JPH0354558B2 - - Google Patents

Info

Publication number
JPH0354558B2
JPH0354558B2 JP61284150A JP28415086A JPH0354558B2 JP H0354558 B2 JPH0354558 B2 JP H0354558B2 JP 61284150 A JP61284150 A JP 61284150A JP 28415086 A JP28415086 A JP 28415086A JP H0354558 B2 JPH0354558 B2 JP H0354558B2
Authority
JP
Japan
Prior art keywords
nitrile
gly
asp
pro
amide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61284150A
Other languages
Japanese (ja)
Other versions
JPS63137688A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP61284150A priority Critical patent/JPS63137688A/en
Publication of JPS63137688A publication Critical patent/JPS63137688A/en
Publication of JPH0354558B2 publication Critical patent/JPH0354558B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、ニトリル基の水和反応を促進させ、
アミド基に転化させる触媒機能を有する水溶性酵
素タンパクを用いたアミド化合物の製造法に関す
る。産業上重要なアミド化合物として、例えば、
アクリルアミド、メタクリルアミド、ニコチン酸
アミド等が知られている。アクリルアミドは高分
子凝集剤、紙力増強剤および繊維改良剤などに利
用されており、メタクリルアミドは塗料、凝集
剤、接着剤、光架橋性化合物などに利用されてい
る。また、ニコチン酸アミドは強化剤、医薬、家
畜飼料などに利用されている。 これら産業上重要なアミド化合物を効率よく工
業的に製造する上で、本発明の水溶性酵素タンパ
クを用いた製造法を利用することができる。 (従来の技術) ニトリル基を水和し、アミド基に転化させる触
媒を用いてアミド化合物を製造する技術におい
て、酸またはアルカリを触媒として用い、加熱
処理する方法、一部のニトリル化合物、例え
ば、アクリロニトリル、メタクリロニトリルなど
に関しては、銅触媒を用い加熱処理する方法、
微生物触媒を用いる方法が知られている。 しかし、ニトリル基を収率よく、温和な条件下
で迅速に、しかも、できるだけ少量の触媒でアミ
ド基に転化させる点においては、酸またはアルカ
リ触媒を用いる方法では転化率が低く、転化率を
向上させるために反応温度を高めると、副生成物
が生じるといつた欠点があつた。また、銅触媒を
用いる方法においても、加熱処理が必要のため、
副生成物のカルボン酸アンモニウムが生じたり、
二重結合を有するニトリル化合物では、重合物が
生じてしまう欠点があつた。一方、微生物触媒を
用いる方法では、常温で水和反応を行なうことが
でき、転化率も高く好ましい方法と言えるが、微
生物の自己消化や細胞壁の破砕により、微生物体
内の無機物や種々の有機物が漏曳、反応系内に不
純物として混入してしまうといつた微生物触媒特
有の欠点があつた。特に微生物体内から漏曳する
極微量な重金属イオン等は、重合促進剤としての
機能を示す場合が多く、二重結合を有するニトリ
ル化合物のアミド化に際し、重合物を発生させて
しまう欠点となつていた。また、微生物体内でア
ミド化合物がカルボン酸アンモニウム化合物にさ
らに水和転化し、ここに生じたカルボン酸アンモ
ニウムが微生物の触媒機能を失活させてしまう欠
点も無視できなかつた。 (発明が解決しようとする問題点) ニトリル基をアミド基に水和転化する上で、
収率よく、迅速に、温和な条件下で、でき
るだけ少量の触媒で、しかも、反応系内に不純
物を混入させることのない触媒を用いたアミド化
合物の製造法の開発が望まれている。 (問題点を解決するための手段) 本発明者らは、このような問題点の解決に当
り、ニトリル基をアミド基に水和転化させる触媒
を酵素タンパクに求め、タンパクの表面電荷のPH
依存性、イオン交換樹脂との相互作用、分子ふる
い効果、泳動効果等の原理を応用することによつ
て、種々の酵素タンパクをバクテリア、酵母、カ
ビ、放線菌等より単離精製して、ニトリル基の水
和活性能の有無を試験した。その結果、分子量が
26500±500と28500±500の相異なる二つのサブユ
ニツトから構成され、ニトリル基をアミド基に転
化させる触媒機能を有する新規酵素タンパクを見
い出し本発明を完成した。 本酵素はロドコツカス属に属するspAK−32菌
株(微工研菌寄第1046号)の細胞内酵素であり、
AK−32菌を通常の栄養培地に誘導物質を添加し
た培養液中で増殖させることにより、菌体内に生
産させることができる。培養条件の一例をあげれ
ば、下記のとおりである。 培養液組成 肉エキス 1.0重量% ペプトン 1.0 〃 グルコース 1.0 〃 NaCl 0.1 〃 ミネラル水溶液 96.4 〃 イソブチルアミド 0.5 〃 PH 7.0 〃 ミネラル水溶液 リン酸2水素カリウム 0.1重量% 硝酸カリウム 0.1 〃 硫酸アンモニウム 0.1 〃 硫酸マグネシウム 0.05 〃 硫酸第一鉄 0.005 〃 硫酸マンガン 0.005 〃 蒸留水 99.64 〃 30℃、3日間培養 菌体内に存在するニトリル基をアミド基に水和
転化させ得る酵素(以下、AKE−32タンパクと
記載)は、菌体をフレンチプレス法あるいはグラ
スビーズ存在下におけるホモジナイズ法によつて
破砕した後、酵素の安定PH領域で通常の硫安分
画、透析、陰イオン交換樹脂処理、ゲルクロマト
分離の手順を経て、単離精製することができる。
さらに、凍結乾燥を行なうことによつて、活性能
を維持させたままAKE−32タンパクを固形化す
ることも可能である。AKE−32タンパクの使用
に当つては、精製酵素、粗酵素液、菌体破砕液の
いずれでの状態においても使用が可能であるが、
アミダーゼが共存する場合は、これを分離してお
かないと、生成したアミドがカルボン酸アンモニ
ウムまで水和されてしまう恐れがある。 AKE−32タンパクの使用条件範囲を記載する
と、以下のとおりである。PH6.0〜10.0好ましく
はPH8.0〜9.0。反応液中のイオン濃度0.001〜
1.0mol ion/、好ましくは0.01〜0.1mol ion/
。反応液中に共存させることが好ましいイオン
としてカリウムイオンがあげられる。反応温度0
〜30℃、好ましくは0〜10℃。ニトリル濃度0.1
〜5重量%。 AKE−32タンパクの固定化に関しては、従来
公知のいずれの方法も採用できるが、固定化物内
への基質の拡散速度が律速となるような反応条件
下では、あえて固定化の手法を取らなくてもよ
い。ニトリル基がアミド基に転化する反応は発熱
反応であり、固定化の手法の如何によつては、固
定化物内に反応熱が蓄熱して、酵素を失活させて
しまうこともある。アミド化合物と酵素の分離が
比較的容易な、水に対する溶解度の低いアミド、
例えば、メタクリルアミド、isoおよびn−ブチ
ルアミド、コハク酸アミド、ベンズアミドなどの
製造に当つては、アミドが反応の進行と共に結晶
として析出するため、固液分離により容易に反応
液から粗結晶と酵素を分離回収することができ
る。このようにして得られたアミド生成物を、合
目的な任意の方法にしたがつて精製し、アミド製
品を得ることが可能である。例えば、粗結晶中に
混入してきた極微量のAKE−32タンパクや無機
イオンは(後工呈で晶析の可能な温度と濃度の条
件下において)、粗結晶を水に溶解させた後、活
性炭処理やイオン交換樹脂処理を施すことによつ
て容易に除去できる。一方、母液に残つた大半の
AKE−32タンパクは、再度反応に使用すること
が可能であり、粗結晶中に漏曳した分を反応系に
補充すればよい。 AKE−32タンパクの精製手順、N末端アミノ
酸配列の決定手順、理化学的性質を決定する手段
について、さらに詳しく記載する。 酵素の精製手順 1 sp.AK−32菌(微工研菌寄第1046号)の細胞
壁の破砕 2 遠心分離による破砕上澄液の回収 3 硫酸ストレプトマイシン水溶液添加による破
砕上澄液中の該酸の沈殿化 4 遠心分離による該酸の除去 5 飽和硫酸アンモニウム溶液添加による上澄液
中のタンパク群の沈殿化 6 遠心分離による沈殿タンパク群の回収 7 透析操作による沈殿タンパク群中の硫酸アン
モニウムの除去 8 陰イオン交換樹脂を充填したカラムクロマト
グラフイーによる透析処理後の沈殿タンパク群
溶液の粗精製 9 粗精製タンパク溶液のニトリル基水和活性試
験 10 粗精製後のニトリル水和活性タンパク溶液の
セントリコンを用いた濃縮 11 ふるいクロマトグラフイーによる濃縮タンパ
ク溶液の精製 12 精製タンパク溶液のニトリル基水和活性試験 13 精製後のニトリル水和活性タンパク溶液のセ
ントリコンを用いた濃縮 14 電気泳動による精製タンパクの純度測定 酵素を構成するサブユニツトのN末端アミノ酸配
列の決定手順 1 β−メルカプトエタノールおよびラウリル硫
酸ナトリウムの共存下で精製タンパク溶液の加
熱処理 2 調整電気泳動による構成サブユニツトの分離 3 分離サブユニツト溶液のセントリコンを用い
た濃縮 4 電気泳動による分離サブユニツトの純度測定
および分子量の測定 5 分離サブユニツト試料の遠心濃縮乾固 6 タンパクシーケンサーを用いたEdman分解
反応 7 シーケンサー各サイクルで得られるアミノ酸
をHPLCを用いて定性、定量分析 8 N末端アミノ酸配列の決定 AKE−32タンパクについて、さらに詳細に説
明すると、精製酵素溶液0.25mlに対し、下記サン
プルバツフア液を等量加えて、5分間100℃に加
熱する。 サンプルバツフアの液組成 ブロムフエノール青 10 mg グリセール 1 ml 10重量%ラウリル酸ナトリウム水溶液 2 ml β−メルカプトエタノール 0.5ml 蒸留水 6.5ml 次に、加熱処理した酵素液をアクリルアミドゲ
ルを詰めた棒ゲルを用いてクロマト分離し、2種
の構成サブユニツトを分割摂取する。その時の条
件は、下記のとおりである。 泳動バツフア組成 トリスヒドロキシメチルアミノメタン 6.0g グリシン 28.8g ラウリル硫酸ナトリウム 1.0g 蒸留水 1 定電流 6mA 温 度 25℃ 流 量 300ml/mm 2種のサブユニツトが完全に分割できたフラク
