JPH0354139A - Admixture material for concrete and production thereof - Google Patents

Admixture material for concrete and production thereof

Info

Publication number
JPH0354139A
JPH0354139A JP1188935A JP18893589A JPH0354139A JP H0354139 A JPH0354139 A JP H0354139A JP 1188935 A JP1188935 A JP 1188935A JP 18893589 A JP18893589 A JP 18893589A JP H0354139 A JPH0354139 A JP H0354139A
Authority
JP
Japan
Prior art keywords
silica
admixture
concrete
containing material
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1188935A
Other languages
Japanese (ja)
Other versions
JP2755700B2 (en
Inventor
Hirohisa Yoshida
博久 吉田
Masayasu Sakai
正康 坂井
Toshiyuki Takegawa
敏之 竹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP18893589A priority Critical patent/JP2755700B2/en
Publication of JPH0354139A publication Critical patent/JPH0354139A/en
Application granted granted Critical
Publication of JP2755700B2 publication Critical patent/JP2755700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To obtain sufficiently high-strength concrete even by reducing an amount of expensively ultrafine silica used by blending specific two kinds of silica fine particles having different particle sizes to have two particle size distributions. CONSTITUTION:A silica-containing substance such as coal ash produced at thermal powder station of coal, silica sand or silas is mechanically ground by wet type stirring mill to give ground fine particles (1-5mum average particle diameter) silica-containing material. The ground fine particles are mixed with ultrafine silica (0.05-0.5mum average particle diameter) prepared by high- temperature vaporization method or hydrolysis method to give a blend having two particle size distributions, which is mixed with water and an admixture and made into a slurried state to give an admixture material for concrete.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高強度やアルカリ骨材反応抑制や水密性が要求
される高品質コンクリート製造時に必要な混和材及びそ
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an admixture necessary for producing high-quality concrete that requires high strength, suppression of alkaline aggregate reaction, and watertightness, and a method for producing the same.

〔従来の技術〕[Conventional technology]

従来のコンクリートは平均粒径(以下、d5。 Conventional concrete has an average particle size (hereinafter referred to as d5).

と記す)20〜30μmのセメントと粗骨材(砕石〉と
細骨材(砂)と混和剤及び水とを混合して作られている
が、圧縮強度が300kgf/cnt程度しかない。し
かし最近は超高層ビルのJjQ加などに伴い、高強度コ
ンクリートの需要が増加しており、1970年代からノ
ルウェーやデンマーク等でSl02含有量が多くて、d
,。が1μm以下の超微粒シリカを数10重量%の割合
でセメントに混合使用することにより圧縮強度が1 0
 0 0 kgf/cJ以上の高強度コンクリートが製
造可能であることが確認されている。
It is made by mixing 20-30 μm cement, coarse aggregate (crushed stone), fine aggregate (sand), admixture, and water, but its compressive strength is only about 300 kgf/cnt.However, recently The demand for high-strength concrete is increasing with the construction of skyscrapers such as JJQ, and since the 1970s, in Norway and Denmark, concrete with high Sl02 content has been increasing.
,. By mixing ultrafine silica with a particle diameter of 1 μm or less with cement at a ratio of several tens of weight percent, the compressive strength can be increased to 10.
It has been confirmed that high strength concrete of 0.0 kgf/cJ or more can be produced.

しかしながら、超微粒シリカは非常に高価格であるため
に、セメントに対して20重量%混入したとしてもセメ
ント単価をかなり上げることになり、経済性の面から未
だ実用化されていないのが実状である。
However, since ultrafine silica is very expensive, even if it is mixed in at 20% by weight with respect to cement, the unit price of cement will increase considerably, and the reality is that it has not yet been put into practical use due to economic reasons. be.

