JPH0353760Y2 - - Google Patents

Info

Publication number
JPH0353760Y2
JPH0353760Y2 JP9932888U JP9932888U JPH0353760Y2 JP H0353760 Y2 JPH0353760 Y2 JP H0353760Y2 JP 9932888 U JP9932888 U JP 9932888U JP 9932888 U JP9932888 U JP 9932888U JP H0353760 Y2 JPH0353760 Y2 JP H0353760Y2
Authority
JP
Japan
Prior art keywords
water
tank
treated
contact
contact chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9932888U
Other languages
Japanese (ja)
Other versions
JPH0221000U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9932888U priority Critical patent/JPH0353760Y2/ja
Publication of JPH0221000U publication Critical patent/JPH0221000U/ja
Application granted granted Critical
Publication of JPH0353760Y2 publication Critical patent/JPH0353760Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

(産業上の利用分野) この考案は廃水処理用の脱窒槽に関し、詳しく
は廃水中のBODを除去する廃水処理工程に配置
しT−N(総窒素)を除去する脱窒槽に係わるも
のである。 (従来の技術) 一般に、動物のし尿が混入する廃水(いわゆる
下水)は通常の生活廃水と同様にBOD(生物科学
的酸素要求量)除去を主体とした浄化処理がさ
れ、BOD処理工程の脱窒槽において含有窒素成
分が除去処理されている。 (考案が解決しようとする課題) しかしながら、動物し尿の混入した廃水は通常
の生活廃水に較べ、トータル窒素(総窒素、以下
T−Nとも記載する)量が多いので、浄化処理し
難く、脱窒槽の処理効果が悪い問題があつた。 そこで、本考案の目的は動物し尿の混入した廃
水など、トータル窒素量の多い廃水処理用の脱窒
槽を提供することにある。 (課題を解決するための手段) 上記目的を達成するためにこの考案の手段は、
流入口より槽内に提供された廃水に基づく被処理
水が空気接触を可及的に断ちかつメタノールの存
在する状態において槽内の接触室を通過した後
に、汲上げ手段を介して前記接触室上に戻され、
嫌気性微生物の繰返しの処理を受け、しかる後に
流出口より脱窒処理水として次工程に排出される
構造の脱窒槽であつて、前記接触室は嫌気性微生
物の付着した多孔質材の層部と貝殻質材の層部と
より形成されてなる廃水処理用の脱窒槽とされ
る。 前記脱窒槽は密閉状に形成され、例えば水面に
フロート板などが配置されて空気との接触を可及
的に断つように形成される。脱窒槽内の被処理水
には適宜手段によりメタノールが提供され嫌気的
状態にされる。前記接触室は脱窒槽内を区切つて
形成されるが、脱窒槽内全体を接触室としても良
い。前記汲上げ手段は適宜な水送り手段が採用さ
れる。 (作用) 脱窒槽において被処理水は嫌気的状態に保持さ
れる。メタノールは被処理水の嫌気的状態保持に
役立つ。嫌気性微生物は多孔質材に付着してい
る。被処理水中のトータル窒素は嫌気微生物によ
り消費され浮遊物(あるいは汚泥)を生ずる。被
処理水は接触室の多孔質材において主に嫌気性微
生物処理される。貝殻質材の層部は被処理水にカ
ルシウムイオンを提供し、被処理水PHの低下
(酸性化)を防ぎ、嫌気性微生物の増殖を助ける。
多孔質材の層部は被処理水と嫌気性微生物の接触
を良化する。接触室を通過した被処理水は汲上げ
手段にて接触室上に戻され繰返し脱窒処理が続け
られる。 (実施例) 次に、本考案の実施例を図面に基づいて説明す
る。 第1図は廃水を脱窒処理する脱窒槽1の断面構
造を主体とし、前工程の第2沈澱槽20及び後工
程の曝気槽21を併せて示してある。 前記脱窒槽1内は縦向きの筒体2により中央部
と外周部とに区切られ、外周部は接触室3とさ
れ、かつ筒体2内は微生物処理及び汲上げ手段の
配管部位とされている。なお、脱窒槽1内の底部
1A付近は筒体2の配置されない部分とされてい
て、接触室3の下方部と筒体2下方部は水の流通
可能に接続されている。接触室3の下端は網体な
どの透水板4により水平状に被われ、下層には多
孔質材5が配置され、上層には貝殻質材6が配置
されている。前記多孔質材5は、水の流通する多
孔質構造のものであり、例えば第5図に示すよう
に合成樹脂の繊維質よりなる筒体5Aが用いら
れ、本例では9本の筒体5Aが接続された状態の
ものとされ、これが接触室内の所定部位を埋める
ように所定数縦横に配置されている。筒体5Aは
繊維室であるので、排水は縦横に通過自在であ
る。また筒体5Aには予め嫌気性微生物が付着さ
せてあり、被処理水との接触効率良好である。 前記貝殻質材6は、例えばかき殻などの貝殻6
Aが所定位置まで配置される。本例の貝殻質材6
は貝殻6Aの所定量を網袋6Bに詰めたものを複
数個配列して接触層とされている。 一方、筒体2下方の層内底部1Aには該底部1
Aに吸水口7Aを有する水中ポンプ7が固定され
ている。水中ポンプ7の導水管8は筒体2内を上
方に導かれ、筒体2上方において水平状の分岐管
9に接続され、接触質3上に導かれ、排水口9A
を接触室3に向けた状態に形成され、適宜手段に
より支持されている。前記水中ポンプ7を駆動し
た際は槽内底部1Aの水が給水口7Aより水中ポ
ンプ7内に導入され、導水管8を介して分岐管9
に至り、各排水口9Aより接触室3上に排出され
る。 前記脱窒槽1の一側部には第2沈澱層20の水
を構内に導入する導入管10が設けられ、導入管
10にはメタノール供給管11が接続されてい
て、脱窒槽1にメタノールが供給されるようにな
つている。脱窒槽1の他側部には脱窒槽1内の処
理水を曝気槽2に排出する排出管12が設けられ
ている。そして、第2沈澱槽20の〓水は脱窒槽
1に入り脱窒槽1の〓水分が曝気槽21に流出す
るようにされている。脱窒槽1は予め所定の水位
にされていて、水面には該水面全体を密閉状に被
うフロート板13が浮かせてある。また、脱窒槽
1上端の開口部1Bには開閉可能に蓋板14が被
着されている。 しかして、本例の脱窒槽1は第7図に示すよう
に廃水処理工程の第2沈澱槽20と曝気槽21間
に配設され、廃水の流入、排出可能に接続され
る。第7図の廃水処理工程は、回転羽根式の曝気
槽16、計量槽17、第1沈澱槽18、酸化槽1
9、第2沈澱槽20、脱窒槽1、曝気槽21、第
3沈澱槽22、接触濾過槽23及び放流槽24と
よりなる。そして、第1沈澱槽18、酸化槽1
9、曝気槽21及び接触濾過槽23にはブロアに
より空気が提供される。 しかして、動物し尿の混入した総窒素量の多い
廃水を曝気槽16を導入し、回転羽根の16Aに
より空気接触させ酸化処理する。次いで酸化処理
した廃水を送水ポンプ25により計量槽17に送
り、所定流量で第1沈澱槽18に送る。第1沈澱
槽18においてBOD,CODの一部が汚泥沈澱と
して除去される。沈澱の除去された第1沈澱槽1
8の被処理水は酸化槽19に導入される。酸化槽
19において被処理水は曝気管26により曝気さ
れ、かつ貝殻槽27を経て循環され、好気性微生
物処理される。次いで、酸化槽19の被処理水は
第2沈澱層20に送られ沈澱が除去されBOD,
CODの低下した被処理水となる。 次いで、この被処理水は導入管10を介して脱
窒槽1に導入される。なお、導入途中においてメ
タノールが添加される。脱窒槽1において、被処
理水は水中ポンプ7の吸水口7Aより導入され、
導入管8及び分岐管9を介して排水口より接触室
3上に排出される。接触室3上の処理水は貝殻質
材6及び多孔質材5を経て接触室3の下部に至
り、再び吸水口7Aに導入され、接触室3におけ
る接触処理が繰返される。被処理水は貝殻質材6
を通過する際にカルシウムイオンにより中和され
PHが中性化される。多孔質材5において被処理
水と嫌気性微生物との接触がされる。脱窒槽1内
は嫌気的条件にされていることにより被処理水は
嫌気性微生物の処理を受け総窒素が消化される。