シヨン溶液の各々をセントリコンに入れ、遠心濃
縮と水洗の操作を繰り返し行ない、泳動バツフア
液より混入したグリシンを除去する。サブユニツ
ト○小およびサブユニツト○大の各々の溶液を遠心濃
縮乾固した後、トリフルオロ酢酸を加えてサブユ
ニツトを溶解し、Edman分解反応を応用した
Applied Biosystems社の気相プロテイン・シー
ケンサーに適用する。 PTA(フエニルチオヒダントイン)アミノ酸の
同定にはHPLCを用い、各サイクルで得られた
PTH−アミノ酸のピーク位置、ピーク高さを標
準PTH−アミノ酸のそれと比較して定性、定量
を行なう。 2種のサブユニツトに関し、順次分析されるア
ミノ酸よりN末端アミノ酸配列を決定して行く。 その他理化学的性質を解決する手段 至適PH PHが3から11までの各種PHの一定量のリン酸バ
ツフア溶液の各々に、一定量のニトリル化合物を
溶解させた後、一定量のAKE−32タンパクを添
加し、ニトリルの水和反応の経時変化をガスクロ
マトグラフイーによつて追跡する。各々の水和反
応速度を比較し、反応が最も迅速に進行するリン
酸バツフア液のPHを至適PHとする。 PH安定性 PHが3から11までの各種PHの一定量のリン酸バ
ツフア溶液の各々に、一定量のAKE−32タンパ
クを添加したものを2試料ずつ作成する。一方の
試料には、ただちに一定量のニトリル化合物を添
加し、他方の試料には、20℃で24時間放置した後
に、一定量のニトリル化合物を添加して、それぞ
れの試料について、ニトリルの水和反応を経時的
にガスクロマトグラフイーによつて追跡する。放
置前後で反応速度の低下が最も少ないリン酸バツ
フア溶液のPH領域を安定領域とする。 温度安定性 PH8.5のリン酸バツフア溶液に一定量のAKE−
32タンパクを添加したものを2試料作成し、一方
の試料には、ただちに一定量のニトリル化合物を
添加し、他方の資料には、30℃で16時間放置した
後に、一定量のニトリル化合物を添加して、それ
ぞれの試料について、ニトリルの水和反応を経時
的にガスクロマトグラフイーによつて追跡する。
放置前後で反応速度の失活度合を比較する。 阻害剤 PH8.5のリン酸バツフア溶液に一定量のAKE−
32タンパクを添加したものに、阻害剤となり得る
物質を添加した後、一定量のニトリル化合物を添
加して、ニトリルの水和反応を経時的にガスクロ
マトグラフイーによつて追跡する。阻害剤の有無
で反応速度が低下するか否かを比較する。 赤外線吸収スペクトル 精製酵素タンパクを凍結乾燥した後、赤外線吸
収スペクトル測定装置を用いて、KBr錠法で吸
収帯波長を求める。 (発明の効果) 本発明によれば、ニトリル基をアミド基に水和
転化するに当り、極めて微量の触媒量で、しか
も、常温以下の温度においても水和反応を迅速に
促進させることができ、アミド基への転化率も極
めて高く(選択率では100%)、反応系内に不純物
や副生成物を生じさせることのない、工業的に充
分満足されるアミドの製造法が提供される。 (実施例) 実施例 1 0.05mol/のリン酸2水素カリウム水溶液に
固形水酸化ナトリウムを添加し、PHを8.5に調整
した溶液を100部とり、氷水を用いて0.5℃に冷却
した。この溶液にAKE−32タンパクを0.01重量
%相当分添加し、ついで、メタクリロニトリルを
17部入れ、0.5℃で撹拌しながらニトリル基の水
和反応を行なわせた。この時、メタクリロニトリ
ルの一部は溶解し、残りは溶解せず2相分離した
が、かまわず反応を継続させた。反応開始後2時
間で、すでにメタクリロニトリルは反応系内に存
在せず、メタクリルアミドの結晶が認められた。
この結晶を吸引過により母液と分離した後、結
晶表面に付着している母液を0℃の冷水を用い
て、すばやく洗浄除去した。ここに得られたメタ
クリルアミドの結晶は、種々の重合体製造用の原
料として使用可能であつた。 実施例 2 0.035mol/のリン酸1水素カリウムにリン
酸を添加し、PHを8.0に調整した溶液を50部とり、
2℃に冷却した。この溶液にAKE−32タンパク
を0.02重量%相当分添加し、ついで、メタクリロ
ニトリルを8部入れ、2℃で撹拌しながらニトリ
ル基の水和反応を行なわせた。反応開始後2時間
で、すでに2相分離していたメタクリロニトリル
はなくなり、メタクリルアミドの結晶が析出して
いた。反応系に蒸留水をさらに50部加え、析出し
ているメタクリルアミドを溶解した後、ガスクロ
マトグラフイーを用いてメタクリルアミドの定量
および副生成物の有無を分析した。その結果、添
加したメタクリロニトリルの99.9%以上がメタク
リルアミドに転化しており、副生成物に由来する
検出ピークは認められなかつた。また、反応終了
後、反応液を室温下でさらに24時間放置してか
ら、液体クロマトグラフイー分析を用いて有機酸
の有無を調べたが、メタクリル酸の生成は認めら
れなかつた。 実施例 3〜14 0.02mol/の炭酸水素カリウム水溶液を50部
とり、0℃に冷却した。この溶液にAKE−32タ
ンパクを0.02重量%相当分添加し、ついで、各種
ニトリルを1部入れ、0℃で撹拌しながらニトリ
ル基の水和反応を行なわせた。反応開始後30分ま
での転化速度を、ガスクロマトグラフイーを用い
て追跡し、各種ニトリル化合物のアミド化合物へ
の転化速度を、メタクリロニトリルのそれと比較
した結果を表1に示す。
(Industrial Application Field) The present invention promotes the hydration reaction of nitrile groups,
This invention relates to a method for producing amide compounds using a water-soluble enzyme protein that has a catalytic function for converting into amide groups. Examples of industrially important amide compounds include:
Acrylamide, methacrylamide, nicotinamide, etc. are known. Acrylamide is used in polymer flocculants, paper strength enhancers, fiber improvers, etc., and methacrylamide is used in paints, flocculants, adhesives, photocrosslinkable compounds, etc. Nicotinamide is also used as a fortifier, medicine, livestock feed, etc. The production method using the water-soluble enzyme protein of the present invention can be used to efficiently industrially produce these industrially important amide compounds. (Prior art) In the technology of producing an amide compound using a catalyst that hydrates a nitrile group and converts it into an amide group, a method of heat treatment using an acid or alkali as a catalyst, some nitrile compounds, for example, For acrylonitrile, methacrylonitrile, etc., heat treatment using a copper catalyst,
Methods using microbial catalysts are known. However, when it comes to converting nitrile groups into amide groups in good yields, quickly under mild conditions, and with as little catalyst as possible, methods using acid or alkali catalysts have low conversion rates; However, when the reaction temperature was raised to achieve this, there were drawbacks such as the formation of by-products. In addition, even in the method using a copper catalyst, heat treatment is required, so
By-product ammonium carboxylate is generated,
Nitrile compounds having double bonds have the disadvantage of forming polymers. On the other hand, in the method using a microbial catalyst, the hydration reaction can be carried out at room temperature, and the conversion rate is high, making it a preferable method. However, microbial catalysts have the disadvantage that they can be mixed into the reaction system as impurities. In particular, trace amounts of heavy metal ions leaked from microbial bodies often act as polymerization accelerators, and are a drawback of generating polymers when amidating nitrile compounds with double bonds. Ta. In addition, the drawback that the amide compound is further hydrated and converted into an ammonium carboxylate compound within the microorganism, and the ammonium carboxylate thus generated deactivates the catalytic function of the microorganism, cannot be ignored. (Problems to be solved by the invention) In hydration conversion of a nitrile group to an amide group,