またサブミクロンの超微粒シリカは凝集性が非常に強い
ために、ハンドリング、特にセメントとの均一混合分散
が難しく、従来のコンクリート製造プロセスがそのまま
適用できないという問題がある。
Furthermore, since submicron ultrafine silica has extremely strong cohesiveness, it is difficult to handle, especially to mix and disperse uniformly with cement, and conventional concrete manufacturing processes cannot be applied as is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記技術水準に鑑み、高価な超微粒シリカの使
用量を減じても十分高強度のコンクリートが得られるコ
ンクリート混和材及びその製造方法を提供しようとする
ものである。
In view of the above-mentioned state of the art, the present invention aims to provide a concrete admixture and a method for producing the same, which allow concrete with sufficiently high strength to be obtained even if the amount of expensive ultrafine silica used is reduced.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のコンクリート混和材は、機械的粉砕によって得
られるシリカ含有物の粉砕微粒と、シリカ含有物の高温
気化法あるいは加水分解法等によって得られる超微粒シ
リカを混合することにより2つの粒度分布をもってなる
コンクリート混和材である。そして、上記コンクリート
混和材において、シリカ含有物が石炭火力発電所で発生
する石炭灰や珪石、シラスであり、かつシリカ含有物の
粉砕微粒と超微粒シリカの平均粒径がそれぞれ1〜5μ
mと0、05〜0.5μmであるようにすること及び上
記コンクリート混和材をシリカ含有物の粉砕微粒と超微
粒シリカと水と混和剤とを混合してスラリー状とするこ
とを特に好ましい態様とするものである。
The concrete admixture of the present invention has two particle size distributions by mixing pulverized fine particles of a silica-containing material obtained by mechanical crushing and ultrafine silica particles obtained by a high-temperature vaporization method or hydrolysis method of a silica-containing material. It is a concrete admixture. In the above concrete admixture, the silica-containing material is coal ash, silica stone, or shirasu generated in a coal-fired power plant, and the average particle size of the crushed fine particles and ultrafine silica of the silica-containing material is 1 to 5 μm, respectively.
A particularly preferred embodiment is that the concrete admixture is made into a slurry by mixing crushed fine particles of a silica-containing material, ultrafine silica, water, and an admixture with m and 0.05 to 0.5 μm. That is.

また、本発明のコンクIJ − ト混和柑の製造方法は
、シリカ含有物の粉砕微粒を湿式攪拌ミルで製造し、か
つ超微粒シリカと混和剤を該ミル人口で添加し、該ミル
内でシリカ含有物の粉砕と水、超微粒シリカ、混和剤の
混合を同時に行うコンクリート混和材の製造方法である
。そして、上記コンクリート混和材の製造方法において
、湿式攪拌ミルによる粉砕と混合を固形分濃度50〜9
0重量%で行うようにすることを特に好ましい態様とす
るものである。
In addition, the method for producing the conc IJ-to mixed citrus of the present invention involves producing pulverized fine particles of a silica-containing material in a wet stirring mill, adding ultrafine silica and an admixture in the mill population, and adding the silica-containing material in the mill. This is a method for producing concrete admixtures that involves simultaneously pulverizing the ingredients and mixing water, ultrafine silica, and admixtures. In the above concrete admixture manufacturing method, pulverization and mixing using a wet stirring mill is carried out at a solid content concentration of 50 to 9.
A particularly preferred embodiment is to use 0% by weight.

すなわち、本発明のコンクリート混和材は、セメントと
超微粒シリカの中間の粒径を有ずる安価で大量製造可能
なシリカ含有物の粉砕微粒(以下、これを単に粉砕シリ
カと記す)をコンクリート混和材原料として使用するこ
とによって高価な超微粒シリカの使用量を減らして、コ
ンクリート混和材のコストを下げると共に、最密充填理
論に基いてセメントに混合した場合に最も強度と施工性
(流動性)が向上ずる粒度分布を有するフニ/クリート
混和材としたものであり、また、本発明のコンクリート
混和材の製造方法は、超微4立シリカのハンドリング性
と分敗性を向上するために、湿式攪拌ミルでシリカ含有
物の粉砕と超微粒シリカと水と混和桐の混合分敗を同時
に行い、該4成分が十分混合分敗したスラリー状混和材
を製造する方法である。
That is, the concrete admixture of the present invention uses crushed fine particles of a silica-containing material (hereinafter simply referred to as crushed silica), which has a particle size between cement and ultrafine silica and can be manufactured in large quantities at low cost, as a concrete admixture. By using it as a raw material, we can reduce the amount of expensive ultrafine silica used, lowering the cost of concrete admixtures, and achieve the highest strength and workability (fluidity) when mixed with cement based on the close-packing theory. The concrete admixture of the present invention is a concrete admixture having an improved particle size distribution, and the method for producing the concrete admixture of the present invention uses wet stirring to improve the handling and decomposition properties of ultrafine quaternary silica. This is a method for producing a slurry-like admixture in which the four components are sufficiently mixed and separated by simultaneously pulverizing a silica-containing material and mixing and separating ultrafine silica, water, and mixed paulownia in a mill.