総窒素の消化された被処理水は排出管12より曝
気槽21に導入される。総窒素量の低下した被処
理水は曝気槽21において曝気管28により曝気
され、かつ貝殻層29を経て循環され好気性微生
物処理されBOD,CODが低下される。 次いでBOD,CODの低下した被処理水は第3
沈澱槽22に導入され、沈澱が除去された後に接
触濾過槽23に導入される。接触濾過槽23は曝
気管30により曝気され、被処理水が空気と長く
接触するように形成され、空気接触した被処理水
は大粒及び細粒の貝殻層31を経てカルシウムイ
オンによる中和及び濾過処理された後に再び曝気
槽30に至り、曝気と濾過を繰返される。接触濾
過槽23において浮遊物、沈澱が除去され透明な
処理水とされる。接触濾過槽23の透明な処理水
は放流槽24に貯留され適宜に放流される。 本例の廃水処理工程における廃水処理の結果
は、例えば次表に示す通りであつた。
(Industrial Application Field) This invention relates to a denitrification tank for wastewater treatment, and more specifically to a denitrification tank that is placed in a wastewater treatment process to remove BOD from wastewater and removes T-N (total nitrogen). . (Prior art) In general, wastewater contaminated with animal excrement (so-called sewage) is purified by mainly removing BOD (biological oxygen demand) in the same way as normal domestic wastewater, and the BOD treatment process is eliminated. Nitrogen components are removed in the nitrogen tank. (Problem to be solved by the invention) However, compared to normal domestic wastewater, wastewater contaminated with animal human waste has a higher amount of total nitrogen (total nitrogen, hereinafter also referred to as T-N), so it is difficult to purify and remove. There was a problem that the treatment effect of the nitrogen tank was poor. Therefore, an object of the present invention is to provide a denitrification tank for treating wastewater containing a large amount of total nitrogen, such as wastewater mixed with animal human waste. (Means for solving the problem) In order to achieve the above purpose, the means of this invention are:
After the water to be treated based on wastewater provided into the tank from the inlet passes through the contact chamber in the tank in a state where air contact is cut off as much as possible and methanol is present, the water is pumped into the contact chamber through a pumping means. returned to the top,
The denitrification tank is structured so that it undergoes repeated treatment with anaerobic microorganisms and is then discharged from an outlet to the next process as denitrified water, and the contact chamber is a layer of porous material on which anaerobic microorganisms are attached. A denitrification tank for wastewater treatment is formed by a layer of shell material and a layer of shell material. The denitrification tank is formed in a sealed manner, for example, a float plate or the like is placed on the water surface to cut off contact with air as much as possible. The water to be treated in the denitrification tank is provided with methanol by appropriate means to be brought into an anaerobic state. The contact chamber is formed by dividing the interior of the denitrification tank, but the entire interior of the denitrification tank may be used as the contact chamber. Appropriate water feeding means is employed as the pumping means. (Function) The water to be treated is maintained in an anaerobic state in the denitrification tank. Methanol helps maintain the anaerobic state of the water being treated. Anaerobic microorganisms are attached to porous materials. The total nitrogen in the water to be treated is consumed by anaerobic microorganisms, producing suspended matter (or sludge). The water to be treated is mainly treated with anaerobic microorganisms in the porous material of the contact chamber. The shell material layer provides calcium ions to the water to be treated, prevents the pH of the water from decreasing (acidification), and supports the growth of anaerobic microorganisms.
The layer of porous material improves contact between the water to be treated and anaerobic microorganisms. The water to be treated that has passed through the contact chamber is returned to the top of the contact chamber by a pumping means, and denitrification treatment is continued repeatedly. (Example) Next, an example of the present invention will be described based on the drawings. FIG. 1 mainly shows the cross-sectional structure of a denitrification tank 1 for denitrifying wastewater, and also shows a second sedimentation tank 20 in the preceding process and an aeration tank 21 in the subsequent process. The inside of the denitrification tank 1 is divided into a central part and an outer peripheral part by a vertical cylinder 2, the outer peripheral part is used as a contact chamber 3, and the inside of the cylinder 2 is used as a piping part for microbial treatment and pumping means. There is. Note that the vicinity of the bottom 1A in the denitrification tank 1 is a part where the cylinder 2 is not placed, and the lower part of the contact chamber 3 and the lower part of the cylinder 2 are connected to allow water to flow therethrough. The lower end of the contact chamber 3 is horizontally covered with a water-permeable plate 4 such as a net, a porous material 5 is arranged in the lower layer, and a shell material 6 is arranged in the upper layer. The porous material 5 has a porous structure through which water flows, and for example, as shown in FIG. 5, cylinders 5A made of synthetic resin fibers are used, and in this example, nine cylinders 5A are used. are connected, and a predetermined number of these are arranged vertically and horizontally so as to fill a predetermined portion within the contact chamber. Since the cylindrical body 5A is a fiber chamber, drainage water can freely pass through it in all directions. Moreover, anaerobic microorganisms are attached to the cylinder 5A in advance, and the contact efficiency with the water to be treated is good. The shell material 6 is, for example, a shell 6 such as an oyster shell.
A is placed at a predetermined position. Shell material 6 of this example
The contact layer is made by arranging a plurality of net bags 6B filled with a predetermined amount of shells 6A. On the other hand, the inner layer bottom 1A below the cylinder 2 has the bottom 1
A submersible pump 7 having a water intake port 7A is fixed at A. The water conduit 8 of the submersible pump 7 is guided upward within the cylinder 2, connected to a horizontal branch pipe 9 above the cylinder 2, led onto the contact material 3, and connected to the drain port 9A.
is formed so as to face the contact chamber 3, and is supported by appropriate means. When the submersible pump 7 is driven, water at the bottom 1A of the tank is introduced into the submersible pump 7 from the water supply port 7A, and is passed through the water conduit 8 to the branch pipe 9.
and is discharged onto the contact chamber 3 from each drain port 9A. An introduction pipe 10 for introducing water from the second precipitation layer 20 into the premises is provided on one side of the denitrification tank 1. A methanol supply pipe 11 is connected to the introduction pipe 10, and methanol is supplied to the denitrification tank 1. supply is becoming available. A discharge pipe 12 for discharging the treated water in the denitrification tank 1 to the aeration tank 2 is provided on the other side of the denitrification tank 1 . The water in the second settling tank 20 enters the denitrification tank 1 and the water in the denitrification tank 1 flows out into the aeration tank 21. The denitrification tank 1 is set to a predetermined water level in advance, and a float plate 13 is floated on the water surface to cover the entire water surface in a sealed manner. Further, a lid plate 14 is attached to the opening 1B at the upper end of the denitrification tank 1 so as to be openable and closable. As shown in FIG. 7, the denitrification tank 1 of this example is disposed between the second settling tank 20 and the aeration tank 21 in the wastewater treatment process, and is connected to allow the inflow and discharge of wastewater. The wastewater treatment process in FIG.
9, a second precipitation tank 20, a denitrification tank 1, an aeration tank 21, a third precipitation tank 22, a contact filtration tank 23, and a discharge tank 24. Then, the first precipitation tank 18, the oxidation tank 1
9. Air is provided to the aeration tank 21 and the contact filtration tank 23 by a blower. Thus, the wastewater containing animal human waste and having a large amount of total nitrogen is introduced into the aeration tank 16, and brought into contact with air by the rotary blade 16A for oxidation treatment. Next, the oxidized wastewater is sent to the metering tank 17 by the water pump 25, and is sent to the first settling tank 18 at a predetermined flow rate. In the first settling tank 18, a portion of BOD and COD is removed as sludge sediment. First sedimentation tank 1 from which sediment was removed
The water to be treated No. 8 is introduced into the oxidation tank 19 . In the oxidation tank 19, the water to be treated is aerated through an aeration pipe 26, circulated through a shell tank 27, and subjected to aerobic microbial treatment. Next, the water to be treated in the oxidation tank 19 is sent to the second sedimentation layer 20, where the sediment is removed and BOD,
This results in treated water with reduced COD. Next, this water to be treated is introduced into the denitrification tank 1 via the introduction pipe 10. Note that methanol is added during the introduction. In the denitrification tank 1, the water to be treated is introduced from the water intake port 7A of the submersible pump 7,
It is discharged onto the contact chamber 3 from the drain port via the introduction pipe 8 and the branch pipe 9. The treated water on the contact chamber 3 passes through the shell material 6 and the porous material 5, reaches the lower part of the contact chamber 3, is introduced into the water intake port 7A again, and the contact treatment in the contact chamber 3 is repeated. The water to be treated is shell material 6
is neutralized by calcium ions as it passes through
PH is neutralized. In the porous material 5, the water to be treated comes into contact with the anaerobic microorganisms. Since the inside of the denitrification tank 1 is kept under anaerobic conditions, the water to be treated is treated by anaerobic microorganisms, and the total nitrogen is digested.
The water to be treated in which the total nitrogen has been digested is introduced into the aeration tank 21 through the discharge pipe 12. The water to be treated with a reduced total nitrogen content is aerated through an aeration pipe 28 in an aeration tank 21, circulated through a shell layer 29, and treated with aerobic microorganisms to reduce BOD and COD. Next, treated water with reduced BOD and COD is the third
The water is introduced into a precipitation tank 22, and after the precipitate is removed, it is introduced into a contact filtration tank 23. The contact filtration tank 23 is aerated by an aeration pipe 30 and is formed so that the water to be treated is in contact with air for a long time. After being treated, it reaches the aeration tank 30 again, where aeration and filtration are repeated. Floating matter and sediment are removed in the contact filtration tank 23, resulting in clear treated water. The transparent treated water in the contact filtration tank 23 is stored in a discharge tank 24 and discharged as appropriate. The results of the wastewater treatment in the wastewater treatment step of this example were as shown in the following table, for example.