It is desired to develop a method for producing amide compounds in a high yield, rapidly, under mild conditions, using as little catalyst as possible, and using a catalyst that does not introduce impurities into the reaction system. (Means for Solving the Problems) In order to solve these problems, the present inventors sought a catalyst for the hydration conversion of nitrile groups into amide groups in enzyme proteins, and determined that the PH of the surface charge of the protein
By applying principles such as dependence, interaction with ion exchange resins, molecular sieving effects, and electrophoretic effects, we can isolate and purify various enzyme proteins from bacteria, yeast, molds, actinomycetes, etc. The presence or absence of hydration activity ability of the group was tested. As a result, the molecular weight
We have discovered a novel enzyme protein that is composed of two different subunits of 26,500±500 and 28,500±500, and has a catalytic function to convert nitrile groups into amide groups, and have completed the present invention. This enzyme is an intracellular enzyme of the spAK-32 strain (Feikoken Bibori No. 1046) belonging to the genus Rhodocotcus.
It can be produced within the bacterial cells by growing the AK-32 bacteria in a culture solution prepared by adding an inducer to a normal nutrient medium. An example of culture conditions is as follows. Culture solution composition Meat extract 1.0% by weight Peptone 1.0 〃 Glucose 1.0 〃 NaCl 0.1 〃 Mineral aqueous solution 96.4 〃 Isobutyramide 0.5 〃 PH 7.0 〃 Mineral aqueous solution Potassium dihydrogen phosphate 0.1% by weight Potassium nitrate 0.1 〃 Ammonium sulfate 0.1 〃 Magnesium sulfate 0 .05 〃 Sulfuric acid No. Iron 0.005 〃 Manganese sulfate 0.005 〃 Distilled water 99.64 〃 Cultivated at 30℃ for 3 days An enzyme (hereinafter referred to as AKE-32 protein) that can hydrate and convert nitrile groups present in bacterial cells into amide groups After crushing by the French press method or homogenization method in the presence of glass beads, the enzyme is isolated and purified through the usual procedures of ammonium sulfate fractionation, dialysis, anion exchange resin treatment, and gel chromatography separation in the stable pH range of the enzyme. be able to.
Furthermore, by freeze-drying, it is also possible to solidify the AKE-32 protein while maintaining its activity. When using AKE-32 protein, it can be used in the form of purified enzyme, crude enzyme solution, or disrupted bacterial cell solution.
If amidase coexists, unless it is separated, the generated amide may be hydrated to ammonium carboxylate. The range of usage conditions for AKE-32 protein is as follows. PH6.0-10.0 preferably PH8.0-9.0. Ion concentration in reaction solution 0.001~
1.0mol ion/, preferably 0.01-0.1mol ion/
. An example of an ion that is preferably allowed to coexist in the reaction solution is potassium ion. Reaction temperature 0
~30°C, preferably 0-10°C. Nitrile concentration 0.1
~5% by weight. Regarding the immobilization of AKE-32 protein, any conventionally known method can be used, but under reaction conditions where the rate of diffusion of the substrate into the immobilized substance is rate-limiting, it is necessary to intentionally use an immobilization method. Good too. The reaction in which a nitrile group is converted to an amide group is an exothermic reaction, and depending on the immobilization method, the heat of reaction may accumulate within the immobilized product and deactivate the enzyme. An amide with low solubility in water, which makes it relatively easy to separate the amide compound and enzyme.
For example, in the production of methacrylamide, iso and n-butyramide, succinamide, benzamide, etc., as the amide precipitates as crystals as the reaction progresses, it is easy to separate the crude crystals and enzyme from the reaction solution by solid-liquid separation. Can be separated and recovered. The amide product thus obtained can be purified according to any suitable method to obtain the amide product. For example, minute amounts of AKE-32 protein and inorganic ions mixed into the crude crystals (under conditions of temperature and concentration that allow for crystallization during post-processing) can be removed by dissolving the crude crystals in water and then using activated carbon. It can be easily removed by treatment or ion exchange resin treatment. On the other hand, most of the remaining in the mother liquor