〔作用〕[Effect]

超微粒シリカをセメントに混入するとコンクリートの強
度と流動性が向上する理由を第3図によって説明する。
The reason why mixing ultrafine silica into cement improves the strength and fluidity of concrete will be explained with reference to Figure 3.

第3図は粒子充填モデルを示す模式図であり、第3図(
a)は従来のセメント粒子だけの充填モデル、第3図(
b)はセメント粒子と超微粒シリカの充填モデル、第3
図(c)は最密充填時の粒子直径を求める真球のモデル
、第3図(d)は本発明のセメント粒子と粉砕シリカと
超微粒シリカの充填モデルを表わし、第3図中、lはセ
メント粒子、2は間隙水、3は超微粒シリカ、4は粉砕
シリカを示す。
Figure 3 is a schematic diagram showing the particle packing model, and Figure 3 (
a) is a conventional filling model with only cement particles; Figure 3 (
b) is a filling model of cement particles and ultrafine silica, the third
Figure (c) shows a true sphere model for determining the particle diameter in the case of closest packing, and Figure 3 (d) shows a packing model of cement particles, ground silica, and ultrafine silica of the present invention. 2 indicates cement particles, 2 indicates pore water, 3 indicates ultrafine silica, and 4 indicates crushed silica.

超微粒シリカをセメントに混入すると、(1)  第3
図(a)のセメント粒子1の間の間隙水2を、第3図(
b)の超微粒シリカ3が追い出し、粒子の緻密性が増し
、かつ51[(駄な間隙水2が減り、流動媒体としての
水が増える(最密充填効果) (2)真球に近い細い多数の超微粒シリカ粒子によるべ
了リング効果が生ずる ことである。
When ultrafine silica is mixed into cement, (1)
The pore water 2 between the cement particles 1 in Figure (a) is expressed in Figure 3 (
The ultrafine silica 3 in b) is expelled, the density of the particles increases, and 51 [(useless pore water 2 is reduced, and water as a fluid medium increases (closest packing effect)) (2) A thin particle close to a true sphere This is because a bellowing effect occurs due to the large number of ultrafine silica particles.

従って、コンクリートの強度や流動性を向上(以下、単
に、高品質化と記す)させるためには、最密充填を如何
に経済的に効率的に行わせるか)′大きな課題になる。
Therefore, in order to improve the strength and fluidity of concrete (hereinafter simply referred to as "improvement of quality"), it becomes a big issue how to economically and efficiently perform close packing.

粒子が完全に真球の場合には、大きな粒径d。If the particles are completely spherical, the particle size d is large.

のセメント粒子lの間隙を埋める小さな粒径の粒子4の
最大径d1は、第3図(C)に示すように、(d+/ 
2 + do/ 2 ) COS3[1 = do/ 
2となるのでdl=do/6.5である。
As shown in FIG.
2 + do/2) COS3[1 = do/
2, so dl=do/6.5.

そこで本発明者らは、最密充填には1/6.5の等比級
数となる粒径分布の粒子群を混合するのが理論的に最適
であることに着目した。具体的にはセメント粒子のd,
。は20〜30μmであり、また実際の粒子は真級では
なく、かつ粒度分布をもっているので、dsoが1〜5
μmの微粒とd,。が0,05〜0.5μmの超微粒を
混合するのが最適であることを数多くの実験により確認
した。そして、前者の微粒として安価な粉砕シリカと後
者の超微粒として超微粒シリカを使用することにより、
高価な超微粒シリカの使用量を従来の約1/10に低減
してもfiIfa粒シリ力単独の場合と比較して同等以
上の品質のコンクリートが製造できることを確認した。
Therefore, the present inventors focused on the fact that it is theoretically optimal to mix a particle group with a particle size distribution that is a geometric series of 1/6.5 for close packing. Specifically, d of cement particles,
. is 20 to 30 μm, and since the actual particles are not true grade and have a particle size distribution, the dso is 1 to 5.
μm fine particles and d,. It has been confirmed through numerous experiments that it is optimal to mix ultrafine particles with a diameter of 0.05 to 0.5 μm. By using inexpensive crushed silica as the former fine particles and ultrafine silica as the latter ultrafine particles,
It was confirmed that even if the amount of expensive ultrafine silica used was reduced to about 1/10 of the conventional amount, concrete of the same or higher quality could be produced compared to the case of fiIfa granule silica alone.

また前記のベアリング効果を発揮させるためには、超微
粒シリカが十分に分敗している必要があるが、超微粒シ
リカは比表面積が非常に大きく、凝集性が非常に強い。
Further, in order to exhibit the above-mentioned bearing effect, ultrafine silica must be sufficiently broken down, but ultrafine silica has a very large specific surface area and has very strong agglomeration.

そこで本発明者らは湿式攪拌ミル入口に超微粒シリカと
水と分散用混和剤を添加し、湿式攪拌ミルでシリカ含有
物の粉砕と混合分散を同時に行うことによりこれを解決
した。
The present inventors solved this problem by adding ultrafine silica, water, and a dispersion admixture to the inlet of a wet stirring mill, and simultaneously pulverizing and mixing and dispersing the silica-containing material in the wet stirring mill.

更に本発明ではコンクリート混和材を十分に混合分散し
たスラリー状混和祠としてコンクリート製造者に提供す
ることができるために従来のコンクリート製造工程を何
ら変えることなく容易に高品質コンクリートの製造が可
能である。
Furthermore, the present invention can provide concrete manufacturers with a slurry mixture in which concrete admixtures are sufficiently mixed and dispersed, making it possible to easily manufacture high-quality concrete without changing the conventional concrete manufacturing process. .

前述の適正粒径をもった粉砕シリカと超微粒シリカとを
セメントに混合することにより、第3図(d)に示すよ
うに、セメント粒子1間隙を粉砕シリカ4が埋め、この
粉砕シリカ4の間隙を超微粒シリカ3が埋めるので非常
に効率のよい最密充填が可能となる。
By mixing the above-mentioned crushed silica and ultrafine silica having the appropriate particle size with cement, the crushed silica 4 fills the gaps between the cement particles 1 and the crushed silica 4, as shown in FIG. 3(d). Since the ultrafine silica 3 fills the gaps, very efficient close packing is possible.

本発明者らが先に提案した湿式攪拌ミルである粉砕装置
、すμわち、相対的に回転される外筒と内筒とを備え、
これら外筒と内筒との間を粉砕室とした粉砕装置、及び
該粉砕装置の外筒及び/又は内筒る翼を取付けた粉砕装
置(特願昭61〜38811号)を使用すると、湿式攪
拌ミル内では非常に強い剪断力が働くために、凝集超微
粒シリカは解離し、粒子表面は剪断力で活性化している
ので、同時に添加している混和剤が粒子表面に均一に吸
着するために非常に女定した分11k超微粒シリカが得
られる。
The grinding device, which is a wet stirring mill previously proposed by the present inventors, includes an outer cylinder and an inner cylinder that are rotated relative to each other,
When using a crushing device with a crushing chamber between the outer cylinder and the inner cylinder, and a crushing device (Japanese Patent Application No. 1988-38811) equipped with blades for the outer cylinder and/or inner cylinder of the crushing device, wet type Due to the very strong shearing force that works in the stirring mill, the agglomerated ultrafine silica dissociates and the particle surface is activated by the shearing force, so the admixture added at the same time is evenly adsorbed on the particle surface. 11k ultra-fine silica can be obtained with a very high density.

更に湿式攪拌ミル出口では粉砕シリカとの混合も終了し
たスラリー状混和材となっているのでセメント、水、骨
材とこの混和材との混合分敗が非常にスムーズに行われ
る。
Further, at the exit of the wet stirring mill, the slurry-like admixture has already been mixed with the pulverized silica, so that the mixing and separation of the admixture with cement, water, and aggregates is carried out very smoothly.

