JPH0354949B2 - - Google Patents

Info

Publication number
JPH0354949B2
JPH0354949B2 JP61049365A JP4936586A JPH0354949B2 JP H0354949 B2 JPH0354949 B2 JP H0354949B2 JP 61049365 A JP61049365 A JP 61049365A JP 4936586 A JP4936586 A JP 4936586A JP H0354949 B2 JPH0354949 B2 JP H0354949B2
Authority
JP
Japan
Prior art keywords
compound
optically active
binaphthyl
mol
add
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61049365A
Other languages
Japanese (ja)
Other versions
JPS62207267A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4936586A priority Critical patent/JPS62207267A/en
Publication of JPS62207267A publication Critical patent/JPS62207267A/en
Publication of JPH0354949B2 publication Critical patent/JPH0354949B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔技術分野〕 本発明はクラウン化合物に関し、より詳しく
は、光学活性なアミン類、アミノ酸類等のアミノ
化合物光学分割剤として有用な疎水性の高い光学
活性なクラウン化合物に関する。 〔従来技術〕 クラウン化合物は、アルカリ金属、アルカリ土
類金属、銀、および第1級アンモニウム等の諸イ
オンに対する特異的な配位性を示すことがよく知
られた化合物であり、今迄に数多くの種類が合
成、報告され、またそれらの分離、分析、合成反
応等への利用例もまた報告されている(例えば、
合成に関しては、G.W.ゴーケル、S.H.コルゼニ
オウスキー著、マクロサイクリツクポリエーテル
シンセシス/スプリンガー出版、1982に総括され
ている)。 また、クラウン化合物の中には、光学活性なビ
ナフチル基や、ビフエナントレン基、ヘリセン基
等を構成要素として含む光学活性なクラウン化合
物が知られている。これらの光学活性なクラウン
化合物は光学分割剤として作用し、アミノ化合物
を有機溶媒抽出するに際し、光学活性なアミノ化
合物を選択的に抽出分離させる。この原理を応用
して、多孔質フイルムに光学活性なクラウン化合
物を担持させた含浸型液体膜による光学異性体分
離膜の開発も試みられている(特願昭59−170114
号)。また、光学活性なクラウン化合物によるベ
ンゾチアゼピン誘導体の光学分割法も報告されて
いる(特開昭59−144776号及び144777号)。この
ように光学活性なクラウン化合物は、工業的な利
用への関心が高い化合物であるといえる。 しかしながら、従来の光学活性なクラウン化合
物はいずれも疎水性が不十分であり、多量の水相
と少量の有機相からなる抽出系においては、その
光学活性なクラウン化合物の水相への分配が問題
になり、未だ十分に満足すべき結果を得ることが
できなかつた。 〔目 的〕 本発明の目的は、すぐれた光学分割能を有する
と共に、水相に対する分配比が著しく小さい光学
活性なクラウン化合物を提供することにある。 〔構 成〕 本発明者らは、前記目的を達成すべく鋭意研究
を重ねた結果、ポリエーテル環の炭素鎖上に長鎖
アルキル基を導入した構造の光学活性なクラウン
化合物がその目的に最も適合していることを見出
し、この知見に基づいて本発明をなすに至つた。 即ち、本発明によれば、一般式 で表わされる光学活性なクラウン化合物が提供さ
れる。 前記式中、Arは置換されてもよい1,1′−ビ
ナフチル−2,2′−ジイル基であり、前記したよ
うな従来公知のものが用いられるが、特に、〔1,
1′−ビナフチル〕−2,2′−ジイル及び〔3,3′−
ジフエニル−1,1′−ビナフチル〕−2,2′−ジ
イルは好ましいものである。Rは炭素数6〜16の
アルキル基である。 なお、長鎖アルキル基Rは、前記したようにポ
リエーテル環上に結合することが必要で、芳香族
基Ar上に結合しても、所期の目的を達成するこ
とができない。この場合には、クラウン化合物は
ノニオン系界面活性作用を有し、起泡性、ミセル
形成性、エマルジヨン形成性等の光学分割剤とし
て好ましくない性質を示すようになる。 本発明の化合物はいずれも文献未載の新規化合
物であり、例えば、一般式 (式中、Arは置換されてもよい1,1′−ビナ
フチル−2,2′−ジイル基であり、Mはアルカリ
金属である) で表わされる光学活性な芳香族誘導体に、一般式 (式中、Xは塩素、ヨウ素又はトシルオキシ
基、Rは炭素数6〜16のアルキル基である) で表わされる1,ω−置換ペンタエチレングリコ
ールのアルキル誘導体を、不活性気体雰囲気下、
例えば、テトラヒドロフラン、ジオキサン、N,
N′−ジメチルホルムアミド等の有機溶媒中でほ
ぼ等モル量で反応させることによつて製造するこ
とができる。 また、前記一般式()の化合物は、不活性気
体雰囲気下で、例えば、テトラヒドロフラン、ジ
オキサン、N,N′−ジメチルホルムアミド等の
有機溶媒中で、光学活性な芳香族のジヒドロキシ
化合物を、LiH,NaH,KOH,NaOH等の塩基
と共存させることによつて製造される。また、一
般式()の化合物は、例えば、テトラヒドロフ
ラン、ジオキサン、N,N′−ジメチルホルムア
ミド等の有機溶媒中で、不活性気体雰囲気下、炭
素数8〜18の1,2−ジヒドロキシアルカンを、
一般式 (式中、Yはベンジル基や、テトラヒドロピラ
ニル基等のヒドロキシル基の保護基であり、Xは
前記と同じ意味を表わす) で表わされる化合物と、LiH,NaH,KOH,
NaOH等の塩基の存在下、約60℃程度に加熱反
応させた後、得られた化合物から保護基を脱離さ
せ、生成したヒドロキシル基を塩素化又はトシル
化等の処理を施すことによつて製造される。 〔効 果〕 本発明の光学活性なクラウン化合物は、すぐれ
た光学分割能と著しく低められた水相分配性を示
し、光学分割剤として有利に用いられる。本発明
の光学活性なクラウン化合物は、溶媒抽出、含浸
型液体膜、光学分割用カラム等へ適用すること
で、アミノ酸やアミン等のアミノ化合物を光学分
割することができ、食品業界、医農薬等の製薬業
界に大きく寄与するものである。 〔実施例〕 次に、実施例および参考例により、本発明を更
に詳細に説明する。 参考例 1 〔一般式()の化合物(X=OTs、R=
C6H13)の合成〕 窒素雰囲気下、水素化ナトリウム、1.06g
(0.04mol)を懸濁した200mlの無水テトラヒドロ
フラン(THF)中に、100mlの無水THFに溶解
した1,2−ジヒドロキシオクタン2.92g
(0.02mol)を撹拌しながら滴下する。これに100
mlの無水THFに溶解した2−(2′−0−ベンジル
エトキシ)−エチルトシレート15.7g(044mol)
を、ゆつくりと滴下したのち約36時間加熱環流さ
せる。冷却後、少量の水にて余剰の水素化ナトリ
ウムを分解したのち、THFを留去し、500mlの水
を加え、500mlのジクロロメタンで3回抽出する。
有機層を無水硫酸ナトリウムにて乾燥後、減圧濃
縮し、油状物を得た。これをカラムクロマト
(200gシリカゲル、溶離液:ジクロロメタン/酢
酸エチル=5/1)にて精製し、ジベンジルエー
テル7.23g(0.0144mol)を得た。これを100mlの
エタノール/塩酸=9/1に溶解して1.5gの10
%パラジウム炭素を加え、撹拌しながら約30時間
水素添加する。反応液をグラスフイルター(G4)
にて濾過し、濾液を減圧濃縮する。これを100ml
のピリジンに溶解し、氷冷し、撹拌しながらピリ
ジン30mlに溶解した。p−塩化トシル8.3g
(0.0435mol)を滴下し、約12時間反応させる。
反応液を氷上に注ぎ、300mlの水を加え、300mlの
ジクロロメタンにて3回抽出し、有機層を集め、
この中のピリジンを1Nの塩酸にて3回抽出し、
有機層を無水硫酸ナトリウムにて乾燥後減圧濃縮
し、油状物を得た。これをカラムクロマト(300
gシリカゲル、溶離度:ジクロロメタン/酢酸エ
チル=4/1)にて精製し、ジトシレート7.4g
(0.0117mol)を得た。 参考例 2 〔一般式()の化合物(X=OTs、R=
C14H29)の合成〕 窒素雰囲気下、水素化ナトリウム1.59g
(0.066mol)を懸濁した300mlの無水THF中に、
100mlの無水THFに溶解した1,2−ジヒドロキ
シヘプタデカン7.74g(0.03mol)を撹拌しなが
ら滴下する。これに無水THF100mlに溶解した2
−(2′−0−ベンジルエトキシ)−エチルトシレー
ト23.1g(0.066mol)をゆつくりと滴下したの
ち、約36時間加熱環流させる。その後、水素化ナ
トリウム0.8g(0.033mol)と、上記のトシレー
ト11.6g(0.033mol)を加え、更に約36時間加熱
環流させる。冷却後少量の水を加え、余剰の水素
化ナトリウムを分解したのち、THFを留去し、
500mlの水を加え、500mlのジクロロメタンにて3
回抽出する。有機層を集め、無水硫酸ナトリウム
にて乾燥後、減圧濃縮し、油状物を得た。これを
カラムクロマト(200gシリカゲル、溶離液:ジ
クロロメタン/酢酸エチル=5/1)にて精製
し、ジベンジルエーテル7.4g(0.012mol)を得
た。これを100mlのエタノール/塩酸=9/1に
溶解して、1.5gの10%パラジウム炭素を加え、
撹拌しながら約30時間水素添加する。反応液をグ
ラスフイルター(G4)にて濾過し、濾液を減圧
濃縮する。これを100mlのピリジンに溶解し、氷
冷し撹拌しながら、ピリジン30mlに溶解したp−
塩化トシル7.1g(0.037mol)を滴下し、約12時
間反応させる。反応液を氷上に注ぎ、300mlの水
を加え、300mlのジクロロメタンにて3回抽出し、
有機層を集め、この中のピリジンを1Nの塩酸に
て3回抽出し、有機層を無水硫酸ナトリウムにて
乾燥後、減圧濃縮し、油状物を得た。これをカラ
ムクロマト(200gシリカゲル、溶離液:ジクロ
ロメタン/酢酸エチル=4/1)にて精製し、ジ
トシレート6.8g(0.0092mol)を得た。 実施例 1 窒素雰囲気下、水素化ナトリウム0.2g
(8.3mmol)を懸濁した200mlの無水THF中に、
50mlの無水THFに溶解した(R)−2,2′−ジヒ
ドロキシ−1,1′−ビナフチル100g(3.5mmol)
を、撹拌しながら滴下する。これに、50mlの無水
THFに溶解した参考例1において合成したジト
シレート2.2g(3.5mmol)を滴下したのち、約
36時間加熱環流させる。これを冷却し、少量の水
にて余剰の水素化ナトリウムを分解したのち、
THFを留去し、300mlの水を加え、300mlのジク
ロロメタンにて3回抽出し、有機層を無水硫酸マ
グネシウムにて乾燥後、減圧濃縮し、油状物を得
た。これをカラムクロマト(300gシルカゲル、
溶離液:ジクロロメタン/酢酸エチル=3/1)
にて精製し、一般式()の化合物(Ar:〔1,
1′−ビナフチル〕−2,2′−ジイル、R:C6H13
1.64g(2.86mmol)を得た。 実施例 2 窒素雰囲気下、水素化ナトリウム0.07g
(2.9mmol)を懸濁した100mlの無水THF中に、
50mlの無水THFに溶解した(R)−2,2′−ジヒ
ドロキシ−3,3′−ジフエニル−1,1′−ビナフ
チル0.50g(1.14mmol)を撹拌しながら滴下す
る。これに50mlの無水THFに溶解した参考例2
において合成したジトシレート0.85g
(1.14mmol)を滴下したのち、36時間加熱環流さ
せる。これを冷却し、少量の水にて余剰の水素化
ナトリウムを分解したのち、THFを留去して、
300mlの水を加え、300mlのジクロロメタンにて3
回抽出し、有機層を無水硫酸マグネシウムにて乾
燥後、減圧濃縮し、油状物質を得た。これをカラ
ムクロマト(300gシリカゲル、溶離液:ジクロ
ロメタン/酢酸エチル=3/1)にて精製し、一
般式()の化合物(Ar:〔3,3′−ジフエニル
−1,1′−ビナフチル〕−2,2′−ジイル、R:
C14H29)0.68g(0.812mmol)を得た。 応用例 〔光学異性体分離膜の製造〕 実施例2において合成した化合物を、その濃度
が50mMになるように、o−ニトロフエニルフエ
ニルエーテルに溶解する。この溶液を、厚さ
30μm、膜径47mm、平均細孔径0.02μm、空孔率約
40%のポリプロピレン製多孔質膜(ジユラガード
#2400ミクロフイルター)の片面側から浸漬させ
る。膜が透明になるまで十分浸透させた後、膜を
ゆつくりと引き上げ、余分に付着した液を濾紙で
除去し、光学異性体分離膜を得た。 〔アミノ酸類の光学異性体分離試験〕 上記の膜を、透過面直径30mm、容量20mlの2つ
のガラス製セルの間に挟み、このセルの片側にラ
セミ体のアミノ酸類0.1Mを含む0.1N硫酸及び
50mM過塩素酸溶液を、他方の側に0.1N硫酸溶
液を各20ml加え、25℃にて180rpmで撹拌し、約
15時間後のアミノ酸のD体、L体それぞれの透過
量を測定した。その結果を次表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a crown compound, and more particularly to a highly hydrophobic optically active crown compound useful as an optical resolving agent for amino compounds such as optically active amines and amino acids. . [Prior Art] Crown compounds are compounds that are well known to exhibit specific coordination properties for various ions such as alkali metals, alkaline earth metals, silver, and primary ammonium, and many compounds have been developed to date. types have been synthesized and reported, and examples of their use in separation, analysis, synthetic reactions, etc. have also been reported (e.g.
Synthesis is summarized in GW Goekel and SH Korzeniowski, Macrocyclic Polyether Synthesis/Springer Publishing, 1982). Among the crown compounds, optically active crown compounds containing optically active binaphthyl groups, biphenanthrene groups, helicene groups, etc. as constituent elements are known. These optically active crown compounds act as an optical resolving agent, and selectively extract and separate the optically active amino compound when the amino compound is extracted with an organic solvent. Applying this principle, attempts have been made to develop an optical isomer separation membrane using an impregnated liquid membrane in which an optically active crown compound is supported on a porous film (Japanese Patent Application No. 170-114-1982).
issue). Furthermore, a method for optical resolution of benzothiazepine derivatives using an optically active crown compound has also been reported (Japanese Patent Laid-Open Nos. 144776 and 144777 of 1983). Thus, optically active crown compounds can be said to be compounds of high interest in industrial use. However, all conventional optically active crown compounds have insufficient hydrophobicity, and in extraction systems consisting of a large amount of aqueous phase and a small amount of organic phase, distribution of the optically active crown compound to the aqueous phase is a problem. However, I have not yet been able to obtain fully satisfactory results. [Objective] An object of the present invention is to provide an optically active crown compound that has excellent optical resolution and has an extremely low distribution ratio to the aqueous phase. [Structure] As a result of intensive research to achieve the above object, the present inventors found that an optically active crown compound having a structure in which a long-chain alkyl group is introduced onto the carbon chain of a polyether ring is the most suitable for the purpose. It was found that the present invention is compatible with the present invention, and based on this knowledge, the present invention was accomplished. That is, according to the invention, the general formula An optically active crown compound represented by: In the above formula, Ar is an optionally substituted 1,1'-binaphthyl-2,2'-diyl group, and the conventionally known ones as described above are used, but in particular, [1,
1′-binaphthyl]-2,2′-diyl and [3,3′-
Diphenyl-1,1'-binaphthyl]-2,2'-diyl is preferred. R is an alkyl group having 6 to 16 carbon atoms. Note that the long-chain alkyl group R needs to be bonded to the polyether ring as described above, and even if it is bonded to the aromatic group Ar, the intended purpose cannot be achieved. In this case, the crown compound has a nonionic surfactant effect and exhibits properties undesirable as an optical resolution agent, such as foaming, micelle-forming, and emulsion-forming properties. All of the compounds of the present invention are novel compounds that have not been described in any literature, and for example, the general formula (In the formula, Ar is an optionally substituted 1,1'-binaphthyl-2,2'-diyl group, and M is an alkali metal.) (In the formula, X is chlorine, iodine or a tosyloxy group, and R is an alkyl group having 6 to 16 carbon atoms.) An alkyl derivative of 1,ω-substituted pentaethylene glycol represented by
For example, tetrahydrofuran, dioxane, N,
It can be produced by reacting in approximately equimolar amounts in an organic solvent such as N'-dimethylformamide. In addition, the compound of the general formula () can be prepared by converting an optically active aromatic dihydroxy compound into LiH, It is produced by coexisting with a base such as NaH, KOH, NaOH, etc. In addition, the compound of general formula () can be prepared by, for example, reacting a 1,2-dihydroxyalkane having 8 to 18 carbon atoms in an organic solvent such as tetrahydrofuran, dioxane, or N,N'-dimethylformamide under an inert gas atmosphere.
general formula (In the formula, Y is a protecting group for a hydroxyl group such as a benzyl group or a tetrahydropyranyl group, and X has the same meaning as above.) and LiH, NaH, KOH,
After a heating reaction at approximately 60°C in the presence of a base such as NaOH, the protective group is removed from the resulting compound, and the generated hydroxyl group is subjected to treatment such as chlorination or tosylation. Manufactured. [Effects] The optically active crown compound of the present invention exhibits excellent optical resolving power and significantly reduced aqueous phase distribution, and is advantageously used as an optical resolving agent. The optically active crown compound of the present invention can be applied to solvent extraction, impregnated liquid membranes, optical resolution columns, etc. to optically resolve amino compounds such as amino acids and amines, and can be used in the food industry, medicine and agrochemicals, etc. This will greatly contribute to the pharmaceutical industry. [Example] Next, the present invention will be explained in more detail with reference to Examples and Reference Examples. Reference example 1 [Compound of general formula () (X=OTs, R=
Synthesis of C 6 H 13 ) Sodium hydride, 1.06 g under nitrogen atmosphere
(0.04 mol) suspended in 200 ml of anhydrous tetrahydrofuran (THF), 2.92 g of 1,2-dihydroxyoctane dissolved in 100 ml of anhydrous THF
(0.02 mol) was added dropwise with stirring. 100 for this
15.7 g (044 mol) of 2-(2'-0-benzylethoxy)-ethyl tosylate dissolved in ml of anhydrous THF
After slowly dropping the mixture, heat and reflux for about 36 hours. After cooling, excess sodium hydride is decomposed with a small amount of water, THF is distilled off, 500 ml of water is added, and the mixture is extracted three times with 500 ml of dichloromethane.
The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to obtain an oil. This was purified by column chromatography (200 g silica gel, eluent: dichloromethane/ethyl acetate = 5/1) to obtain 7.23 g (0.0144 mol) of dibenzyl ether. Dissolve this in 100ml of ethanol/hydrochloric acid = 9/1 and add 1.5g of 10
% palladium on carbon and hydrogenate for about 30 hours while stirring. Pass the reaction solution through a glass filter (G4)
Filter and concentrate the filtrate under reduced pressure. 100ml of this
of pyridine, cooled on ice, and dissolved in 30 ml of pyridine with stirring. p-Tosyl chloride 8.3g
(0.0435 mol) was added dropwise and allowed to react for about 12 hours.
Pour the reaction solution onto ice, add 300 ml of water, extract 3 times with 300 ml of dichloromethane, collect the organic layer,
Pyridine in this was extracted three times with 1N hydrochloric acid,
The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to obtain an oil. Column chromatography (300
Purified with g silica gel, elution rate: dichloromethane/ethyl acetate = 4/1), ditosylate 7.4g
(0.0117mol) was obtained. Reference Example 2 [Compound of general formula () (X=OTs, R=
Synthesis of C 14 H 29 ) 1.59 g of sodium hydride under nitrogen atmosphere
(0.066 mol) suspended in 300 ml of anhydrous THF,
7.74 g (0.03 mol) of 1,2-dihydroxyheptadecane dissolved in 100 ml of anhydrous THF are added dropwise with stirring. This was dissolved in 100ml of anhydrous THF.
After slowly dropping 23.1 g (0.066 mol) of -(2'-0-benzylethoxy)-ethyl tosylate, the mixture was heated under reflux for about 36 hours. Thereafter, 0.8 g (0.033 mol) of sodium hydride and 11.6 g (0.033 mol) of the above tosylate were added, and the mixture was further heated and refluxed for about 36 hours. After cooling, add a small amount of water to decompose excess sodium hydride, and then distill off THF.
Add 500ml of water and add 500ml of dichloromethane.
Extract times. The organic layers were collected, dried over anhydrous sodium sulfate, and concentrated under reduced pressure to obtain an oil. This was purified by column chromatography (200 g silica gel, eluent: dichloromethane/ethyl acetate = 5/1) to obtain 7.4 g (0.012 mol) of dibenzyl ether. Dissolve this in 100ml of ethanol/hydrochloric acid = 9/1, add 1.5g of 10% palladium on carbon,
Hydrogenate for about 30 hours while stirring. The reaction solution is filtered using a glass filter (G4), and the filtrate is concentrated under reduced pressure. Dissolve this in 100 ml of pyridine, cool on ice, and stir while stirring.
7.1 g (0.037 mol) of tosyl chloride is added dropwise and the mixture is allowed to react for about 12 hours. Pour the reaction solution onto ice, add 300 ml of water, and extract 3 times with 300 ml of dichloromethane.
The organic layers were collected, and the pyridine therein was extracted three times with 1N hydrochloric acid. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to obtain an oil. This was purified by column chromatography (200 g silica gel, eluent: dichloromethane/ethyl acetate = 4/1) to obtain 6.8 g (0.0092 mol) of ditosylate. Example 1 Sodium hydride 0.2g under nitrogen atmosphere
(8.3 mmol) was suspended in 200 ml of anhydrous THF.
100 g (3.5 mmol) of (R)-2,2'-dihydroxy-1,1'-binaphthyl dissolved in 50 ml of anhydrous THF
Add dropwise while stirring. Add 50ml of anhydrous
After dropping 2.2 g (3.5 mmol) of the ditosylate synthesized in Reference Example 1 dissolved in THF, approx.
Heat to reflux for 36 hours. After cooling this and decomposing excess sodium hydride with a small amount of water,
THF was distilled off, 300 ml of water was added, and the mixture was extracted three times with 300 ml of dichloromethane. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to obtain an oil. This was subjected to column chromatography (300g silica gel,
Eluent: dichloromethane/ethyl acetate = 3/1)
The compound of general formula () (Ar: [1,
1'-binaphthyl]-2,2'-diyl, R: C 6 H 13 )
1.64g (2.86mmol) was obtained. Example 2 Sodium hydride 0.07g under nitrogen atmosphere
(2.9 mmol) was suspended in 100 ml of anhydrous THF.
0.50 g (1.14 mmol) of (R)-2,2'-dihydroxy-3,3'-diphenyl-1,1'-binaphthyl dissolved in 50 ml of anhydrous THF is added dropwise with stirring. Reference example 2 in which this was dissolved in 50ml of anhydrous THF
0.85g of ditosylate synthesized in
(1.14 mmol) was added dropwise, and the mixture was heated under reflux for 36 hours. After cooling this and decomposing excess sodium hydride with a small amount of water, THF is distilled off.
Add 300ml of water and add 300ml of dichloromethane.
After extraction, the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to obtain an oily substance. This was purified by column chromatography (300 g silica gel, eluent: dichloromethane/ethyl acetate = 3/1), and a compound of general formula () (Ar: [3,3'-diphenyl-1,1'-binaphthyl]- 2,2'-diyl, R:
C14H29 ) 0.68g (0.812mmol) was obtained. Application Example [Manufacture of optical isomer separation membrane] The compound synthesized in Example 2 is dissolved in o-nitrophenyl phenyl ether to a concentration of 50 mM. Add this solution to a thickness of
30μm, membrane diameter 47mm, average pore diameter 0.02μm, porosity approx.
Immerse from one side of a 40% polypropylene porous membrane (Jyuraguard #2400 Microfilter). After sufficiently permeating the membrane until it became transparent, the membrane was slowly pulled up and excess liquid was removed with a filter paper to obtain an optical isomer separation membrane. [Optical isomer separation test for amino acids] The above membrane was sandwiched between two glass cells with a transmission surface diameter of 30 mm and a capacity of 20 ml, and 0.1N sulfuric acid containing 0.1M of racemic amino acids was placed on one side of the cell. as well as
Add 20ml each of 50mM perchloric acid solution and 0.1N sulfuric acid solution to the other side and stir at 180rpm at 25℃ to approx.
After 15 hours, the amount of permeation of each of the D-form and L-form of the amino acid was measured. The results are shown in the table below. 【table】

Claims (1)

【特許請求の範囲】 1 一般式 (式中、Arは置換されてもよい1,1′−ビナ
フチル−2,2′−ジイル基、Rは炭素数6〜16の
アルキル基である) で表される光学活性なクラウン化合物。 2 Arが、〔1,1′−ビナフチル〕−2,2′−ジイ
ル又は〔3,3′−ジフエニル−1,1′−ビナフチ
ル〕−2,2′−ジイルである特許請求の範囲第1
項の化合物。
[Claims] 1. General formula (In the formula, Ar is an optionally substituted 1,1'-binaphthyl-2,2'-diyl group, and R is an alkyl group having 6 to 16 carbon atoms.) An optically active crown compound represented by: 2. Claim 1 in which Ar is [1,1'-binaphthyl]-2,2'-diyl or [3,3'-diphenyl-1,1'-binaphthyl]-2,2'-diyl
compound of term.
JP4936586A 1986-03-06 1986-03-06 Crown compound Granted JPS62207267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4936586A JPS62207267A (en) 1986-03-06 1986-03-06 Crown compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4936586A JPS62207267A (en) 1986-03-06 1986-03-06 Crown compound

Publications (2)

Publication Number Publication Date
JPS62207267A JPS62207267A (en) 1987-09-11
JPH0354949B2 true JPH0354949B2 (en) 1991-08-21

Family

ID=12828988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4936586A Granted JPS62207267A (en) 1986-03-06 1986-03-06 Crown compound

Country Status (1)

Country Link
JP (1) JPS62207267A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136033A (en) * 1987-08-24 1992-08-04 Allied-Signal Inc. Ion selective fluorogenic reagents
US9475989B2 (en) * 2013-07-31 2016-10-25 Semiconductor Energy Laboratory Co., Ltd. Binaphthyl compound, liquid crystal composition, liquid crystal element, and liquid crystal display device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.HETEROCYCLIC CHEM.=1980 *

Also Published As

Publication number Publication date
JPS62207267A (en) 1987-09-11

Similar Documents

Publication Publication Date Title
EP1881954B1 (en) Process for preparing cinacalcet hydrochloride
JP2008068238A (en) Gas separation membrane and its utilization
KR20210057031A (en) Methyl 6-(2,4-dichlorophenyl)-5-[4-[(3S)-1-(3-fluoropropyl)pyrrolidin-3-yl]oxyphenyl]-8,9-dihydro- Method for producing 7H-benzo[7]annulene-2-carboxylate
JP2584498B2 (en) New crown ether compounds and separating agents
US9782748B2 (en) Synthesis of polymeric ionic liquids using a photochemical polymerization process
CN109689667B (en) Porous chiral material and use thereof
WO2013181345A2 (en) Synthesis of polymeric ionic liquids using a photochemical polymerization process
JPH0357816B2 (en)
Ahn et al. Pervaporation of an aqueous ethanol solution through hydrophilic zeolite membranes
Harit et al. New polymeric membrane incorporating a tetrapyrazolic macrocycle for the selective transport of cesium cation
JPH0354949B2 (en)
JP4588123B2 (en) Crown calix [4] arene, its production method and its use for selective extraction of cesium
JP6071502B2 (en) Purification method by hydrogenation of N-alkyl substituted pyrrolidone
JP2935555B2 (en) Separation and purification of polyunsaturated fatty acids
EP3733732A1 (en) Polyphenylene compound
Erdemir et al. Synthesis and chiral recognition abilities of new calix [6] arenes bearing amino alcohol moieties
US3558440A (en) Method of separating the rare earths by fractional co-distillation of their volatile chelate derivatives
JP4899122B2 (en) Organic compound separation membrane and organic compound separation method
JP5877961B2 (en) Gas separation gel membrane
JP4362585B2 (en) Cellulose ester, pervaporation separation membrane, pervaporation separation method, and pervaporation separation apparatus
JP4405682B2 (en) Calixarene derivatives, preparation methods and use of said derivatives for actinide and lanthanide extraction
WO2001036359A1 (en) Optically active fluorinated binaphthol derivative
JPH0354950B2 (en)
JP3993537B2 (en) Polyethylene glycol mono (para-alkylphenyl) ether compound containing 13 carbon atoms and method for producing the same
JP3115885B2 (en) Oxygen separation membrane

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term