【表】 本例の廃水処理においては例えばT−N39ppm
の廃水をT−N5ppm以下となし得た。 前記した脱窒槽1の接触室3は下層が多孔質材
5よりなり、上層が貝殻質材6よりなる二層構成
となしたが、第8図に示すように脱窒槽1の接触
室3は底部より上方へ多孔質材5、貝殻質材6、
多孔質材6、貝殻質材6と交互に配設された複層
構成とすることができる。 (考案の効果) しかして、本考案は空気接触を可及的に断ちか
つメタノールの存在する状況の脱窒槽であるの
で、貯留される被処理水は嫌気性微生物により脱
窒処理される。そして、脱窒槽の接触室は多孔質
材の層部と貝殻質材の層部により形成されている
ため、被処理水は多孔質材の層部においてPHの
低下が防止され、かつ多孔質材の層部において浮
遊物等の除去がされる。 また、本考案においては接触室を通過した被処
理水は吸上げ手段を介して接触室上に戻される構
造であるので、繰返しの濾過処理がされ嫌気性微
生物による脱窒処理が良好に行なわれ、総窒素の
除去率を高め得る。
[Table] In the wastewater treatment of this example, for example, T-N39ppm
wastewater with T-N of less than 5 ppm. The contact chamber 3 of the denitrification tank 1 described above has a two-layer structure, with the lower layer made of porous material 5 and the upper layer made of shell material 6. As shown in FIG. Porous material 5, shell material 6,
It can have a multilayer structure in which the porous material 6 and the shell material 6 are alternately arranged. (Effects of the invention) Since the present invention is a denitrification tank in which air contact is cut off as much as possible and methanol is present, the stored water to be treated is denitrified by anaerobic microorganisms. Since the contact chamber of the denitrification tank is formed by a layer of porous material and a layer of shell material, the pH of the water to be treated is prevented from decreasing in the layer of porous material, and the porous material Floating objects, etc. are removed from the layer. In addition, in the present invention, the water to be treated that has passed through the contact chamber is returned to the contact chamber through a suction means, so that the water to be treated is repeatedly filtered and denitrification treatment by anaerobic microorganisms is performed effectively. , can increase the total nitrogen removal rate.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本考案の一実施例を示し、第1図は脱窒槽
を主体とした断面図、第2図は脱窒槽の平面図、
第3図は第1図−線における断面図、第4図
は第1図の−線における断面図、第5図は多
孔質材の斜視図、第6図は貝殻質材の斜視図、第
7図は廃水処理工程における使用態様図、第8図
は脱窒槽の別例図である。 1……脱窒槽、3……接触室、5……多孔質
材、6……貝殻質材、7……水中ポンプ、7A…
…吸水口、8……導水管、9……分岐管、9A…
…排水口、13……フロート板。
The drawings show an embodiment of the present invention, with Fig. 1 being a sectional view mainly showing the denitrification tank, Fig. 2 being a plan view of the denitrification tank,
3 is a sectional view taken along the line - - in FIG. 1, FIG. 4 is a sectional view taken along the - line in FIG. 1, FIG. 5 is a perspective view of the porous material, and FIG. FIG. 7 is a usage diagram in a wastewater treatment process, and FIG. 8 is another example of a denitrification tank. 1... Denitrification tank, 3... Contact chamber, 5... Porous material, 6... Shell material, 7... Submersible pump, 7A...
...Water intake, 8...Water pipe, 9...Branch pipe, 9A...
...Drain port, 13...Float board.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 流入口より槽内に供給された廃水に基づく被処
理水が空気接触を可及的に断ちかつメタノールの
存在する状態において槽内の接触室を通過した後
に、汲上げ手段を介して前記接触室上に戻され、
嫌気性微生物の繰返しの処理を受け、しかる後に
流出口より脱窒処理水として次工程に排出される
構造の脱窒槽であつて、前記接触室は嫌気性微生
物の付着した多孔質材の層部と貝殻質材の層部と
より形成されてなることを特徴とした廃水処理用
の脱窒槽。
After the water to be treated based on wastewater supplied into the tank from the inlet passes through the contact chamber in the tank in a state where air contact is cut off as much as possible and methanol is present, the water is pumped into the contact chamber through a pumping means. returned to the top,
The denitrification tank is structured so that it undergoes repeated treatment with anaerobic microorganisms and is then discharged from an outlet to the next process as denitrified water, and the contact chamber is a layer of porous material on which anaerobic microorganisms are attached. and a layer of shell material.
JP9932888U 1988-07-27 1988-07-27 Expired JPH0353760Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9932888U JPH0353760Y2 (en) 1988-07-27 1988-07-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9932888U JPH0353760Y2 (en) 1988-07-27 1988-07-27

Publications (2)

Publication Number Publication Date
JPH0221000U JPH0221000U (en) 1990-02-13
JPH0353760Y2 true JPH0353760Y2 (en) 1991-11-25

Family

ID=31326383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9932888U Expired JPH0353760Y2 (en) 1988-07-27 1988-07-27

Country Status (1)

Country Link
JP (1) JPH0353760Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3335500B2 (en) 1994-08-03 2002-10-15 シャープ株式会社 Wastewater treatment device and wastewater treatment method
JP4574717B2 (en) * 2009-03-30 2010-11-04 雅英 市川 Apparatus for generating hydrogen gas by reaction of metallic sodium and water and method for producing hydrogen gas
JP5602462B2 (en) * 2010-03-05 2014-10-08 雅英 市川 Apparatus for generating hydrogen gas by reaction of metallic sodium and water and method for producing hydrogen gas

Also Published As

Publication number Publication date
JPH0221000U (en) 1990-02-13

Similar Documents

Publication Publication Date Title
US3841997A (en) Dual aeration and filtration system with recycling
JPH0353760Y2 (en)
CN103011528B (en) Comprehensive sewage treatment system and method
CN208933187U (en) A kind of integration distributing high-efficiency wastewater treatment system
KR102323795B1 (en) Wastewater treatment device with reduced power consumption
KR20000033325A (en) United water-purifier tank of high efficiency
KR950008048B1 (en) Stockbreeding waste water purification tank
KR101102179B1 (en) Method of treating organic waste water and organic sludge and treatment equipment therefor
CN208038125U (en) Device for removing total nitrogen in sewage
KR100530555B1 (en) Small-scale facility and method for treating wastewater biologically
CN205603409U (en) High -efficient nitrogen and phosphorus removal's of integration sewage treatment unit
KR100298278B1 (en) Livestock septic tank by activating the microorganism
CN215799023U (en) Combined domestic sewage treatment equipment
KR0119265Y1 (en) Dairy waste treating equipment by using efeective microorganisms
KR890000791B1 (en) Catalytic filtering apparatus in cell for purifying night soil
JPH09108672A (en) Parallel two-stage membrane separation type septic tank
JPS6274489A (en) Recirculation aeration type sewage treatment apparatus
CN209797578U (en) Sewage treatment system adopting MBBR (moving bed biofilm reactor) process
JP3026499U (en) Circulation type human waste treatment equipment
KR940005064B1 (en) Biological purifier for waste water
JPH0111360Y2 (en)
JPH0417717B2 (en)
JP2519919Y2 (en) Septic tank
KR200214568Y1 (en) Sewage, dirty and waste water treatment device
JPH0642793Y2 (en) Aerobic immersion ▲ Floor ▼ Floor equipment