なお、前記湿式攪拌ミル内での粉砕は粒子同士が互いに
接触し、いわゆる粒子相互摩砕作用が大きい程粉砕性が
向上する。この摩砕作用を行わせるためには、湿式攪拌
ミル内の固形分濃度が50wt%より低過ぎると粒子の
接触確率が低くなり、また濃度が9Qwt%より高過ぎ
るとミル内の攪拌メディア(ボール)と固形分との共廻
り現象が生じ剪断力が低下する。このため、摩砕作用を
効果的に行わせる固形分濃度は50〜90重量%が適正
である。
In addition, during the grinding in the wet stirring mill, the particles come into contact with each other, and the greater the so-called mutual grinding effect of the particles, the better the grindability. In order to perform this grinding action, if the solid content concentration in the wet stirring mill is too low than 50 wt%, the contact probability of particles will be low, and if the concentration is too high than 9 Qwt%, the stirring media (balls) in the mill will be reduced. ) and the solid content occur, and the shearing force decreases. Therefore, the appropriate solid content concentration for effectively performing the grinding action is 50 to 90% by weight.

〔実施例〕〔Example〕

以下本発明の一実施例を第1図によって説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図は本発明の混和材製造システムの実施例であり、
粉砕シリカ及び超微粒シリカの原科として石炭焚き火力
発電所で発生する石炭灰を使用し、高温気化法によって
得られた超微粒シリカを使用した例である。なお、石炭
灰以外にも日本各地で採れる珪石やシラスも本発明の原
料となる。
FIG. 1 shows an embodiment of the admixture production system of the present invention,
This is an example in which coal ash generated in a coal-fired power plant is used as the raw material for pulverized silica and ultrafine silica, and ultrafine silica obtained by a high-temperature vaporization method is used. In addition to coal ash, silica and shirasu, which can be found throughout Japan, can also be used as raw materials for the present invention.

以下具体的に説明する。This will be explained in detail below.

原料ホッパ−1内の石炭灰は、フィーダ2によって供給
管3を通ってチューブミル5に送られる。チューブミル
5内には粉砕用ボールが充填されており、給水管4によ
り送られた水と一緒にd,。が10μm程度に湿式1次
粉砕される。
Coal ash in the raw material hopper 1 is sent to the tube mill 5 by a feeder 2 through a supply pipe 3. The tube mill 5 is filled with grinding balls, and together with the water sent through the water supply pipe 4, d. is first wet-pulverized to about 10 μm.

なお、必要に応じてチューブミル入口には薬注管l8か
ら減水剤としての界面活性剤である混和剤(レ才ビルド
SP−9HS :日四マスタービルダーズ社製)が供給
される。粉砕された石炭灰スラリーは排出管6よりコレ
クトタンク7へ送られ、ポンブ9により輸送管8.10
を通って湿式攪拌ミル11に送られて、d,。が1〜5
μmに微粉砕される。攪拌ミル11の人口には混和剤タ
ンク15、薬注管14、l7、ポンブ16により混和剤
と超微粒ホッパ19からフィーダ20、供給管21を通
って超微粒シリカが供給される。
If necessary, an admixture (Resaibuild SP-9HS, manufactured by Nisshi Master Builders Co., Ltd.), which is a surfactant as a water reducing agent, is supplied to the inlet of the tube mill from the chemical injection pipe 18. The pulverized coal ash slurry is sent to the collection tank 7 from the discharge pipe 6, and then transferred to the transport pipe 8.10 by the pump 9.
d, and sent to the wet stirring mill 11 through d. is 1-5
Finely ground to μm. The stirring mill 11 is supplied with an admixture by an admixture tank 15, chemical injection pipes 14, 17, and pump 16, and ultrafine silica from an ultrafine hopper 19 through a feeder 20 and a supply pipe 21.