The AKE-32 protein can be used again in the reaction, and the amount leaked into the crude crystals may be replenished into the reaction system. The procedure for purifying the AKE-32 protein, the procedure for determining the N-terminal amino acid sequence, and the means for determining the physicochemical properties will be described in more detail. Enzyme purification procedure 1 Disruption of the cell wall of sp.AK-32 bacteria (Feikoken Bacteria No. 1046) 2 Recovery of the disrupted supernatant by centrifugation 3 Determination of the acid in the disrupted supernatant by adding an aqueous solution of streptomycin sulfate Precipitation 4 Removal of the acid by centrifugation 5 Precipitation of proteins in the supernatant by addition of saturated ammonium sulfate solution 6 Recovery of precipitated proteins by centrifugation 7 Removal of ammonium sulfate from the precipitated proteins by dialysis 8 Anion Crude purification of precipitated protein group solution after dialysis treatment by column chromatography packed with exchange resin 9 Nitrile group hydration activity test of crude protein solution 10 Concentration of nitrile hydration active protein solution after rough purification using Centricon 11 Purification of concentrated protein solution by sieve chromatography 12 Nitrile group hydration activity test of purified protein solution 13 Concentration of nitrile hydration active protein solution after purification using Centricon 14 Measuring the purity of purified protein by electrophoresis Configuring the enzyme Steps for determining the N-terminal amino acid sequence of the subunits 1. Heat treatment of purified protein solution in the coexistence of β-mercaptoethanol and sodium lauryl sulfate 2. Separation of constituent subunits by preparative electrophoresis 3. Concentration of the separated subunit solution using centricon 4. Electrophoresis Measurement of purity and molecular weight of separated subunits by electrophoresis 5 Centrifugal concentration and drying of separated subunit samples 6 Edman degradation reaction using a protein sequencer 7 Qualitative and quantitative analysis of amino acids obtained in each sequencer cycle using HPLC 8 N-terminal amino acid analysis Sequence Determination To explain the AKE-32 protein in more detail, add an equal amount of the sample buffer solution shown below to 0.25 ml of the purified enzyme solution and heat at 100° C. for 5 minutes. Sample buffer liquid composition Bromophenol blue 10 mg Glycer 1 ml 10% by weight sodium laurate aqueous solution 2 ml β-mercaptoethanol 0.5 ml Distilled water 6.5 ml Next, the heat-treated enzyme solution was poured into a stick gel packed with acrylamide gel. The two constituent subunits are separated and ingested. The conditions at that time are as follows. Electrophoresis buffer composition Tris-hydroxymethylaminomethane 6.0g Glycine 28.8g Sodium lauryl sulfate 1.0g Distilled water 1 Constant current 6mA Temperature 25℃ Flow rate 300ml/mm Transfer each of the fraction solutions in which the two subunits have been completely separated to the centricon. Contaminated glycine is removed from the electrophoresis buffer by repeating the operations of centrifugal concentration and washing with water. After centrifuging and concentrating the solutions of subunit ○ small and subunit ○ large to dryness, trifluoroacetic acid was added to dissolve the subunits, and Edman decomposition reaction was applied.
Applicable to Applied Biosystems' gas phase protein sequencer. HPLC was used to identify PTA (phenylthiohydantoin) amino acids, and the
The peak position and peak height of PTH-amino acid are compared with those of standard PTH-amino acid for qualitative and quantitative determination. The N-terminal amino acid sequences of the two subunits are determined from the amino acids that are sequentially analyzed. Other methods for solving physical and chemical properties Optimum PH After dissolving a certain amount of nitrile compound in a certain amount of phosphate buffer solution of various pH values from 3 to 11, a certain amount of AKE-32 protein is dissolved. is added, and the time course of the nitrile hydration reaction is followed by gas chromatography. Compare the hydration reaction rates of each, and select the pH of the phosphate buffer solution where the reaction proceeds most rapidly as the optimal pH. PH Stability Two samples are prepared by adding a certain amount of AKE-32 protein to each of a certain amount of phosphate buffer solution with a pH value of 3 to 11. To one sample, a certain amount of nitrile compound was added immediately, and to the other sample, after standing for 24 hours at 20 °C, a certain amount of nitrile compound was added, and for each sample, the nitrile hydration The reaction is followed over time by gas chromatography. The PH range of the phosphate buffer solution where the reaction rate decreases least before and after standing is defined as the stable range. Temperature stability A certain amount of AKE− in a phosphate buffer solution of PH8.5
