus P2 of the eye E to be examined are not in a conjugate positional relationship, the image of the circular aperture diaphragm 14 irradiated with light from each infrared light source is the separated two parts of the fundus P2 . An image is formed in each location. In the present invention, it is determined whether the images on the fundus P2 of the circular aperture diaphragm 14 of the measurement target 15 fixed on the optical axis match or are separated by alternately lighting the infrared light sources 11a and 11b, and the images are separated. When the eye is being examined, the separation distance is measured, and the refractive power of the eye to be examined is determined from that measurement location and the position of the measurement target at that time.

ターゲツト受光光学系52は、第3図に示すよ
うに、ダイクロイツクミラー19の反射光路およ
びハーフミラー18の透過光路上に形成され、受
光用対物レンズ20と、ミラー21と、受光用対
物レンズ20に関し被検眼角膜と共役な位置に配
置された角膜反射光遮断絞り22とリレーレンズ
23とによつて構成される。上記角膜反射光遮断
絞り22は、第4図に示すように、中央にほぼ円
形の孔を有し、光軸通過位置に関し対称な2個所
に突出遮光部22a,22bが形成された絞り板
である。また、上記角膜反射光遮断絞り22は、
赤外線光源11a,11bが光軸回りに回転する
とき、この回転運動に連動して回転するように構
成されている。さらに、上記角膜反射光遮断絞り
22は、リレーレンズ23の前側焦点位置に配置
されて、リレーレンズ23による投影光学系はテ
レセン光学系に構成する。リレーレンズ23は、
測定ターゲツトに連動して光軸方向に移動可能に
構成する。
As shown in FIG. 3, the target light receiving optical system 52 is formed on the reflected optical path of the dichroic mirror 19 and the transmitted optical path of the half mirror 18, and includes a light receiving objective lens 20, a mirror 21, and a light receiving objective lens 20. It is composed of a corneal reflected light blocking diaphragm 22 and a relay lens 23, which are arranged at a position conjugate with the cornea of the eye to be examined. As shown in FIG. 4, the corneal reflected light blocking diaphragm 22 is a diaphragm plate having a substantially circular hole in the center and protruding light blocking portions 22a and 22b formed at two symmetrical locations with respect to the optical axis passing position. be. Further, the corneal reflected light blocking diaphragm 22 is
When the infrared light sources 11a and 11b rotate around the optical axis, they are configured to rotate in conjunction with this rotational movement. Further, the corneal reflected light blocking diaphragm 22 is arranged at the front focal point of the relay lens 23, and the projection optical system using the relay lens 23 is configured as a telecentric optical system. The relay lens 23 is
It is configured to be movable in the optical axis direction in conjunction with the measurement target.

以上の構成において、被検眼眼底P2の測定タ
ーゲツト像は、ダイクロイツクミラー19により
反射され、ハーフミラー18を通過したのち、受
光用対物レンズ20、ミラー21、リレーレンズ
23によつて、後に詳説する測定光学系51内に
投影される。この時、被検眼角膜からの有害反射
光は、反射光遮断絞り22の突出遮光部22a,
22bによつて除去される。また、角膜反射光遮
断絞り22とリレーレンズ23とはテレセン光学
系を構成しているから、測定光学系51に結像さ
れる測定ターゲツト像は、光軸に平行な主光線か
らなる光束によつて構成され、結像位置の前後に
おいても測定ターゲツト像である円孔像の中心位
置が変位しない性質を有する。
In the above configuration, the measurement target image of the fundus P 2 of the eye to be examined is reflected by the dichroic mirror 19, passes through the half mirror 18, and is then transferred to the light receiving objective lens 20, the mirror 21, and the relay lens 23, which will be explained in detail later. It is projected into the measuring optical system 51. At this time, the harmful reflected light from the cornea of the eye to be examined is removed by the protruding light shielding portion 22a of the reflected light blocking diaphragm 22,
22b. Furthermore, since the corneal reflected light blocking diaphragm 22 and the relay lens 23 constitute a telecentric optical system, the measurement target image formed on the measurement optical system 51 is formed by a luminous flux consisting of principal rays parallel to the optical axis. The central position of the circular hole image, which is the measurement target image, does not shift even before and after the imaging position.

測定光学系51は、第5図に示すごとくハーフ
ミラー55、ミラー56、リレーレンズ57、ミ
ラー58、チヨツパー59、集光レンズ60及び
受光素子61からなるX方向検出系86と、ハー
フミラー55の反射光路上に設けたミラー62、
リレーレンズ63、チヨツパー59、集光レンズ
64及び受光素子65からなるY方向検出系87
と、発光素子66、集光レンズ67,68、受光
素子69からなる基準信号発生系88とから構成
される。チヨツパー59は円周方向に連続したス
リツト群を有し、光軸を中心に回転する。
As shown in FIG. 5, the measuring optical system 51 includes an X-direction detection system 86 consisting of a half mirror 55, a mirror 56, a relay lens 57, a mirror 58, a chopper 59, a condenser lens 60, and a light receiving element 61; a mirror 62 provided on the reflected optical path;
Y-direction detection system 87 consisting of a relay lens 63, a chopper 59, a condensing lens 64, and a light receiving element 65
and a reference signal generation system 88 consisting of a light emitting element 66, condensing lenses 67 and 68, and a light receiving element 69. The chopper 59 has a group of continuous slits in the circumferential direction and rotates around the optical axis.

以上の構成において、上記ターゲツト受光光学
系52及びX方向検出系86とによつて、被検眼
眼底P2の測定ターゲツト像がチヨツパー59の
上部59aの近傍に投影される。同時に、上記タ
ーゲツト受光光学系52及びY方向検出系87に
よつて、被検眼眼底P2の測定ターゲツト像がチ
ヨツパー59の側部59bの近傍に投影される。
ここで、測定ターゲツト15と被検眼眼底P2
が共役関係にない場合、第7図に示すごとく赤外
線光源11a,11bからの光によつて形成され
る円形絞り像30a,30bおよび30a′,30
b′は、X方向に△x,Y方向に△yだけ分離して
スリツト群上に投影される。赤外線光源11aを
点灯し、その光による円形絞り像30aをチヨツ
パー59によつて走査したときの受光素子61か
らの信号と、赤外線光源11bを点灯し、その光
による円形絞り像30bをチヨツパー59によつ
て走査したときの受光素子61からの信号との位
相差から△xを算出する。同様に、円形絞り像3
0a′と30b′とをチヨツパー59によつて走査し
たときの受光素子65からの信号の位相差から△
yを算出する。ここで、上記測定ターゲツト15
と被検眼眼底P2との共役関係、被検眼Eの乱視
度及びチヨツパー59上における円形絞り像30
a,30bの関係を説明する。光源11a,11
bは垂直方向からθだけ回転した位置に並んで配
置されているものとする。すなわち測定径線方向
は垂直方向からθだけ回転した方向であるとす
る。
In the above configuration, the measurement target image of the fundus P 2 of the eye to be examined is projected near the upper part 59 a of the chopper 59 by the target light receiving optical system 52 and the X-direction detection system 86 . At the same time, a measurement target image of the fundus P 2 of the eye to be examined is projected near the side portion 59b of the chopper 59 by the target light receiving optical system 52 and the Y-direction detection system 87.
Here, if the measurement target 15 and the fundus P2 of the eye to be examined are not in a conjugate relationship, circular aperture images 30a, 30b and 30a', formed by the light from the infrared light sources 11a and 11b, as shown in FIG. 30
b' is projected onto the slit group separated by Δx in the X direction and Δy in the Y direction. When the infrared light source 11a is turned on and the circular aperture image 30a produced by the light is scanned by the chopper 59, the signal from the light receiving element 61 and the signal from the light receiving element 61 when the infrared light source 11b is turned on and the circular aperture image 30b produced by the light are scanned by the chopper 59. Therefore, Δx is calculated from the phase difference with the signal from the light receiving element 61 during scanning. Similarly, circular aperture image 3
From the phase difference of the signal from the light receiving element 65 when the chopper 59 scans 0a' and 30b',
Calculate y. Here, the measurement target 15
and the fundus P2 of the eye to be examined, the degree of astigmatism of the eye E to be examined, and the circular aperture image 30 on the stopper 59.
The relationship between a and 30b will be explained. Light sources 11a, 11
b are arranged side by side at positions rotated by θ from the vertical direction. That is, it is assumed that the measurement radial direction is a direction rotated by θ from the vertical direction.

(1) 上記測定ターゲツト15と被検眼眼底P2
が共役関係にあり、被検眼Eが乱視を含まない
場合、第7図Aに示すように、チヨツパー59
上において円形絞り像30a,30bが光軸通
過位置に重なつて投影される。すなわち、△x
=△y=0である。
(1) When the measurement target 15 and the fundus P2 of the eye to be examined are in a conjugate relationship, and the eye E to be examined does not have astigmatism, as shown in FIG.
On the top, circular aperture images 30a and 30b are projected to overlap at the optical axis passing position. That is, △x
=Δy=0.

(2) 上記測定ターゲツト15と被検眼眼底P2
が共役関係になく、被検眼Eが乱視を含まない
場合あるいは乱視を含む場合で被検眼Eの主径
線と光源11a,11bによる測定径線方向が
一致する場合には、第7図Bに示すように、チ
ヨツパー59上において円形絞り像30a,3
0bは測定径線方向に分離して投影される。
(2) When the measurement target 15 and the fundus P 2 of the eye to be examined are not in a conjugate relationship and the eye E to be examined does not include astigmatism or includes astigmatism, the diameter measured by the main axis of the eye E and the light sources 11a and 11b. When the line directions match, as shown in FIG. 7B, circular aperture images 30a and 3 are formed on the chopper 59.
0b is projected separately in the measurement radial direction.

(3) 上記測定ターゲツト15と被検眼眼底P2
が共役関係になく、被検眼Eが乱視を含み、か
つ被検眼Eの主径線と光源11a,11bから
なる測定径線方向が異なる場合には、第7図C
に示すように、チヨツパー59上において円形
絞り像30a,30bが測定径線方向及びそれ
に直角な方向に分離して投影される。
(3) When the measurement target 15 and the fundus P 2 of the eye to be examined are not in a conjugate relationship, the eye E to be examined includes astigmatism, and the main meridian of the eye E to be examined and the direction of the measurement meridian consisting of the light sources 11a and 11b are different. In Figure 7C
As shown in FIG. 2, circular aperture images 30a and 30b are separately projected on the chopper 59 in the measurement radial direction and in a direction perpendicular thereto.

本実施例においては、第7図に示すように水平
方向、垂直方向の分離量△x、△yを検出し、こ
の検出結果により測定径線方向の分離量に変換
し、測定径線方向の眼屈折力を検出するものであ
る。
In this example, as shown in Fig. 7, the separation amounts △x and △y in the horizontal and vertical directions are detected, and the detection results are converted into separation amounts in the measurement radial direction. It detects eye refractive power.

前述の変換をすることにより、光源11a,1
1bだけを回転するだけで、各測定径線方向での
眼屈折力を求めることができる。
By performing the above conversion, the light sources 11a, 1
By simply rotating 1b, the eye refractive power in each measurement radial direction can be determined.

固視目標系53は、第3図に示すように、可視
光光源31、集光レンズ32、光軸方向に移動可
能な固視ターゲツト33,ミラー34、投影レン
ズ35、可視光を反射し赤外光を透過するダイク
ロイツクミラー36により構成される。
As shown in FIG. 3, the fixation target system 53 includes a visible light source 31, a condenser lens 32, a fixation target 33 movable in the optical axis direction, a mirror 34, a projection lens 35, and a red light source that reflects visible light. It is composed of a dichroic mirror 36 that transmits external light.

以上の構成において、可視光光源31からの光
は、集光レンズ32を介して固視ターゲツト33
を照射する。固視ターゲツト33からの光は、ミ
ラー34、投影レンズ35、ダイクロイツクミラ
ー36を介し、さらに前記ダイクロイツクミラー
9を通過して被検眼Eに投影される。被検者は、
固視ターゲツト33を注視することにより視準方
向を固定する。また、被検眼は常に遠方視の状態
であることを要し、固視ターゲツト33は光軸方
向に移動可能とし視検眼が遠方視となる位置に調
節される。
In the above configuration, the light from the visible light source 31 is directed to the fixation target 33 via the condensing lens 32.
irradiate. The light from the fixation target 33 passes through a mirror 34, a projection lens 35, a dichroic mirror 36, and the dichroic mirror 9, and is projected onto the eye E to be examined. The subject is
The collimation direction is fixed by gazing at the fixation target 33. Furthermore, the eye to be examined is required to always be in a far viewing state, and the fixation target 33 is movable in the optical axis direction and adjusted to a position where the eye to be examined is in a far viewing state.

照準光学系54は、ハーフミラー19およびダ
イクロイツクミラー36の透過光路上に設けられ
た投影レンズ36a、ハーフミラー37及び撮像
管38からなり、またハーフミラー37の反射光
軸上に光源40、集光レンズ41、視準板42、
ミラー44及び投影レンズ45を有する。撮像管
38はモニターテレビ39を連結されている。視
準板42は、第8図に示すように、中央に円、そ
の周辺に放射線をもつた視準スケール43を有す
る。
The aiming optical system 54 includes a projection lens 36a, a half mirror 37, and an image pickup tube 38, which are provided on the transmission optical path of the half mirror 19 and the dichroic mirror 36, and a light source 40 and a condenser on the reflection optical axis of the half mirror 37. Optical lens 41, collimating plate 42,
It has a mirror 44 and a projection lens 45. The image pickup tube 38 is connected to a monitor television 39. As shown in FIG. 8, the collimating plate 42 has a collimating scale 43 having a circle in the center and radiation around the circle.

上記のように構成された照準光学系において、
撮像管38には、投影レンズ36aによる被検眼
Eの前眼部像と、投影レンズ45による視準スケ
ール43の像が重ねて投影される。検者はモニタ
ーテレビ39を見て、被検眼の瞳孔像の中心と視
準スケール43の像とが一致して被検眼の光軸と
ターゲツト投影用光学系50、ターゲツト受光光
学系52の光軸とが一致するように、被検眼に対
し本装置を上下左右に移動させる。
In the aiming optical system configured as above,
On the image pickup tube 38, an image of the anterior segment of the eye E to be examined by the projection lens 36a and an image of the collimation scale 43 by the projection lens 45 are projected in a superimposed manner. The examiner looks at the monitor television 39 and sees that the center of the pupil image of the eye to be examined and the image of the collimation scale 43 match, and the optical axis of the eye to be examined and the optical axes of the target projection optical system 50 and the target light receiving optical system 52 are aligned. Move the device vertically, horizontally, and horizontally relative to the eye to be examined so that the

次に、本装置の電気回路の構成を第9図のブロ
ツク図に基いて説明する。制御回路101は、電
源スイツチ102、測定スイツチ103、チヨツ
パー駆動回路104、光源駆動回路105、測定
ターゲツト駆動回路106、固視ターゲツト駆動
回路107、測定ターゲツト光源回転駆動回路1
08、測定検出部109及び演算処理部110に
連結され、所定プログラムによりこれらを制御す
る。
Next, the configuration of the electric circuit of this device will be explained based on the block diagram of FIG. The control circuit 101 includes a power switch 102, a measurement switch 103, a chopper drive circuit 104, a light source drive circuit 105, a measurement target drive circuit 106, a fixation target drive circuit 107, and a measurement target light source rotation drive circuit 1.
08, it is connected to the measurement detection section 109 and the arithmetic processing section 110, and controls these according to a predetermined program.

チヨツパー駆動回路104はチヨツパー19を
回転するモーター112に連結され、これを駆動
する。光源駆動回路105は基準信号用発光素子
26及び測定ターゲツト光源1a,1bに連結さ
れ、これを点灯する。測定ターゲツト駆動回路1
06は測定ターゲツト5を光軸上で移動させるモ
ーター114に連結され、これを駆動する。固視
ターゲツト駆動回路107は固視ターゲツトを光
軸上で移動させるモーター116に連結され、こ
れを駆動する。測定ターゲツト光源回転駆動回路
108は測定ターゲツト5を光軸中心に回転駆動
するモーター118に連結され、これを回転駆動
する。受光素子29は基準信号用発光素子26で
発光されチヨツパー19を通過した光を受光し、
基準信号を増幅回路120に入力する。増幅回路
120は波形整形回路122に、波形整形回路1
22は第1位相差検出回路124及び第2位相差
検出回路126に連結されている。測定ターゲツ
ト光源1a,1bで発光されたチヨツパー19の
上部19aを通過した光を受光する受光素子21
は、増幅回路127に連結され、さらに、増幅回
路127はAGC回路128に、AGC回路128
は波形整形回路130に、波形整形回路130は
第1位相差検出回路124に連結されている。同
様に、測定ターゲツト光源1a,1bで発光され
チヨツパー19の側部19bを通過した光を受光
する受光素子25は、増幅回路132に連結さ
れ、さらに、増幅回路132はAGC回路134
に、AGC回路134は波形整形回路136に、
波形整形回路136は第2位相差検出回路126
に連結されている。第1位相差検出回路124は
波形整形回路122の出力する基準矩形波と波形
整形回路130の出力する矩形波との位相差を検
出し、位相差信号Xaとして出力する。同様に、
第2位相差検出回路126は波形整形回路122
の出力する基準矩形波と波形整形回路136の出
力する矩形波との位相差を検出し、位相差信号
Yaとして出力する。第1位相差検出回路124
と第2位相差検出回路126とは測定位相差演算
回路138に連結され、さらに、測定位相差演算
回路138は演算処理部110に連結されてい
る。
The chopper drive circuit 104 is connected to and drives a motor 112 that rotates the chopper 19. The light source driving circuit 105 is connected to the reference signal light emitting element 26 and the measurement target light sources 1a and 1b, and lights them. Measurement target drive circuit 1
06 is connected to and drives a motor 114 that moves the measurement target 5 on the optical axis. A fixation target drive circuit 107 is connected to and drives a motor 116 that moves the fixation target on the optical axis. The measurement target light source rotation drive circuit 108 is connected to a motor 118 that rotates the measurement target 5 around the optical axis. The light receiving element 29 receives the light emitted by the reference signal light emitting element 26 and passing through the chopper 19.
A reference signal is input to the amplifier circuit 120. The amplifier circuit 120 includes a waveform shaping circuit 122 and a waveform shaping circuit 1.
22 is connected to a first phase difference detection circuit 124 and a second phase difference detection circuit 126. A light receiving element 21 receives the light emitted by the measurement target light sources 1a and 1b and passes through the upper part 19a of the chopper 19.
is connected to an amplifier circuit 127, and the amplifier circuit 127 is further connected to an AGC circuit 128;
is connected to the waveform shaping circuit 130, and the waveform shaping circuit 130 is connected to the first phase difference detection circuit 124. Similarly, the light receiving element 25 that receives the light emitted by the measurement target light sources 1a and 1b and passed through the side part 19b of the chopper 19 is connected to an amplifier circuit 132, and the amplifier circuit 132 is further connected to the AGC circuit 134.
The AGC circuit 134 connects the waveform shaping circuit 136 to
The waveform shaping circuit 136 is the second phase difference detection circuit 126
is connected to. The first phase difference detection circuit 124 detects the phase difference between the reference rectangular wave output from the waveform shaping circuit 122 and the rectangular wave output from the waveform shaping circuit 130, and outputs it as a phase difference signal Xa. Similarly,
The second phase difference detection circuit 126 is a waveform shaping circuit 122
The phase difference between the reference rectangular wave output by the waveform shaping circuit 136 and the rectangular wave output by the waveform shaping circuit 136 is detected, and a phase difference signal is generated.
Output as Ya. First phase difference detection circuit 124
and the second phase difference detection circuit 126 are connected to a measurement phase difference calculation circuit 138, and the measurement phase difference calculation circuit 138 is further connected to the calculation processing section 110.

上記測定位相差演算回路138は、発光素子1
1a,11bを点灯したときに第1位相差検出回
路124が出力する位相差信号XaとXbとの測定
位相差△xと、同じく発光素子11a,11bを
点灯したときに第2位相差検出回路126が出力
する位相差信号YaとYbとの測定位相差△Yとを
演算する。
The measurement phase difference calculation circuit 138 operates on the light emitting element 1
The measured phase difference Δx between the phase difference signals Xa and Xb output by the first phase difference detection circuit 124 when the light emitting elements 1a and 11b are turned on, and the second phase difference detection circuit when the light emitting elements 11a and 11b are also turned on. The measured phase difference ΔY between the phase difference signals Ya and Yb outputted by 126 is calculated.

この測定位相差△X、△Yが第7図における、
円形絞り像30a,30bのX方向及びY方向で
の分離量△x、△yに対応する。演算処理部11
0は、下記の式(5)を使用して、ターゲツト光源駆
動回路からの信号である測定ターゲツト光源の回
転位置角度θiと上記測定位相差△Xi、△Yiとか
ら測定経線方向の分離量に対応する測定位相差△
pθiを以下の(5)式に従い算出する。
This measured phase difference △X, △Y is shown in FIG.
This corresponds to the separation amounts Δx and Δy of the circular aperture images 30a and 30b in the X and Y directions. Arithmetic processing unit 11
0 is the separation amount in the measurement meridian direction from the rotational position angle θi of the measurement target light source, which is a signal from the target light source drive circuit, and the measurement phase differences △Xi, △Yi using the following equation (5). Corresponding measurement phase difference△
pθi is calculated according to the following equation (5).

△pθi=△Xicosθi+△Ysinθi (1) この測定位相差△pθiは、測定経線方向での円
孔絞り像の分離量△に変換され、この分離量△か
ら屈折力を算出する原理で前述した次式に従い測
定経線方向θでの被検眼屈折力Dθを算出する。
△pθi = △Xicosθi + △Ysinθi (1) This measured phase difference △pθi is converted to the separation amount △ of the circular hole aperture image in the measurement meridian direction, and the following principle is used to calculate the refractive power from this separation amount △. The refractive power Dθ of the eye to be examined in the measurement meridian direction θ is calculated according to the formula.

△=mfx(Dθ−DT) (2) ここに、m:被検眼に対する絞りの結像倍率 f:リレーレンズの焦点距離 x:被検眼瞳孔における2光束の間隔 DT:デイオプター換算値 本測定の場合には、少なくとも4経線方向での
D〓(D〓1,D〓2,D〓3,D〓4)を算出する。このD〓1

D〓2,D〓3,D〓4は球面度数をA、乱視度数をB、
乱視軸をαとすると、次式で表わされる。
△=mfx (Dθ−DT) (2) Where, m: Imaging magnification of the aperture for the eye to be examined f: Focal length of the relay lens x: Distance between two light beams in the pupil of the eye to be examined DT: Diopter conversion value in at least four meridian directions.
Calculate D〓(D〓 1 , D〓 2 , D〓 3 , D〓 4 ). This D〓 1

D〓 2 , D〓 3 , D〓 4 are spherical power A, astigmatic power B,
When the astigmatic axis is α, it is expressed by the following equation.

D〓1=A+Bcos2(θ1−α) D〓2=A+Bcos2(θ2−α) D〓3=A+Bcos2(θ3−α) D〓4=A+Bcos2(θ4−α) (3) この結果より、球面度数A、乱視度数B、乱視
軸αを求め表示器142に出力する。
D〓 1 =A+Bcos2(θ 1 −α) D〓 2 =A+Bcos2(θ 2 −α) D〓 3 =A+Bcos2(θ 3 −α) D〓 4 =A+Bcos2(θ 4 −α) (3) From this result , spherical power A, astigmatic power B, and astigmatic axis α are determined and output to the display 142.

上述の方法では、測定経線方向の分離量に対応
する測定位相差△pθiのみから球面度数A、乱視
度数B、乱視軸αを算出しているが、乱視度数
B、乱視軸αに関しては、以下の算出方法が有効
である。すなわち、測定位相差△Xi、△Yiから
(5)式に従い測定経線方向の分離量に対応する位相
差△pθiを算出するとは別に、次式に従い、測定
経線方向とは直角な方向の分離量に対応する測定
位相差△PIIを算出する。
In the above method, the spherical power A, the astigmatic power B, and the astigmatic axis α are calculated only from the measured phase difference △pθi corresponding to the amount of separation in the measured meridian direction, but the astigmatic power B and the astigmatic axis α are calculated as follows. The calculation method is valid. That is, from the measured phase difference △Xi, △Yi
In addition to calculating the phase difference △pθi corresponding to the separation amount in the measurement meridian direction according to equation (5), the measurement phase difference △PII corresponding to the separation amount in the direction perpendicular to the measurement meridian direction is calculated according to the following equation. .

△P⊥i=−△Xisinθi+△Yicosθi (4) この結果算出された△P⊥iは(3)式と同様に下
記の(8)式で表わされる。
ΔP⊥i=−ΔXisinθi+ΔYicosθi (4) The resulting calculated ΔP⊥i is expressed by the following equation (8) similarly to equation (3).

△P⊥1=Bcos2(θ1−α) △P⊥2=Bcos2(θ2−α) △P⊥3=Bcos2(θ3−α) △P⊥4=Bcos2(θ4−α) (5) すなわち、この算出で求めた△P⊥iは球面度
数Aには影響を受けない。このことは、測定期間
中の被検眼の調節、すなわち球面度数Aの変動に
影響されないことを意味するものである。(5)式か
ら乱視度B、乱視軸αを求めると、測定期間中の
被検者の測定に影響されずに、高精度な乱視度数
B及び乱視軸αの検出結果を得ることが可能であ
る。なお、この場合においても、球面度数Aを算
出するには、(1)、(3)式を用いる点に関しては同様
である。
△P⊥ 1 = Bcos2 (θ 1 - α) △P⊥ 2 = Bcos2 (θ 2 - α) △P⊥ 3 = Bcos2 (θ 3 - α) △P⊥ 4 = Bcos2 (θ 4 - α) (5 ) That is, ΔP⊥i obtained by this calculation is not affected by the spherical power A. This means that it is not affected by the accommodation of the eye to be examined, that is, by fluctuations in the spherical power A during the measurement period. If the astigmatism degree B and astigmatism axis α are determined from equation (5), it is possible to obtain highly accurate detection results for the astigmatism power B and astigmatism axis α without being influenced by the measurement of the subject during the measurement period. be. Note that in this case as well, equations (1) and (3) are used to calculate the spherical power A.

上記のように構成された電気回路の作動は以下
の通りである。電源スイツチ102がONにさ
れ、照準光学系54を使用して被検者の光軸とタ
ーゲツト投影用光学系50、ターゲツト受光光学
系52の光軸とが一致させられる。また制御回路
101により、チヨツパー19が回転し、基準発
光素子26が点灯し、またターゲツト投影用光学
系の光源1a,1bが交互に点灯する。これらの
回転と点灯は測定が終了するまで継続される。さ
らに制御回路101の制御により、測定ターゲツ
ト駆動回路106がモーター114を駆動して測
定ターゲツト15を所定位置例えば+6デイオプ
ターの位置に移動し、また固視ターゲツト駆動回
路107がモーター116を駆動して固視ターゲ
ツト33を所定位置例えば+20デイオプターの位
置に移動し、さらに測定ターゲツト光源回転駆動
回路108がモーター118を駆動して測定ター
ゲツト15の光源11a,11bの並び方向を鉛
直(回転角θ=0゜)の位置に回転移動する。以上
で予備測定の準備を終了する。
The operation of the electric circuit configured as described above is as follows. The power switch 102 is turned on, and the optical axis of the subject is made to coincide with the optical axes of the target projection optical system 50 and the target light receiving optical system 52 using the aiming optical system 54. Further, the control circuit 101 rotates the chopper 19, turns on the reference light emitting element 26, and turns on the light sources 1a and 1b of the target projection optical system alternately. These rotations and lighting continue until the measurement is completed. Furthermore, under the control of the control circuit 101, the measurement target drive circuit 106 drives the motor 114 to move the measurement target 15 to a predetermined position, for example, +6 diopters, and the fixation target drive circuit 107 drives the motor 116 to fix the measurement target 15. The visual target 33 is moved to a predetermined position, for example, +20 diopters, and the measurement target light source rotation drive circuit 108 drives the motor 118 to rotate the light sources 11a and 11b of the measurement target 15 vertically (rotation angle θ=0°). ) rotationally move to the position. This completes the preparation for preliminary measurement.

次に制御回路101の制御により、受光素子6
1,65,69がそれぞれの信号光を受光して、
前述の回路構成に従い、演算処理部110は該子
午面(θ=0゜)における円孔絞り像の分離量に相
当する位相差△Pθoを算出する。この△Pθoは円
孔開口像の分離量に変換され、その時の測定ター
ゲツト15の位置により該子午面(θ=0゜)にお
ける被検眼の屈折力を算出する。この算出結果
は、測定ターゲツト15の移動量に変換され制御
回路101に入力される。この信号により、制御
回路101は測定ターゲツト駆動回路106を制
御し、モーター114によりθ=0゜における測定
経線方向の被検眼屈折力に対応した位置すなわち
測定ターゲツト15と被検眼眼底とがほぼ共役な
関係となる位置まで測定ターゲツト15の位置よ
り遠方に移動される。この状態で測定ターゲツト
15、固視ターゲツト33を固定し、以下の本測
定に入る。このように予備測定の結果移動固定さ
れた測定ターゲツト15の位置は本測定の間変化
させない。
Next, under the control of the control circuit 101, the light receiving element 6
1, 65, and 69 receive the respective signal lights,
According to the circuit configuration described above, the arithmetic processing unit 110 calculates a phase difference ΔPθo corresponding to the amount of separation of the circular hole aperture images in the meridian plane (θ=0°). This ΔPθo is converted into a separation amount of the hole aperture image, and the refractive power of the eye to be examined in the meridian plane (θ=0°) is calculated based on the position of the measurement target 15 at that time. This calculation result is converted into the amount of movement of the measurement target 15 and input to the control circuit 101. Based on this signal, the control circuit 101 controls the measurement target drive circuit 106, and the motor 114 moves the measurement target 15 to a position corresponding to the refractive power of the eye to be examined in the measurement meridian direction at θ=0°, that is, when the measurement target 15 and the fundus of the eye to be examined are almost conjugate. The measurement target 15 is moved to a related position farther from the position of the measurement target 15. In this state, the measurement target 15 and fixation target 33 are fixed, and the following main measurement begins. The position of the measurement target 15, which has been moved and fixed as a result of the preliminary measurement, is not changed during the main measurement.

上記予備測定は、測定ターゲツト15の位置を
被検眼眼底のほぼ共役な位置に設定することによ
り、以下の本測定の精度をより向上させるために
有効である。
The preliminary measurement described above is effective for further improving the accuracy of the following main measurement by setting the position of the measurement target 15 at a substantially conjugate position of the fundus of the eye to be examined.

本測定においては、予備測定において述べた検
出を同様に行なう。本測定においては、制御回路
101の信号により測定ターゲツト光源回転駆動
回路108はモーター118を駆動し、測定ター
ゲツト光源11a,11bを光軸を中心として順
次回転し、測定径線方向での測定位相差Dθを測
定位相差演算回路138により算出する。この測
定は、少なくとも4径線方向で行いその時の位相
差をP〓1,P〓2,P〓3,P〓4で示す。本測定時の演算
処理部110の演算処理フローチヤートは第10
図に示す。
In this measurement, the detection described in the preliminary measurement is performed in the same way. In this measurement, the measurement target light source rotation drive circuit 108 drives the motor 118 in response to a signal from the control circuit 101, and sequentially rotates the measurement target light sources 11a and 11b around the optical axis, thereby changing the measurement phase difference in the measurement radial direction. Dθ is calculated by the measurement phase difference calculation circuit 138. This measurement is performed in at least four radial directions, and the phase differences at that time are indicated by P〓 1 , P〓 2 , P〓 3 , and P〓 4 . The calculation processing flowchart of the calculation processing unit 110 at the time of this measurement is the 10th
As shown in the figure.

本測定が開始され、上述のように測定位相差演
算回路138から各径線の測定位相差が入力さ
れ、これが第1ステツプとなる。第2ステツプは
その各測定位相差から前述の(5)式の係数Bを最少
2乗法によつて求め、これによつて求められた曲
線は近似位相差曲線でありこれが近似位相差曲線
演算手段に該当する。第3ステツプは、測定位相
差と近似位相差との比較をするため求められた近
似位相差曲線に基づいて測定位相差のある径線方
向の近似位相差を演算するもので近似位相差演算
手段に該当する。第4ステツプは各径線ごとの測
定位相差と近似位相差との偏差を減算によつて求
めるものである。第5ステツプは、求められた偏
差が予め定められた最大許容偏差より大きいか否
かを判別し、抽出するものである。
The main measurement is started, and the measured phase difference of each radial line is inputted from the measured phase difference calculation circuit 138 as described above, and this becomes the first step. In the second step, the coefficient B of the above-mentioned equation (5) is determined from each measured phase difference by the method of least squares, and the curve determined by this is an approximate phase difference curve. Applies to. The third step is to calculate an approximate phase difference in the radial direction with the measured phase difference based on the obtained approximate phase difference curve in order to compare the measured phase difference with the approximate phase difference.Approximate phase difference calculation means Applies to. The fourth step is to find the deviation between the measured phase difference and the approximate phase difference for each radius line by subtraction. The fifth step is to determine whether or not the obtained deviation is larger than a predetermined maximum allowable deviation, and to extract it.

被検眼のまぼたきによつて生じた正常の値から
隔だつた測定位相差は、このステツプで抽出され
ることとなる。第6ステツプでは、第5ステツプ
で抽出された偏差を生じさせた径線の測定位相差
を、削除する。第7ステツプは、削除された後の
残余の測定位相差、すなわちまばたきの生じてい
ない時の検出値の数を計数し、3以上であるかど
うかを判別する。ここでその数が3以上であれば
第8ステツプへ進行するが、3未満となれば最小
2乗法により屈折力が求められないため第1ステ
ツプへもどり再測定となる。第8ステツプは、残
余の測定位相差を用いて(3)式又は(3)式と(5)式で再
び最少2乗法による近似位相差曲線を演算する。
第9ステツプでは、近似位相差曲線から屈折力
(球面度数A、乱視度数B、乱視軸α)を演算し
求める。第10ステツプは、求められた屈折力を適
当に表示するものである。
Measured phase differences that deviate from the normal value caused by blinking of the subject's eye will be extracted in this step. In the sixth step, the measured phase difference of the radius line that caused the deviation extracted in the fifth step is deleted. In the seventh step, the remaining measured phase difference after deletion, that is, the number of detected values when no blinking occurs, is counted, and it is determined whether it is 3 or more. If the number is 3 or more, the process proceeds to the eighth step, but if it is less than 3, the refractive power cannot be determined by the least squares method, so the process returns to the first step and is remeasured. In the eighth step, using the remaining measured phase difference, an approximate phase difference curve is again calculated by the least squares method using equation (3) or equations (3) and (5).
In the ninth step, the refractive power (spherical power A, astigmatic power B, astigmatic axis α) is calculated and determined from the approximate phase difference curve. The tenth step is to appropriately display the determined refractive power.

本実施例においては、予備測定を1経線方向で
行なつたが、2経線方向以上の方向での測定を行
なつてもよいことは云うまでもない。また、1経
線方向で予備測定を行つた後、2経線方向以上で
再度予備測定を行ない、より本測定の精度も高め
ることも可能である。さらに、本実施例において
は、本測定の前に予備測定を行つているが、予備
測定を行わず直接本測定を行うように構成して
も、本発明を有効に実施して本発明の効果を得る
ことができる。
In this embodiment, preliminary measurements were carried out in one meridian direction, but it goes without saying that measurements may be carried out in two or more meridian directions. Furthermore, after performing a preliminary measurement in one meridian direction, it is also possible to perform preliminary measurements again in two or more meridian directions to further improve the accuracy of the main measurement. Further, in this example, preliminary measurements are performed before the main measurements, but even if the main measurements are directly performed without performing the preliminary measurements, the present invention can be effectively implemented and the effects of the present invention can be achieved. can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の作動原理を説明するための説
明図、第2図は本発明における信号処理を説明す
る図表、第3図は本発明の一実施例の光学図、第
4図は第3図の実施例の角膜反射光遮断絞りの正
面図、第5図は測定光学系の光学図、第6図は第
5図に示す測定光学系の測定原理の説明図、第7
図は同じく測定光学系の測定原理の説明図、第8
図は実施例の固視ターゲツトの正面図、第9図は
この実施例に用いられる電気回路のブロツク図、
第10図は演算処理回路の作動を示すフローチヤ
ートである。 11a,11b……赤外線光源、14……円形
開口絞り、17……投影用結像レンズ、18……
赤外光に関するハーフミラー、19……ダイクロ
イツクミラー、61……受光素子、69……受光
素子、50……ターゲツト投影光学系、51……
測定光学系、52……ターゲツト受光光学系、5
3……固視目標系、54……照準光学系、101
……制御回路、102……電源スイツチ、103
……測定スイツチ、104……チヨツパー駆動回
路、105……光源駆動回路、106……測定タ
ーゲツト駆動回路、107……固視ターゲツト駆
動回路、108……測定ターゲツト光源回転駆動
回路、109……測定検出部、110……演算処
理部、142……表示器。
FIG. 1 is an explanatory diagram for explaining the operating principle of the present invention, FIG. 2 is a diagram for explaining signal processing in the present invention, FIG. 3 is an optical diagram of an embodiment of the present invention, and FIG. 3 is a front view of the corneal reflected light blocking diaphragm of the embodiment, FIG. 5 is an optical diagram of the measurement optical system, FIG. 6 is an explanatory diagram of the measurement principle of the measurement optical system shown in FIG. 5, and FIG.
The figure is also an explanatory diagram of the measurement principle of the measurement optical system, No. 8
The figure is a front view of the fixation target of this embodiment, and FIG. 9 is a block diagram of the electric circuit used in this embodiment.
FIG. 10 is a flowchart showing the operation of the arithmetic processing circuit. 11a, 11b... Infrared light source, 14... Circular aperture stop, 17... Projection imaging lens, 18...
Half mirror related to infrared light, 19... Dichroic mirror, 61... Light receiving element, 69... Light receiving element, 50... Target projection optical system, 51...
Measurement optical system, 52...Target light receiving optical system, 5
3... Fixation target system, 54... Aiming optical system, 101
... Control circuit, 102 ... Power switch, 103
...Measurement switch, 104...Chopper drive circuit, 105...Light source drive circuit, 106...Measurement target drive circuit, 107...Fixation target drive circuit, 108...Measurement target light source rotation drive circuit, 109...Measurement Detection unit, 110...Arithmetic processing unit, 142...Display device.

Claims (1)

【特許請求の範囲】[Claims] 1 測定ターゲツトからの光束を被検眼眼底の少
なくとも4つの径線上へ投影するための測定ター
ゲツト投影光学系と、眼底に投影された測定ター
ゲツト像からの光束を結像させる測定ターゲツト
結像光学系と、前記結像光学系により結像された
ターゲツト像位置を2次元的に検出する検出装置
と、前記検出装置の出力から前記少なくとも4つ
の径線方向の測定位相差をそれぞれ演算する測定
位相差演算手段と、前記検出装置の出力に応じて
近似位相差曲線を演算し近似位相差を求める近似
位相差演算手段と、各径線方向の測定位相差と近
似位相差との差を求める偏差検出手段と、上記偏
差検出手段で検出した偏差を予め定められた最大
許容偏差とを比較する比較手段と、比較手段の出
力が前記最大許容偏差を越える偏差を示すとき
に、これに対応する測定位相差を除いて残りの測
定位相差で被検眼の屈折力の決定を行なう手段と
を有することを特徴とする眼屈折力測定装置。
1. A measurement target projection optical system for projecting the light flux from the measurement target onto at least four meridians of the fundus of the eye to be examined; and a measurement target imaging optical system for forming the light flux from the measurement target image projected onto the fundus. , a detection device that two-dimensionally detects the position of the target image formed by the imaging optical system; and a measurement phase difference calculation that calculates measurement phase differences in the at least four radial directions from the output of the detection device. means, approximate phase difference calculation means for calculating an approximate phase difference according to the output of the detection device to obtain an approximate phase difference, and deviation detection means for calculating a difference between a measured phase difference and an approximate phase difference in each radial direction. and comparing means for comparing the deviation detected by the deviation detecting means with a predetermined maximum allowable deviation, and when the output of the comparing means indicates a deviation exceeding the maximum allowable deviation, a corresponding measured phase difference. 1. An eye refractive power measuring device comprising means for determining the refractive power of an eye to be examined using the remaining measured phase difference.
JP58202118A 1983-10-28 1983-10-28 Eye refreaction force measuring apparatus Granted JPS6092732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58202118A JPS6092732A (en) 1983-10-28 1983-10-28 Eye refreaction force measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58202118A JPS6092732A (en) 1983-10-28 1983-10-28 Eye refreaction force measuring apparatus

Publications (2)

Publication Number Publication Date
JPS6092732A JPS6092732A (en) 1985-05-24
JPH0355126B2 true JPH0355126B2 (en) 1991-08-22

Family

ID=16452258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58202118A Granted JPS6092732A (en) 1983-10-28 1983-10-28 Eye refreaction force measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6092732A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820666B2 (en) * 1987-02-24 1996-03-04 旭光学工業株式会社 Finder equipment
JPH0612729Y2 (en) * 1989-03-30 1994-04-06 株式会社ニデック Optometry device
JP3636553B2 (en) * 1996-08-30 2005-04-06 キヤノン株式会社 Fundus examination device

Also Published As

Publication number Publication date
JPS6092732A (en) 1985-05-24

Similar Documents

Publication Publication Date Title
JP2942321B2 (en) Transillumination imaging equipment
AU2001294998B2 (en) Method and device for synchronous mapping
JP4492847B2 (en) Eye refractive power measuring device
USRE42782E1 (en) Method and device for synchronous mapping of the total refraction non-homogeneity of the eye and its refractive components
US5309186A (en) Eye refractive power measuring apparatus having opacity discriminant function of crystalline lens
JP3630884B2 (en) Ophthalmic examination equipment
US7160288B2 (en) Ophthalmic apparatus
JP3703310B2 (en) Hand-held ophthalmic device
JP2001275972A (en) Ophthalmologic optical characteristic measuring system
JP3636886B2 (en) Ophthalmic equipment
US7296895B2 (en) Sequential scanning wavefront measurement and retinal topography
JP3636917B2 (en) Eye refractive power measurement device
US4591247A (en) Eye refractometer
JPH0254B2 (en)
JPH0355126B2 (en)
JP2001340299A (en) Optical measuring device for eye
JPH035810B2 (en)
JP6221249B2 (en) Eye refractive power measuring device
JP2706246B2 (en) Ophthalmic equipment
JP2002355219A (en) Corneal abscission data determining device and corneal abscission data determining program
JPH0223172B2 (en)
JP3004653B2 (en) Ophthalmic equipment
JPS6213010B2 (en)
JP2693772B2 (en) Ophthalmic equipment
JP2006212299A (en) Ophthalmologic measuring apparatus