把拌ミル11内には直径が数mmから十数mmのボール
が充満されており、攪拌翼(図示せず)により激しく運
転しており、このボールの運動により石炭灰が微粉砕さ
れると同時に、超微粒シリカと混和剤が混合分敗されて
、均一で安定した粉砕シリカと超微粒シリカと混和剤と
水とからなるコンクリート混和材が製造されて、輸送管
12を通って製品タンク13にII′P蔵される。
The mixing mill 11 is filled with balls with diameters ranging from several mm to more than 10 mm, and is driven vigorously by stirring blades (not shown), and the movement of these balls pulverizes the coal ash. At the same time, the ultra-fine silica and the admixture are mixed and separated to produce a uniform and stable concrete admixture consisting of the pulverized silica, ultra-fine silica, the admixture and water, which is passed through the transport pipe 12 into the product tank 13. It is stored in II'P.

第2図は第1図の実施例に従い、把拌ミル11内の固形
分濃度を変化した時の試験結果例である。なお、超微粒
シリカは石炭灰に対して10重量%、混和剤は合計固形
分量に対して0.25重量%添加した。
FIG. 2 shows an example of test results when the solid content concentration in the stirring mill 11 was varied according to the embodiment shown in FIG. The ultrafine silica was added in an amount of 10% by weight based on the coal ash, and the admixture was added in an amount of 0.25% by weight based on the total solid content.

固形分濃度が50wt%より低過ぎると粒子相互の摩砕
作用が低下し粉砕製が悪くなり、かつ粉砕動力原単位も
高い。逆に90重量%以上の高濃度になると動力原単位
は低いが、スラリー粘度が高くなり過ぎてボールとスラ
リーの共廻り現象が始まり粉砕性が低下する。
If the solid content concentration is too lower than 50 wt%, the mutual grinding action of particles will be reduced, resulting in poor pulverization quality, and the grinding power consumption rate will also be high. On the other hand, when the concentration is higher than 90% by weight, the power unit is low, but the viscosity of the slurry becomes too high, and a phenomenon in which the balls and slurry rotate together begins, resulting in a decrease in grindability.

以上、粉砕性と動力原単位から攪拌ミル内の固形分濃度
は50〜90重量%が適正であることが明らかになった
As described above, it has been revealed that the appropriate solid content concentration in the stirring mill is 50 to 90% by weight from the viewpoint of crushability and power consumption.

第1表は第1図及び第2図の実施例に従い製造した混和
材を実際にセメントに混合し、コンクリートの強度評価
試験を実施した例である。
Table 1 shows an example in which the admixture manufactured according to the example shown in FIGS. 1 and 2 was actually mixed with cement, and a concrete strength evaluation test was conducted.

なお、スランプ値(施工性)が一定の条件でテストを実
施した。第1表より本発明の混和材を20%使用した場
合、混和材なしに比較して3倍以上強度が増加し、また
高価な超微粒シリカ単独の混和祠を20%使用時と比較
して強度は若干上廻り、セメントコスト(混和祠コスト
を含む)が半分以下と安価である。
The test was conducted under conditions where the slump value (workability) was constant. Table 1 shows that when 20% of the admixture of the present invention is used, the strength increases by more than three times compared to that without the admixture, and compared to when using 20% of the expensive admixture of ultrafine silica alone. The strength is slightly higher, and the cement cost (including the cost of the mixing stone) is less than half, making it cheaper.

〔発明の効果〕〔Effect of the invention〕

以1二、本発明により、 (1)従来のセメントコストと殆んど同じでコンクリー
ト強度を3倍以上向上可能となる。
12. According to the present invention, (1) Concrete strength can be increased by more than three times at almost the same cost as conventional cement.

(2)  同じ施工性(スランプ価)でも水/(セメン
ト→一混和材)比が小さい、即ち余分な水が少いために
ひび割れがまったくなく、かつ永和反応熱も低く押えら
れる。
(2) Even with the same workability (slump value), the water/(cement→admixture) ratio is small, that is, there is little excess water, so there is no cracking at all, and the heat of eternal reaction is kept low.

(3)微粒子のべ了リング効果により水/(七メン1・
十混和材)が同じ場合には流動性が大巾に向上し、コン
クリートの長距離ポンプ輸送が可能となる。
(3) Water/(Seven Men 1・
If the same admixtures are used, the fluidity will be greatly improved, making it possible to pump concrete over long distances.

(4)スラリー状混和材であるため品質が安定しており
、かつ従来のコンクリート製造工程がそのまま使える。
(4) Since it is a slurry-like admixture, the quality is stable, and conventional concrete manufacturing processes can be used as is.

(5)般近石炭焚き火力発電所の増加に伴い急増してい
る石炭灰の大量有効利用が可能となる。
(5) It will become possible to effectively utilize a large amount of coal ash, which is rapidly increasing with the increase in the number of general coal-fired power plants.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の混和柑製逍の工程図、第2
図は本発明の一実施例の湿式1{1拌ミルの石炭灰粉砕
試験結果例を示す図表、第3図は粒子充填モデルを示す
模式図である。
Figure 1 is a process diagram for making mixed citrus according to one embodiment of the present invention, and Figure 2 is
The figure is a chart showing an example of a coal ash crushing test result of a wet type 1{1 stirring mill according to an embodiment of the present invention, and FIG. 3 is a schematic diagram showing a particle filling model.

Claims (5)

【特許請求の範囲】[Claims] (1)機械的粉砕によって得られるシリカ含有物の粉砕
微粒と、シリカ含有物の高温気化法あるいは加水分解法
等によって得られる超微粒シリカを混合することにより
2つの粒度分布をもってなることを特徴とするコンクリ
ート混和材。
(1) It is characterized by having two particle size distributions by mixing pulverized fine particles of a silica-containing material obtained by mechanical grinding and ultrafine silica particles obtained by a high-temperature vaporization method or hydrolysis method of a silica-containing material. Concrete admixture.
(2)シリカ含有物が石炭火力発電所で発生する石炭灰
や珪石、シラスであり、かつシリカ含有物の粉砕微粒と
超微粒シリカの平均粒径がそれぞれ1〜5μmと0.0
5〜0.5μmであることを特徴とする請求項(1)記
載のコンクリート混和材。
(2) The silica-containing material is coal ash, silica stone, or whitebait generated in a coal-fired power plant, and the average particle diameters of the crushed fine particles and ultrafine silica of the silica-containing material are 1 to 5 μm and 0.0 μm, respectively.
The concrete admixture according to claim 1, wherein the concrete admixture has a thickness of 5 to 0.5 μm.
(3)シリカ含有物の粉砕微粒と超微粒シリカと水と混
和剤とを混合し、スラリー状としてなることを特徴とす
る請求項(1)又は(2)記載のコンクリート混和材。
(3) The concrete admixture according to claim (1) or (2), characterized in that it is made into a slurry by mixing crushed fine particles of a silica-containing material, ultrafine silica, water, and an admixture.
(4)シリカ含有物の粉砕微粒を湿式攪拌ミルで製造し
、かつ超微粒シリカと混和剤を該ミル入口で添加し、該
ミル内でシリカ含有物の粉砕と水、超微粒シリカ、混和
剤の混合を同時に行うことを特徴とするコンクリート混
和材の製造方法。
(4) Pulverized fine particles of a silica-containing material are produced in a wet stirring mill, and ultrafine silica and an admixture are added at the inlet of the mill, and the silica-containing material is pulverized in the mill, water, ultrafine silica, and an admixture. A method for producing a concrete admixture characterized by simultaneously mixing.
(5)湿式撹拌ミルによる粉砕と混合を固形分濃度50
〜90重量%で行うことを特徴とする請求項(4)記載
のコンクリート混和材の製造方法。
(5) Grinding and mixing with a wet stirring mill to a solid content concentration of 50
5. The method for producing a concrete admixture according to claim 4, characterized in that the amount is 90% by weight.
JP18893589A 1989-07-24 1989-07-24 Manufacturing method of concrete admixture Expired - Fee Related JP2755700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18893589A JP2755700B2 (en) 1989-07-24 1989-07-24 Manufacturing method of concrete admixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18893589A JP2755700B2 (en) 1989-07-24 1989-07-24 Manufacturing method of concrete admixture

Publications (2)

Publication Number Publication Date
JPH0354139A true JPH0354139A (en) 1991-03-08
JP2755700B2 JP2755700B2 (en) 1998-05-20

Family

ID=16232475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18893589A Expired - Fee Related JP2755700B2 (en) 1989-07-24 1989-07-24 Manufacturing method of concrete admixture

Country Status (1)

Country Link
JP (1) JP2755700B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128616A (en) * 1998-10-16 2000-05-09 Sumitomo Osaka Cement Co Ltd Production of cement composition
JP2002321952A (en) * 2001-04-26 2002-11-08 Taiheiyo Cement Corp Cement admixture
JP2008087468A (en) * 2006-09-05 2008-04-17 Eacle Kk Method for manufacturing coal ash slurry for cement based composition and cement based composition
JP2009215139A (en) * 2008-03-12 2009-09-24 Kubota Matsushitadenko Exterior Works Ltd Silica material, cement molded article, and method for producing cement molded article
WO2018143387A1 (en) * 2017-02-02 2018-08-09 住友大阪セメント株式会社 Concrete composition and method for manufacturing concrete composition
WO2018142660A1 (en) * 2017-02-02 2018-08-09 住友大阪セメント株式会社 Concrete composition and method for manufacturing concrete composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257233A (en) * 1975-11-06 1977-05-11 Nisso Master Builders Kk Utilization method of granulated slag
JPS61117143A (en) * 1984-11-13 1986-06-04 電気化学工業株式会社 Slurry silica fume for admixing cement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257233A (en) * 1975-11-06 1977-05-11 Nisso Master Builders Kk Utilization method of granulated slag
JPS61117143A (en) * 1984-11-13 1986-06-04 電気化学工業株式会社 Slurry silica fume for admixing cement

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128616A (en) * 1998-10-16 2000-05-09 Sumitomo Osaka Cement Co Ltd Production of cement composition
JP2002321952A (en) * 2001-04-26 2002-11-08 Taiheiyo Cement Corp Cement admixture
JP2008087468A (en) * 2006-09-05 2008-04-17 Eacle Kk Method for manufacturing coal ash slurry for cement based composition and cement based composition
JP2009215139A (en) * 2008-03-12 2009-09-24 Kubota Matsushitadenko Exterior Works Ltd Silica material, cement molded article, and method for producing cement molded article
WO2018143387A1 (en) * 2017-02-02 2018-08-09 住友大阪セメント株式会社 Concrete composition and method for manufacturing concrete composition
WO2018142660A1 (en) * 2017-02-02 2018-08-09 住友大阪セメント株式会社 Concrete composition and method for manufacturing concrete composition
KR20190113526A (en) * 2017-02-02 2019-10-08 스미토모 오사카 세멘토 가부시키가이샤 Concrete compositions and methods of making concrete compositions

Also Published As

Publication number Publication date
JP2755700B2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
CN104903270A (en) Process for treating fly ash and a rotary mill therefor
JP3230378B2 (en) Cement composition
JP3230390B2 (en) Method for producing cement composition
CN114105537B (en) Method for preparing copper tailing foam concrete by wet grinding foaming
JPH0354139A (en) Admixture material for concrete and production thereof
JP3116477B2 (en) Manufacturing method of high strength cement
JPH11147750A (en) Cement composition
JPH02232296A (en) Preparation of coal-water slurry
CN108514928B (en) Dispersion mill for preparing nano material modified cement
JPS5867781A (en) Preparation of grauting material based on ultrafine portland cement
JP6414873B2 (en) Method for producing cement composition
JPH04220494A (en) Manufacture of highly concentrated coal/water slurry
JP3146593B2 (en) Manufacturing method of high strength cement
JPS63210048A (en) Hydraulic fine powder material and manufacture
JP3317643B2 (en) Coal ash spheroidizing method and coal ash spheroidizing apparatus using the same
JPH0784337B2 (en) Fly Ash treatment method
JPH1099704A (en) Crushing medium and production of spherical fine particles using the same
JP4193913B1 (en) Spherical fine particles of mineral and its production method and use
JPH0464640B2 (en)
Cotsworth Use of pelletized slag in concrete masonry units
JPH0421719B2 (en)
JPH04198054A (en) Production of concrete using waste glass sand material
JPH0552359B2 (en)
JP2002249773A (en) Grouting material and grouting process using the same
SU1164393A1 (en) Method of preparing multicomponent plugging materials

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees