JPH0354843B2 - - Google Patents

Info

Publication number
JPH0354843B2
JPH0354843B2 JP13462086A JP13462086A JPH0354843B2 JP H0354843 B2 JPH0354843 B2 JP H0354843B2 JP 13462086 A JP13462086 A JP 13462086A JP 13462086 A JP13462086 A JP 13462086A JP H0354843 B2 JPH0354843 B2 JP H0354843B2
Authority
JP
Japan
Prior art keywords
thermistor
thin film
substrate
composite oxide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13462086A
Other languages
Japanese (ja)
Other versions
JPS62291003A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13462086A priority Critical patent/JPS62291003A/en
Publication of JPS62291003A publication Critical patent/JPS62291003A/en
Publication of JPH0354843B2 publication Critical patent/JPH0354843B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば複写機のトナー定着ローラや
オフイス・オートメシヨン(OA)機器の感熱部
等に適用して好適な薄膜サーミスタの製造方法の
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a thin film thermistor suitable for application to, for example, toner fixing rollers of copying machines and heat-sensitive parts of office automation (OA) equipment. Regarding improvements.

(従来の技術) 従来、複写機のトナー定着ローラや前記OA機
器等においては、その温度を検出すべき対象物に
サーミスタを機械的に接触させ、100℃〜300℃の
温度範囲で温度を検出している。
(Prior Art) Conventionally, in the toner fixing roller of a copying machine, the above-mentioned office automation equipment, etc., a thermistor is mechanically brought into contact with the object whose temperature is to be detected, and the temperature is detected in the temperature range of 100°C to 300°C. are doing.

ところで、この種のサーミスタは、成分および
製造方法等から種々のものが開発されており、例
えば金属複合酸化物焼結サーミスタ、Sic薄膜サ
ーミスタ、金属複合酸化物薄膜サーミスタ等が挙
げられる。
By the way, various types of thermistors of this kind have been developed based on their components, manufacturing methods, etc., such as metal composite oxide sintered thermistors, SiC thin film thermistors, metal composite oxide thin film thermistors, and the like.

金属複合酸化物焼結サーミスタは、マンガン
Mn、コバルトCo、ニツケルNiまたはMn,
Co,Niを主成分としこれに銅Cuまたは鉄Fe等
を加えた金属複合酸化物を混合して成型すると
ともに、1200℃〜1300℃の高温で焼結して作つ
たものである。
Metal composite oxide sintered thermistor is manganese
Mn, Cobalt Co, Nickel Ni or Mn,
It is made by mixing and molding a metal composite oxide whose main components are Co and Ni, with the addition of copper, Cu or iron, and then sintering at a high temperature of 1200°C to 1300°C.

Sic薄膜サーミスタは、Sic焼結体をターゲツ
トとし、アルゴンArガス雰囲気中で高周波ス
パッタリングにより、アルミナ基板上にSic薄
膜を形成させたものである。スパツタリング中
の基板温度は650℃〜750℃である。
A SiC thin film thermistor is a SiC thin film formed on an alumina substrate by high frequency sputtering in an argon gas atmosphere using a SiC sintered body as a target. The substrate temperature during sputtering is 650°C to 750°C.

金属複合酸化物薄膜サーミスタには2種類あ
り、その1つは、Mn,Co,Niの中の2〜3成
分中にクロムCrまたはFe等を加えたサーミス
タ材料を用いて焼結ターゲツトを作製する。さ
らに、この焼結ターゲツトを用いてArガス雰
囲気中でスパツタによりアルミナ基板上に薄膜
を形成する。次いで、大気中で熱処理して薄膜
サーミスタを完成する。他のもう1つは、
Mn3Co2Ni1よりなる酸化物の焼結ターゲット
を使用し、Arに体積比で3%以上の酸素を混
合させたスパツタガス中で400℃〜500℃に加熱
した高融点ガラス基板上にサーミスタ薄膜を形
成したものである。
There are two types of metal composite oxide thin film thermistors; one is a thermistor material in which chromium Cr or Fe is added to two to three components of Mn, Co, and Ni to create a sintered target. . Furthermore, using this sintered target, a thin film is formed on an alumina substrate by sputtering in an Ar gas atmosphere. Next, heat treatment is performed in the atmosphere to complete the thin film thermistor. Another one is
A thermistor thin film is formed on a high melting point glass substrate using a sintered target of Mn3Co2Ni1 oxide and heated to 400°C to 500°C in a sputtering gas containing Ar mixed with 3% or more oxygen by volume. It is.

(発明が解決しようとする問題点) しかし、以上のようなサーミスタには次に述べ
る様な種々の問題点がある。
(Problems to be Solved by the Invention) However, the thermistor described above has various problems as described below.

金属複合酸化物焼結サーミスタは、小型化に
不向きであり、かつ、熱応答時定数を短くする
のが困難である。
Metal composite oxide sintered thermistors are not suitable for miniaturization, and it is difficult to shorten the thermal response time constant.

次に、Sic薄膜サーミスタは、結晶性によい
安定なSic膜を得るためには基板の温度を650℃
〜750℃と高くすることが必要であり、生産性
の低下が否めない。また、サーミスタ定数が約
2000Kと小さく、温度変化による抵抗値の変化
が少ないために高精度に温度を検出できない。
サーミスタ定数が温度に依存して変化する。こ
の結果、広範囲にわたつて温度を検出する場
合、その直線性が劣る。また、スパツタガス中
に微量の窒素が混入すると抵抗値が大きく変化
し、一定の品質のものを得るのが困難である。
Next, for SiC thin film thermistors, in order to obtain a stable SiC film with good crystallinity, the temperature of the substrate must be raised to 650℃.
It is necessary to raise the temperature to ~750°C, which undeniably lowers productivity. Also, the thermistor constant is approximately
Since it is small at 2000K and its resistance value changes little due to temperature changes, it is not possible to detect temperature with high accuracy.
Thermistor constant changes depending on temperature. As a result, when temperature is detected over a wide range, linearity is poor. Further, if a small amount of nitrogen is mixed into the sputtering gas, the resistance value changes greatly, making it difficult to obtain a product of constant quality.

金属複合酸化物薄膜サーミスタのうち前者の
ものは、スパツタのままであるので熱的に不安
定であつてサーミスタとして使用し難い。この
ため1000℃前後の高温で熱処理する必要があ
る。また、サーミスタの特性は熱処理温度に依
存し、条件設定が困難である。また、高温によ
る熱処理であるために、基板および電極材料が
限定され、低価格化が困難である。
Among metal composite oxide thin film thermistors, the former remains in the form of spatter and is therefore thermally unstable and difficult to use as a thermistor. For this reason, it is necessary to perform heat treatment at a high temperature of around 1000°C. Furthermore, the characteristics of the thermistor depend on the heat treatment temperature, making it difficult to set the conditions. Furthermore, since the heat treatment is performed at a high temperature, substrate and electrode materials are limited, making it difficult to reduce costs.

一方、後者のものは、結晶性のよい熱的に安定
な複合酸化物薄膜サーミスタを得るためには、基
板の温度を高温度(例えば400℃〜500℃程度)に
設定してサーミスタ薄膜を形成することが必要で
あり、このため生産性が低下する。
On the other hand, in the latter case, in order to obtain a thermally stable composite oxide thin film thermistor with good crystallinity, the temperature of the substrate must be set at a high temperature (for example, around 400°C to 500°C) to form the thermistor thin film. This reduces productivity.

本発明は上記実情に鑑みてなされたもので、サ
ーミスタ定数が大きく、熱安定性に優れ、熱応答
時定数が極めて短い薄膜サーミスタの製造方法を
提供することを目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a thin film thermistor having a large thermistor constant, excellent thermal stability, and an extremely short thermal response time constant.

(問題点を解決するための手段) 本発明による薄膜サーミスタの製造方法は、絶
縁性基板上に、Mn,Co,Niの複合酸化物または
Mn,Co,Niの2〜3成分にAl,Fe,Cr,Cuの
中の1つ以上の成分を加えた複合酸化物の焼結体
をターゲツトとして使用し、かつArガス雰囲気
中で前記基板側に高周波のバイアス電圧を印加し
た状態で高周波スパッタリングにより前記成分に
よる複合酸化物のサーミスタ薄膜を形成するもの
である。
(Means for Solving the Problems) The method for manufacturing a thin film thermistor according to the present invention includes forming a composite oxide of Mn, Co, and Ni on an insulating substrate.
A sintered body of a composite oxide in which two to three components of Mn, Co, and Ni are added with one or more components of Al, Fe, Cr, and Cu is used as a target, and the substrate is exposed to the substrate in an Ar gas atmosphere. A thermistor thin film of a composite oxide made of the above-mentioned components is formed by high-frequency sputtering with a high-frequency bias voltage applied to the side.

(作用) 従つて、以上のような手段による薄膜サーミス
タの製造方法によれば、絶縁性基板上に該基板側
に高周波バイアス電圧を印加した状態で金属複合
酸化物薄膜を形成するために、基板温度が低く設
定できてサーミスタ定数を大きくし得、熱的安定
性に優れ、かつ、熱応答時定数の短いものを作製
することができる。
(Function) Therefore, according to the method for manufacturing a thin film thermistor using the above means, in order to form a metal composite oxide thin film on an insulating substrate while applying a high frequency bias voltage to the substrate side, The temperature can be set low, the thermistor constant can be increased, and a thermistor with excellent thermal stability and a short thermal response time constant can be manufactured.

(実施例) 以下、本発明の実施例について図面を参照して
説明する。第1図は薄膜サーミスタの断面を示す
図であつて、1は絶縁性基板であつて、これは例
えば単結晶シリコン基板上に、例えば熱酸化、
CVD法またはスパツタ法を用いて酸化シリコン、
窒化シリコンアルミナ等の絶縁層を施したものを
使用する。この絶縁性基板1の上側にサーミスタ
薄膜2が形成される。このサーミスタ薄膜2の形
成にあつては、Mn,Co,Niの金属複合酸化物ま
たはMn,Co,Niの中に2〜3成分にAl,Cr,
Cu,Fe等の中の1つ以上の成分を加えた金属複
合酸化物を焼結してターゲツトとする。この焼結
ターゲツトは通常のサーミスタ材料の一般的製造
方法により製作したものでもよい。勿論、前記成
分の金属複合酸化物焼結体であれば、他の方法で
製造したものでもよい。そして、以上のようなタ
ーゲツトを用いてArガス雰囲気中で高周波スパ
ッタリングを行い、前記絶縁性基板上に前記成分
の金属複合酸化物のサーミスタ薄膜2を形成す
る。このスパッタリング中、絶縁性基板1側には
バイアスとして50W以下の高周波電力を印加す
る。このバイアス電圧に印加により、成膜中の基
板表面はスパツタ粒子よりもエネルギーの大きい
Arイオン等によつて衝撃を受けることになる。
その結果、基板表面は加熱を受けたと同様の現象
を呈する。また、イオンの存在下では核生成が促
進され、サーミスタ薄膜の結晶性を向上させるの
に寄与する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a cross section of a thin film thermistor, and 1 is an insulating substrate, which is formed by, for example, thermal oxidation on a single crystal silicon substrate.
Silicon oxide using CVD method or sputtering method,
Use a material coated with an insulating layer such as silicon nitride alumina. A thermistor thin film 2 is formed on the upper side of this insulating substrate 1. In forming the thermistor thin film 2, a metal composite oxide of Mn, Co, and Ni or two to three components of Al, Cr, and Mn, Co, and Ni are used.
A metal composite oxide containing one or more of Cu, Fe, etc. is used as a target by sintering. The sintered target may be manufactured using conventional methods for manufacturing conventional thermistor materials. Of course, the metal composite oxide sintered body having the above-mentioned components may be manufactured by other methods. Then, high frequency sputtering is performed in an Ar gas atmosphere using the target as described above to form a thermistor thin film 2 of the metal composite oxide of the above components on the insulating substrate. During this sputtering, high frequency power of 50 W or less is applied as a bias to the insulating substrate 1 side. By applying this bias voltage, the substrate surface during film formation has more energy than the sputter particles.
It will be bombarded by Ar ions, etc.
As a result, the substrate surface exhibits a phenomenon similar to that of being heated. In addition, nucleation is promoted in the presence of ions, contributing to improving the crystallinity of the thermistor thin film.

なお、スパツタリング中の基板温度は250℃〜
600℃、望ましくは300℃〜500℃が適当である。
このサーミスタ薄膜形成方法はこのままでは低温
用薄膜サーミスタとして使用することができる。
高温用としては大気中で使用温度よりもやや高い
温度で熱処理すればよいが、低温用では必ずしも
基板の加熱は必要としない。さらに、成膜後の熱
処理は比較的短時間で充分な効果が得られる。図
中3は電極を示す。
In addition, the substrate temperature during sputtering is 250℃~
A temperature of 600°C, preferably 300°C to 500°C is suitable.
This thermistor thin film forming method can be used as a low temperature thin film thermistor as it is.
For high-temperature use, heat treatment may be performed in the atmosphere at a temperature slightly higher than the operating temperature, but for low-temperature use, heating of the substrate is not necessarily required. Furthermore, a sufficient effect can be obtained in a relatively short time by heat treatment after film formation. In the figure, 3 indicates an electrode.

次に、サーミスタ薄膜2の製造具体例およびそ
の製造された薄膜サーミスタの特性について述べ
る。先ず、Mn−15Co−5Ni(wt%)の金属酸化
物焼結体をターゲツトとして用意し、このターゲ
ツトを用いて圧力1mTorrのArガス雰囲気中で高
周波スパッタリングにより、前記絶縁性基板1上
に複合酸化物のサーミスタ薄膜2形成した。この
とき、高周波電力が200W、成膜速度が0.8μm/
時とした。なお、このスパツタリング中の基板1
には高周波のバイアス電圧を印加した。このバイ
アスの高周波電力は20Wに設定するとともに、基
板それ自体は特に加熱を行わなかつた。第2図は
以上の製造具体例により形成されたサーミスタ薄
膜2のX線回折結果の図を示すものである。しか
して、以上のように形成したサーミスタ薄膜2を
大気中で300℃、48時間熱処理した結果、サーミ
スタ定数が4450K、比抵抗が45Ω・cm(150℃)
の薄膜サーミスタが得られた。
Next, a specific example of manufacturing the thermistor thin film 2 and the characteristics of the manufactured thin film thermistor will be described. First, a metal oxide sintered body of Mn-15Co-5Ni (wt%) is prepared as a target, and using this target, composite oxide is deposited on the insulating substrate 1 by high frequency sputtering in an Ar gas atmosphere at a pressure of 1 mTorr. A thermistor thin film 2 was formed. At this time, the high frequency power was 200W, and the deposition rate was 0.8μm/
Sometimes. Note that the substrate 1 during this sputtering
A high frequency bias voltage was applied to. The high frequency power of this bias was set at 20 W, and the substrate itself was not particularly heated. FIG. 2 shows an X-ray diffraction result of the thermistor thin film 2 formed by the above-described manufacturing example. As a result of heat-treating the thermistor thin film 2 formed as described above at 300°C in the air for 48 hours, the thermistor constant was 4450K and the specific resistance was 45Ωcm (150°C).
A thin film thermistor was obtained.

従つて、以上のような実施例の薄膜サーミスタ
の製造方法によれば、サーミスタ薄膜2が例えば
0.5〜数μmの薄い膜厚に形成することができ、か
つ、サーミスタ定数が4450Kと高くできる。この
結果、温度の検出精度が高く、熱応答時定数の短
い薄膜サーミスタを得ることができる。また、サ
ーミスタ薄膜2の結晶性がよく、そのまま低温用
薄膜サーミスタとして使用できる。また、高温用
として熱処理後、使用する場合でも比較的短時間
で熱的に安定な薄膜サーミスタを得ることができ
る。また、以上のような特性を持つサーミスタ薄
膜2を形成する時の基板温度は従来よりも低い温
度で充分であり、用途(低温用)によつては基板
加熱を完全に省略できる。このため真空中におけ
る加熱時間が大幅に短縮もしくは省略でき、生産
性の向上に大きく寄与する。
Therefore, according to the method for manufacturing a thin film thermistor of the embodiments described above, the thermistor thin film 2 is, for example,
It can be formed to a thin film thickness of 0.5 to several μm, and the thermistor constant can be as high as 4450K. As a result, a thin film thermistor with high temperature detection accuracy and a short thermal response time constant can be obtained. Furthermore, the thermistor thin film 2 has good crystallinity and can be used as it is as a thin film thermistor for low temperatures. Further, even when used after heat treatment for high temperature use, a thermally stable thin film thermistor can be obtained in a relatively short time. Further, when forming the thermistor thin film 2 having the above-mentioned characteristics, it is sufficient that the substrate temperature is lower than that of the conventional one, and depending on the application (for low temperature applications), substrate heating can be completely omitted. Therefore, the heating time in vacuum can be significantly shortened or omitted, greatly contributing to improved productivity.

(発明の効果) 以上詳記したように本発明によれば、絶縁基板
上に複合酸化物のサーミスタ薄膜を形成する際、
基板側に高周波のバイアス電圧を印加したことに
より、結晶性のよい、熱的安定性に優れたものが
得られ、かつ、熱応答時定数を短くでき、生産性
の向上に寄与し得る薄膜サーミスタの製造方法を
提供できる。
(Effects of the Invention) As detailed above, according to the present invention, when forming a thermistor thin film of a composite oxide on an insulating substrate,
By applying a high-frequency bias voltage to the substrate side, a thin film thermistor with good crystallinity and excellent thermal stability can be obtained, and the thermal response time constant can be shortened, contributing to improved productivity. can provide a manufacturing method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の実施例を説明す
るために示したもので、第1図は薄膜サーミスタ
の断面図、第2図はサーミスタ薄膜のX線回折図
形を示す図である。 1…絶縁性基板、2…複合酸化物のサーミスタ
薄膜、3…電極。
1 and 2 are shown to explain an embodiment of the present invention, FIG. 1 is a cross-sectional view of a thin film thermistor, and FIG. 2 is a diagram showing an X-ray diffraction pattern of the thermistor thin film. DESCRIPTION OF SYMBOLS 1... Insulating substrate, 2... Composite oxide thermistor thin film, 3... Electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁性基板上に、Mn,Co,Niの複合酸化物
またはMn,Co,Niの2〜3成分にAl,Fe,Cr,
Cuの中の1つ以上の成分を加えた複合酸化物の
焼結体をターゲツトとして使用し、かつ、Arガ
ス雰囲気中で前記基板側に高周波のバイアス電圧
を印加した状態で高周波スパッタリングにより前
記成分による複合酸化物のサーミスタ薄膜を形成
したことを特徴とする薄膜サーミスタの製造方
法。
1. On an insulating substrate, a composite oxide of Mn, Co, and Ni or 2 to 3 components of Mn, Co, and Ni with Al, Fe, Cr,
Using a sintered composite oxide containing one or more components of Cu as a target, and applying a high frequency bias voltage to the substrate in an Ar gas atmosphere, the components are sputtered by high frequency sputtering. 1. A method for manufacturing a thin film thermistor, characterized in that a thermistor thin film of a composite oxide is formed.
JP13462086A 1986-06-10 1986-06-10 Manufacture of thin film thermistor Granted JPS62291003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13462086A JPS62291003A (en) 1986-06-10 1986-06-10 Manufacture of thin film thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13462086A JPS62291003A (en) 1986-06-10 1986-06-10 Manufacture of thin film thermistor

Publications (2)

Publication Number Publication Date
JPS62291003A JPS62291003A (en) 1987-12-17
JPH0354843B2 true JPH0354843B2 (en) 1991-08-21

Family

ID=15132641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13462086A Granted JPS62291003A (en) 1986-06-10 1986-06-10 Manufacture of thin film thermistor

Country Status (1)

Country Link
JP (1) JPS62291003A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04170003A (en) * 1990-10-09 1992-06-17 Mitsubishi Materials Corp Thin-film thermistor and its manufacture
JPH04170001A (en) * 1990-10-09 1992-06-17 Mitsubishi Materials Corp Thin-film thermistor and its manufacture

Also Published As

Publication number Publication date
JPS62291003A (en) 1987-12-17

Similar Documents

Publication Publication Date Title
JPS647483B2 (en)
US4063211A (en) Method for manufacturing stable metal thin film resistors comprising sputtered alloy of tantalum and silicon and product resulting therefrom
JP2000208438A (en) SiC SEMICONDUCTOR DEVICE
JPH0354843B2 (en)
JPH0354841B2 (en)
JPS634321B2 (en)
Bergmann Importance of electron-phonon processes in the inelastic lifetime of conduction electrons
US10263081B2 (en) Method for making an electrical contact on a graphite layer, contact obtained by using such a method and electronic device using such a contact
JPH0354842B2 (en)
JPS62293701A (en) Thin film temperature sensor and manufacture of the same
JP2587426B2 (en) Manufacturing method of thin film thermistor
JPH04170003A (en) Thin-film thermistor and its manufacture
CN114807859B (en) Platinum film with high resistance temperature coefficient and preparation method thereof
JPH04170002A (en) Thin-film thermistor and its manufacture
WO2022210428A1 (en) Cr-si film
JPH04170001A (en) Thin-film thermistor and its manufacture
JPS6019642B2 (en) Manufacturing method of thermistor
JPH03131001A (en) Resistance temperature sensor
JPS5923082B2 (en) Thermistor and its manufacturing method
JPH04192302A (en) Thin film thermistor element
JPH02159756A (en) Thin film resistance element of tantalum
JPS6395601A (en) Resistance thin film
JPS6024562B2 (en) resistive thin film
JPS6024561B2 (en) resistive film thin
WO1992009993A1 (en) Method for manufacturing thermistor of positive characteristic