Two samples with 32 protein added were prepared, and a certain amount of nitrile compound was added to one sample immediately, and a certain amount of nitrile compound was added to the other sample after it was left at 30℃ for 16 hours. The nitrile hydration reaction of each sample is then monitored over time by gas chromatography.
Compare the degree of deactivation of the reaction rate before and after standing. Inhibitor Add a certain amount of AKE- to a phosphate buffer solution at pH 8.5.
After adding a substance that can serve as an inhibitor to the 32-protein mixture, a certain amount of a nitrile compound is added, and the hydration reaction of the nitrile is monitored over time by gas chromatography. Compare whether the reaction rate decreases with or without an inhibitor. Infrared absorption spectrum After freeze-drying the purified enzyme protein, use an infrared absorption spectrometer to determine the absorption band wavelength using the KBr tablet method. (Effects of the Invention) According to the present invention, when hydration converting a nitrile group into an amide group, the hydration reaction can be rapidly promoted with an extremely small amount of catalyst and even at temperatures below room temperature. , the conversion rate to amide groups is extremely high (selectivity: 100%), and an industrially satisfactory method for producing amide is provided that does not generate impurities or by-products in the reaction system. (Example) Example 1 100 parts of a solution prepared by adding solid sodium hydroxide to a 0.05 mol/aqueous potassium dihydrogen phosphate solution and adjusting the pH to 8.5 were taken and cooled to 0.5°C using ice water. Add 0.01% by weight of AKE-32 protein to this solution, then add methacrylonitrile.
17 parts were added, and the hydration reaction of the nitrile group was carried out while stirring at 0.5°C. At this time, a part of methacrylonitrile was dissolved and the rest was not dissolved and separated into two phases, but the reaction was continued regardless. Two hours after the start of the reaction, methacrylonitrile was no longer present in the reaction system, and methacrylamide crystals were observed.
After the crystals were separated from the mother liquor by suction, the mother liquor adhering to the surface of the crystals was quickly washed away using cold water at 0°C. The methacrylamide crystals obtained here could be used as raw materials for producing various polymers. Example 2 Take 50 parts of a solution prepared by adding phosphoric acid to 0.035 mol/potassium monohydrogen phosphate and adjusting the pH to 8.0,
Cooled to 2°C. AKE-32 protein was added to this solution in an amount equivalent to 0.02% by weight, and then 8 parts of methacrylonitrile was added, and a hydration reaction of the nitrile group was carried out with stirring at 2°C. Two hours after the start of the reaction, methacrylonitrile, which had already separated into two phases, disappeared, and methacrylamide crystals were precipitated. An additional 50 parts of distilled water was added to the reaction system to dissolve the precipitated methacrylamide, and then the methacrylamide was quantified and the presence or absence of by-products was analyzed using gas chromatography. As a result, more than 99.9% of the added methacrylonitrile was converted to methacrylamide, and no detected peaks derived from by-products were observed. Furthermore, after the reaction was completed, the reaction solution was allowed to stand at room temperature for an additional 24 hours, and then the presence or absence of an organic acid was examined using liquid chromatography analysis, but no production of methacrylic acid was observed. Examples 3 to 14 50 parts of a 0.02 mol/potassium hydrogen carbonate aqueous solution was taken and cooled to 0°C. To this solution was added AKE-32 protein in an amount equivalent to 0.02% by weight, and then 1 part of each type of nitrile was added, and a hydration reaction of the nitrile group was carried out with stirring at 0°C. The conversion rate up to 30 minutes after the start of the reaction was monitored using gas chromatography, and the conversion rate of various nitrile compounds to amide compounds was compared with that of methacrylonitrile. Table 1 shows the results.

【表】 また、上記実施例3〜14で得られた各種アミド
の水溶液を陽イオン交換樹脂充填塔、陰イオン交
換樹脂充填塔の順に通液することにより、系内に
存在していたカリウムイオンおよび炭酸水素イオ
ンを除去することが可能であつた。かくして得ら
れた各種アミド水溶液の純度は、アミド化合物換
算で99.9%以上であつた。 比較例 1 下記表2中の酸および塩基の水溶液の各々に、
1重量%の各種ニトリル化合物を添加し、30℃で
24時間撹拌しながら放置したが、アミド化合物の
生成は全く認められなかつた。
[Table] In addition, by passing the aqueous solutions of various amides obtained in Examples 3 to 14 above through a cation exchange resin packed column and an anion exchange resin packed column in that order, potassium ions that were present in the system were removed. It was also possible to remove hydrogen carbonate ions. The purity of the various amide aqueous solutions thus obtained was 99.9% or more in terms of the amide compound. Comparative Example 1 Each of the acid and base aqueous solutions in Table 2 below was
Add 1% by weight of various nitrile compounds and heat at 30°C.
Although the mixture was left stirring for 24 hours, no amide compound was observed to be formed.

【表】 (注) 表中、×印は対応するアミド化合物が認めら
れなかつたことを示す。
比較例 2 1.0mol/の塩化銅水溶液に水素化ホウ素ナ
トリウムを添加し、活性化した銅触媒を作成し
た。この銅触媒20gを50mlの蒸留水に加えた後、
2重量%相当のメタクリロニトリルを添加し、30
℃で撹拌しながら1時間放置したが、メタクリル
アミドの生成は全く認められなかつた。しかしな
がら、この触媒をガラス性のオートクレープ中で
温度を100℃にし、撹拌しながら、1時間ほど前
記反応液と接触させたところ、メタクリロニトリ
ルの他、メタクリルアミドおよびメタクリル酸が
系内に存在していることがガスクロマトグラフイ
ー分析で明らかになつた。しかし、オートクレー
プ中には白色の重合物が生じていた。 比較例 3 2℃、PH8.0に調整した0.035mol/のリン酸
バツフア液50mlに、AK−32菌を乾燥重量換算で
10mg加えた後、プロピオニトリルを1g添加し、
撹拌しながらニトリル基の水和反応を5分おきに
ガスクロマトグラフイー分析で追跡した結果、20
分では添加したプロピオニトリルの10%がピロピ
オンアミドに転化したにすぎなかつた。また、反
応液を室温で24時間放置した後、液体クロマトグ
ラフイー分析によつてカルボン酸の生成の有無を
調べたところ、プロピオン酸の存在が認められ
た。
[Table] (Note) In the table, an x mark indicates that the corresponding amide compound was not observed.
Comparative Example 2 Sodium borohydride was added to a 1.0 mol/aqueous copper chloride solution to create an activated copper catalyst. After adding 20g of this copper catalyst to 50ml of distilled water,
Add methacrylonitrile equivalent to 2% by weight,
Although the mixture was left for 1 hour while stirring at ℃, no formation of methacrylamide was observed. However, when this catalyst was heated to 100°C in a glass autoclave and contacted with the reaction solution for about 1 hour while stirring, it was found that in addition to methacrylonitrile, methacrylamide and methacrylic acid were present in the system. This was revealed by gas chromatography analysis. However, a white polymer was produced in the autoclave. Comparative Example 3 AK-32 bacteria was added to 50 ml of 0.035 mol/phosphate buffer solution adjusted to pH 8.0 at 2°C in terms of dry weight.
After adding 10mg, add 1g of propionitrile,
As a result of monitoring the hydration reaction of the nitrile group every 5 minutes with gas chromatography analysis while stirring, it was found that 20
In minutes, only 10% of the propionitrile added was converted to propionamide. Furthermore, after the reaction solution was left at room temperature for 24 hours, the presence or absence of carboxylic acid production was examined by liquid chromatography analysis, and the presence of propionic acid was observed.

Claims (1)

【特許請求の範囲】 1 ロドコツカス属の菌由来であつて、ニトリル
基をアミド基に転化させる触媒可能を有し、アク
リロニトリルとメタクリロニトリルから対応する
アミド化合物への転化速度において、アクリロニ
トリルからの転化速度が優れた、ヘテロな2種の
サブユニツトから構成される水溶性酵素タンパク
を触媒として用い、ニトリル化合物から対応する
アミド化合物を生成させることを特徴とするアミ
ド化合物の製造法。 2 ニトリル化合物が炭素数6以下である特許請
求の範囲第1項記載の方法。 3 ニトリル化合物が不飽和ニトリルであり、ニ
トリル基が不飽和炭素に結合しているニトリル化
合物である特許請求の範囲第2項記載の方法。 4 ニトリル化合物がメタクリロニトリルである
特許請求の範囲第1項記載の方法。 5 ニトリル化合物がアクリロニトリルである特
許請求の範囲第1項記載の方法。 6 ヘテロな2種のサブユニツトから構成される
水溶性酵素タンパク触媒が下記の理化学的性質を
有するものである特許請求の範囲第1項記載ない
し第5項のいずれかに記載の方法。 分子量 サブユニツト○大分子量 28500±500(SDS電気
泳動測定) サブユニツト○小分子量 26500±500(SDS電気
泳動測定) N末端アミノ酸配列 サブユニツト○大; 1 Met −Asp−Gly−Val−5 His −Asp−Leu −Ala−Gly−10 Lys −Gln−Gly−Phe−Gly −15 Pro −Val−Asp−His−Thr−20 Ile −Asn −Glu−Tyr−Glu−25 Lys −Gly−Gln−Pro −Val−30 Pro − サブユニツト○小; 1 Ser −Lue−Met−Ile−5 Asp −Arg−Glu −His−Asp−10 Gln −Gly−Val−Thr−His −15 Ala −Pro−Gly−Val−Pro−20 Glu −Gln −Ala−Pro−Ala−25 Gly −Asp−Arg−Ala − 酵素作用 ニトリル化合物のニトリル基に作用し、ニト
リル基をアミド基に水和転化させる反応の触媒
としての機能を示す。 至適PH PH8.5付近でニトリル基の水和作用が至適で
ある。 PH安定性 PH8.0〜PH9.0が安定領域であり、この領域か
らはずれるにしたがい安定性が低下する。PH
3.0ではただちに水和活性能が失われる。 温度安定性 PH8.5では30℃で16時間放置しても、ニトリ
ル基の水和活性能は95%以上残存している。 阻害剤 Ag+、Hg2+によつて著しく阻害される。ま
た、メタクリル酸アンモニウムによつて阻害さ
れる。 赤外線吸収スペクトル KBr錠法による赤外線吸収スペクトルにお
ける吸収帯が3420,3330,2960,2930,1650,
1540,1450,1400,1350,1300,1240,1190,
1170,1110,1030,930,880,850,750,550
および510cm-1にある。
[Scope of Claims] 1. Derived from a bacterium of the genus Rhodococcus, which has the ability to catalyze the conversion of nitrile groups into amide groups, and which has the ability to catalyze the conversion of acrylonitrile and methacrylonitrile to the corresponding amide compounds. A method for producing an amide compound, which is characterized by producing a corresponding amide compound from a nitrile compound using a water-soluble enzyme protein composed of two heterogeneous subunits with excellent speed as a catalyst. 2. The method according to claim 1, wherein the nitrile compound has 6 or less carbon atoms. 3. The method according to claim 2, wherein the nitrile compound is an unsaturated nitrile, and the nitrile group is bonded to an unsaturated carbon. 4. The method according to claim 1, wherein the nitrile compound is methacrylonitrile. 5. The method according to claim 1, wherein the nitrile compound is acrylonitrile. 6. The method according to any one of claims 1 to 5, wherein the water-soluble enzyme protein catalyst composed of two heterogeneous subunits has the following physical and chemical properties. Molecular weight Subunit ○Large molecular weight 28500±500 (SDS electrophoresis measurement) Subunit ○Small molecular weight 26500±500 (SDS electrophoresis measurement) N-terminal amino acid sequence Subunit ○Large; 1 Met -Asp-Gly-Val-5 His -Asp-Leu −Ala−Gly−10 Lys −Gln−Gly−Phe−Gly −15 Pro −Val−Asp−His−Thr−20 Ile −Asn −Glu−Tyr−Glu−25 Lys −Gly−Gln−Pro −Val−30 Pro - subunit ○ small; 1 Ser -Lue-Met-Ile-5 Asp -Arg-Glu -His-Asp-10 Gln -Gly-Val-Thr-His -15 Ala -Pro-Gly-Val-Pro-20 Glu -Gln -Ala-Pro-Ala-25 Gly -Asp-Arg-Ala - Enzyme action Acts on the nitrile group of a nitrile compound and acts as a catalyst for the reaction of hydration converting the nitrile group into an amide group. Optimum PH The hydration effect of the nitrile group is optimal around PH8.5. PH Stability PH8.0 to PH9.0 is a stable region, and as it deviates from this region, stability decreases. PH
3.0 immediately loses hydration activity. Temperature stability At pH 8.5, more than 95% of the hydration activity of the nitrile group remains even after being left at 30°C for 16 hours. Significantly inhibited by inhibitors Ag + and Hg 2+ . It is also inhibited by ammonium methacrylate. Infrared absorption spectrum The absorption bands in the infrared absorption spectrum by KBr tablet method are 3420, 3330, 2960, 2930, 1650,
1540,1450,1400,1350,1300,1240,1190,
1170, 1110, 1030, 930, 880, 850, 750, 550
and 510 cm -1 .
JP61284150A 1986-12-01 1986-12-01 Production of amide compound Granted JPS63137688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61284150A JPS63137688A (en) 1986-12-01 1986-12-01 Production of amide compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61284150A JPS63137688A (en) 1986-12-01 1986-12-01 Production of amide compound

Publications (2)

Publication Number Publication Date
JPS63137688A JPS63137688A (en) 1988-06-09
JPH0354558B2 true JPH0354558B2 (en) 1991-08-20

Family

ID=17674822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61284150A Granted JPS63137688A (en) 1986-12-01 1986-12-01 Production of amide compound

Country Status (1)

Country Link
JP (1) JPS63137688A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002325587A (en) 2001-03-02 2002-11-12 Daicel Chem Ind Ltd Nitrile hydratase and method for producing amide
TW200634151A (en) * 2004-12-09 2006-10-01 Asahi Chemical Ind Transformant expressing nitrile hydratase
RU2520870C1 (en) 2012-12-27 2014-06-27 Кемира Оюй Bacterial strain rhodococcus aetherivorans of russian classification of microorganisms bkm ac-2610d - producer of nitrile hydrase, method of its cultivation and method of production of acrylamide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5186186A (en) * 1974-12-18 1976-07-28 Anvar
JPS5617918A (en) * 1979-07-23 1981-02-20 Chisso Corp Manufacture of dichlorosilane
JPS5648889A (en) * 1979-09-28 1981-05-02 Nitto Chem Ind Co Ltd Preparation of acrylamide or methacrylamide by fermentation
JPS61162193A (en) * 1985-01-08 1986-07-22 Nitto Chem Ind Co Ltd Production of amide with bacterium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5186186A (en) * 1974-12-18 1976-07-28 Anvar
JPS5617918A (en) * 1979-07-23 1981-02-20 Chisso Corp Manufacture of dichlorosilane
JPS5648889A (en) * 1979-09-28 1981-05-02 Nitto Chem Ind Co Ltd Preparation of acrylamide or methacrylamide by fermentation
JPS61162193A (en) * 1985-01-08 1986-07-22 Nitto Chem Ind Co Ltd Production of amide with bacterium

Also Published As

Publication number Publication date
JPS63137688A (en) 1988-06-09

Similar Documents

Publication Publication Date Title
US5574180A (en) Process for recovering phytic acid, lactic acid or inositol
US3979457A (en) Process for production of (+)-2-amino-1-butanol
JPH0354558B2 (en)
JPS6291189A (en) Microbiological production of amide
FR2459285A1 (en) MICROBIOLOGICAL PROCESS FOR THE PRODUCTION OF AQUEOUS SOLUTION OF HIGHLY CONCENTRATED ACRYLAMIDE
JPH0789914A (en) Production of salt from ornithine and acidic amino acid or keto acid
NL8304496A (en) METHOD FOR INSULATING L-AMINO ACIDS
JPS62238231A (en) Production of carboxylic acid from aqueous solution of ammonium carboxylate
CN106119307B (en) Preparation method of alpha-ketoglutaric acid
JPS62111953A (en) Separation of glycine and l-serine
JPH0741462A (en) Production of 2-hydroxymethylmercaptobutyric acid
JPS62249956A (en) Purification of carnitine
US4731476A (en) Process for the separation of L-leucine and L-isoleucine
JPH034532B2 (en)
EP0177072A2 (en) Preparation of amino acids from unsaturated hydantoins
JPH04218385A (en) Production of r(-)-mandelic acid
JPH0323155B2 (en)
JP2502990B2 (en) <1> -Process for producing malic acid
JPH0227995A (en) Production of l-carnitine chloride
KR860001821B1 (en) Method of isolating l-amino acids
JPH09322797A (en) Production of alpha-hydroxy carboxylic acid
JPH01131143A (en) Optical resolution of d,l-carnitinenitrile chloride
CN114645027A (en) Aminotransferase mutant from bacillus megatherium and application thereof
JPS61254545A (en) Racemization of optically active phenylalaninamide
JPH0370478B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees