JPH0417717B2 - - Google Patents

Info

Publication number
JPH0417717B2
JPH0417717B2 JP61280474A JP28047486A JPH0417717B2 JP H0417717 B2 JPH0417717 B2 JP H0417717B2 JP 61280474 A JP61280474 A JP 61280474A JP 28047486 A JP28047486 A JP 28047486A JP H0417717 B2 JPH0417717 B2 JP H0417717B2
Authority
JP
Japan
Prior art keywords
chamber
anaerobic
circulation
flow chamber
upward flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61280474A
Other languages
Japanese (ja)
Other versions
JPS63278599A (en
Inventor
Yoshio Nakagawa
Isao Koshimizu
Kazuo Kosaka
Makoto Matsuzawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP61280474A priority Critical patent/JPS63278599A/en
Publication of JPS63278599A publication Critical patent/JPS63278599A/en
Publication of JPH0417717B2 publication Critical patent/JPH0417717B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水洗トイレ汚水等の有機物濃度が高
く、かつ窒素を含む汚水の処理方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for treating sewage such as flush toilet sewage which has a high concentration of organic matter and contains nitrogen.

〔従来の技術〕[Conventional technology]

従来、下水、し尿等の有機性排水を処理する方
法としては活性汚泥法が主に用いられて来たが、
この活性汚泥法は汚泥濃度の調節、空気量、返送
汚泥量の調整等の高度な維持管理技術を要する。
Traditionally, the activated sludge method has been mainly used to treat organic wastewater such as sewage and human waste.
This activated sludge method requires advanced maintenance and management techniques such as adjusting the sludge concentration, air volume, and return sludge volume.

最近になつて、微生物を固定して有機性排水を
処理する生物膜法が普及して来た。生物膜法の中
でも接触ばつ気法は、維持管理の容易さから浄化
槽レベルでは主流を占める処理方法である。本法
の特長は、汚泥令が極端に永いために活性汚泥法
では生息できない比増殖速度の小さい生物(代表
種として亜硝酸菌、硝酸菌等の硝化菌)でも増殖
が可能である。したがつて、し尿のように比較的
窒素分を多く含有する排水を本法で処理した場
合、処理水には多量の亜硝酸性窒素(NO- 2
N)、硝酸性窒素(NO- 3−N)が残留するように
なる。特に亜硝酸性窒素1mg/に対し化学的酸
素要求量(COD)として、1.14mg/検出される
他、生物化学的酸素要求量(BOD)測定に際し
てもフラン瓶中での硝化反応により、BOD値に
異状を生じることもよく知られた事実である。
Recently, the biofilm method for treating organic wastewater by immobilizing microorganisms has become popular. Among the biofilm methods, the contact aeration method is the mainstream treatment method at the septic tank level because of its ease of maintenance and management. A feature of this method is that it is possible to grow even organisms with low specific growth rates (typified by nitrifying bacteria such as nitrite bacteria and nitrate bacteria) that cannot survive in the activated sludge method due to the extremely long sludge age. Therefore, when wastewater containing relatively high nitrogen content, such as human waste, is treated using this method, a large amount of nitrite nitrogen (NO - 2 -
N) and nitrate nitrogen (NO - 3 -N) will remain. In particular, chemical oxygen demand (COD) of 1.14 mg/mg/mg of nitrite nitrogen is detected, and when measuring biochemical oxygen demand (BOD), the BOD value is also detected due to the nitrification reaction in the furan bottle. It is also a well-known fact that abnormalities can occur.

以上のような点と、さらに循環汚染防止の点か
ら、近年とくに排水中の窒素の除去が求められる
ようになつた。窒素除去技術のうち、アンモニア
ストリツピング法はアルカリ剤の注入を行うため
浄化槽レベルでの採用は困難である。これに対し
生物学的脱窒素法は、処理工程は増加するものの
完璧な脱窒素を望まない限り設備費、維持費とも
有利な方式である。特に原水中の有機物を水素供
与体として利用するLuzack−Ettingerプロセス
(1962)は他法に比べて優れた方式である。
In view of the above points and the prevention of cyclical pollution, there has been a growing demand for the removal of nitrogen from wastewater in recent years. Among nitrogen removal techniques, the ammonia stripping method involves injection of an alkaline agent, which makes it difficult to use at the septic tank level. On the other hand, the biological denitrification method requires more processing steps, but unless complete denitrification is desired, it is an advantageous method in terms of equipment costs and maintenance costs. In particular, the Luzack-Ettinger process (1962), which uses organic matter in raw water as a hydrogen donor, is superior to other methods.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら本法は基本的には浮遊汚泥法であ
るから、接触ばつ気方式にそのまま持ち込むこと
は不可能である。特に硝化液の返送の際に持ち込
む接触ばつ気室内の溶存酸素(DO)により原水
中の有機物が消費され、脱窒素に要する水素供与
体としての有機物が不足し、脱窒素率が低下する
問題がある。
However, since this method is basically a suspended sludge method, it is impossible to directly apply it to a contact aeration method. In particular, the organic matter in the raw water is consumed by the dissolved oxygen (DO) brought into the contact chamber when the nitrified solution is returned, resulting in a lack of organic matter as the hydrogen donor required for denitrification, which causes a problem in which the denitrification rate decreases. be.

本発明は、接触ばつ気室内の硝化液を嫌気過
室に循環する際に、硝化液中に存在する溶存酸素
を消費させるための循環室を設け、よつて原水中
の有機物を有効に水素供与体として利用できるよ
うな脱窒素機構を付加した汚水浄化装置を提供す
るものである。
The present invention provides a circulation chamber for consuming dissolved oxygen present in the nitrification solution when circulating the nitrification solution in the contact air chamber to the anaerobic filtration chamber, thereby effectively providing hydrogen to the organic matter in the raw water. The purpose of the present invention is to provide a sewage purification device equipped with a denitrification mechanism that can be used as a body.

〔問題点を解決するための手段〕[Means for solving problems]

前記の目的を達成するための本発明の構成を実
施例に対応する第1図〜第4図を用いて説明する
と、本発明は接触ばつ気室内のばつ気液を嫌気性
過室に返送する際、循環室中に汚泥の堆積しな
い程度の水流を発生させるためのバツフルを配設
し、このバツフルにより区画された下向流室と上
向流室とをばつ気液が通過することにより、DO
を消費するようにしたものである。
The configuration of the present invention for achieving the above object will be explained using FIGS. 1 to 4 corresponding to embodiments. The present invention returns the atomized gas liquid in the contact aeration chamber to the anaerobic overchamber. At this time, a baffle is installed in the circulation chamber to generate a water flow that does not cause sludge to accumulate, and the gas and liquid pass through the downward flow chamber and the upward flow chamber divided by this baffle. D.O.
It is designed to consume.

〔実施例〕〔Example〕

本発明の実施例を第1図乃至第4図に基づき以
下説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 4.

2は一方に原水の流入管1を設けるとともに、
他方に嫌気性過室3への移流口15を上方部に
設け移流口15前面に移流バツフル14を形成さ
せた沈澱分離である。4は、嫌気性過室3内の
過汚水を接触ばつ気室5へ流入させるための移
流管である。6は接触ばつ気室5底部に設けられ
た散気筒であり、11は接触ばつ気室5内の汚水
を返送するための上方に流出口を有する循環装置
である。7は接触ばつ気室5底部で連通された消
毒室9を有する沈澱室である。23は接触ばつ気
室5に設けた循環装置11に連通され且つ沈澱分
離室2の移流口15近傍の移流バツフルと仕切板
13との間に流出口を設けた循環室であり、循環
室23は該室23内には液面上より底部近傍に至
るバツフル12により下向流室16及び上向流室
17に区画され相互底部で連通されている。
2 is provided with a raw water inflow pipe 1 on one side,
On the other hand, this is a precipitation separation in which an advection port 15 to the anaerobic chamber 3 is provided in the upper part and an advection buffle 14 is formed in front of the advection port 15. Reference numeral 4 denotes an advection pipe for causing the contaminated water in the anaerobic chamber 3 to flow into the contact chamber 5. Reference numeral 6 denotes an aeration pipe provided at the bottom of the contact aeration chamber 5, and 11 denotes a circulation device having an outlet above for returning the waste water in the contact aeration chamber 5. 7 is a precipitation chamber having a disinfection chamber 9 communicated with the contact air chamber 5 at the bottom. Reference numeral 23 denotes a circulation chamber which is connected to the circulation device 11 provided in the contact air chamber 5 and has an outlet between the advection baffle near the advection port 15 of the sedimentation separation chamber 2 and the partition plate 13; The chamber 23 is divided into a downward flow chamber 16 and an upward flow chamber 17 by a baffle 12 extending from above the liquid level to near the bottom, which are communicated with each other at the bottom.

次に汚水の流れについて説明すると、流入管1
より流入した汚水は、沈澱分離室2において夾雑
物を除去された後移流バツフル14を潜り、移流
口15を経て嫌気性過室3に導かれる。嫌気性
過室3においては、内部に充填された材内に
捕捉保持された嫌気性細菌により、嫌気的消化作
用を受ける他、後置の接触ばつ気室5内で生成さ
れた亜硝酸性窒素(NO- 2−N)及び硝酸性窒素
(NO- 3−N)を嫌気性過室3に循環させること
により、汚水中の有機物を水素供与体とする脱窒
素反応により、NO- 2−N、NO- 3−Nを窒素ガス
(N2)として放出する。これらを反応式で示すと
以下のとおりである。
Next, to explain the flow of wastewater, inflow pipe 1
The sewage that has flowed in is filtered of impurities in the sedimentation separation chamber 2, passes through the advection buffer 14, and is led to the anaerobic filtration chamber 3 through the advection port 15. In the anaerobic overchamber 3, in addition to being subjected to anaerobic digestion by anaerobic bacteria captured and held in the material filled inside, nitrite nitrogen generated in the contact aeration chamber 5 located downstream is By circulating (NO - 2 -N) and nitrate nitrogen (NO - 3 -N) to the anaerobic chamber 3, NO - 2 -N is generated through a denitrification reaction using organic matter in wastewater as a hydrogen donor. , NO - 3 -N is released as nitrogen gas (N 2 ). The reaction formula for these is as follows.

2NO- 2+3(H2)→N2↑+2H2O+2OH- 2NO- 3+5(H2)→N2↑+4H2O+2OH- これら反応により、理論的にはNO- 2−N1Kgに
対し1.71Kg、NO- 3−N 1Kgに対しては2.86Kgの
BODがそれぞれ消費されることによりシステム
全体としての処理性能が向上することになる。さ
らに接触ばつ気室5内で消費したアルカリ度の半
分が回収できるため処理水の水素イオン濃度
(PH)低下を防止することができる。
2NO - 2 + 3 (H 2 ) → N 2 ↑ + 2H 2 O + 2OH - 2NO - 3 + 5 (H 2 ) → N 2 ↑ + 4H 2 O + 2OH -Through these reactions, theoretically 1.71Kg for NO - 2 -N1Kg, NO - 3 -N 2.86Kg for 1Kg
By consuming each BOD, the processing performance of the system as a whole improves. Furthermore, since half of the alkalinity consumed in the contact aeration chamber 5 can be recovered, a decrease in the hydrogen ion concentration (PH) of the treated water can be prevented.

移流管4を経て接触ばつ気室5に流入した汚水
は、散気筒6より吐出される空気と内部に設けら
れた接触材の表面に付着した好気的生物膜の作用
によりBODが除去される。また、汚水中の窒素
分(そのほとんどがアンモニア性窒素NH+ 4
N)は以下の反応により、生物学的に酸化され
る。
BOD is removed from the wastewater that has flowed into the contact air chamber 5 through the advection pipe 4 by the action of the air discharged from the aeration pipe 6 and the aerobic biofilm attached to the surface of the contact material provided inside. . In addition, the nitrogen content in wastewater (most of which is ammonia nitrogen NH + 4
N) is biologically oxidized by the following reaction.

NH+ 4+1.5O2(ニトロソモソス) ――――――――――――→ NO- 2+2H+ NO- 2+0.5O2(ニトロバクター) ――――――――――――→ NO- 3 これらの反応では、NH+ 4−N 1Kgに対して
酸素4.6Kg、アルカリ度7.14Kgが消費される。
NH + 4 +1.5O 2 (Nitrosomosus) ――――――――――――→ NO - 2 +2H + NO - 2 +0.5O 2 (Nitrobacter) ―――――――――――― -→ NO - 3 In these reactions, 4.6 kg of oxygen and 7.14 kg of alkalinity are consumed per 1 kg of NH + 4 -N.

次にこれらのNO- 2、NO- 3を含む硝化液を前述
した嫌気性過室3に循環する方法についてであ
るが、第3図にはエアリフト効果を利用した循環
装置11を示したが、その他モーターポンプを用
いても充分である。この硝化液中には接触ばつ気
室5で供給された酸素が、溶存酸素(DO)とい
う形で持ち込まれるのは避けられない。一般に脱
窒反応に要する有機物をメタノールで表わすと次
式のようである。
Next, regarding the method of circulating the nitrifying solution containing these NO - 2 and NO - 3 to the anaerobic chamber 3 described above, FIG. 3 shows a circulation device 11 that utilizes the air lift effect. It is also sufficient to use other motor pumps. It is inevitable that the oxygen supplied in the contact air chamber 5 is brought into this nitrification liquid in the form of dissolved oxygen (DO). In general, when the organic substance required for denitrification reaction is expressed in terms of methanol, it is as shown in the following formula.

メタノール要求量 =24.7×NO3+15.3×NO2+0.87×DO 従つて、DOが多いと汚水中の有機物がDO消
費という形で使用され、NO- 2−N、NO- 3−Nの
還元に必要な有機物が不足することになる。良好
な脱窒素率を得るためのBOD/N比は4以上と
されており、屎尿等のBOD/N比の低い(2.7
位)汚水では、DO消費が大きな問題である。本
発明では第3図に示すように、バツフル12によ
り硝化液循環室を2室に区画しており、下向流室
16と上向流室17を通過する際、微生物の呼吸
によりDOを消費するようにしてある。下向流室
16と上向流室17の比は、第3図に示すごと
く、下向流室16側を狭く、上向流室17側を広
くすると汚泥の不必要な堆積が妨げる。また第4
図に示すようにバツフル12の下端を上向流室1
7側にホツパーを形成させるように傾斜させる
と、ホツパー部に形成されるスラツジブランケツ
トにより効果が増大する。このようにしてDOを
消費された硝化液は沈澱分離室2の移流バツフル
14の上方近辺で沈澱分離水と混合され、嫌気性
過室3に導かれる。
Methanol requirement = 24.7 x NO 3 + 15.3 x NO 2 + 0.87 x DO Therefore, if there is a lot of DO, the organic matter in the wastewater will be used in the form of DO consumption, and NO - 2 -N, NO - 3 -N There will be a shortage of organic matter necessary for the reduction of The BOD/N ratio to obtain a good denitrification rate is said to be 4 or higher, and raw materials such as human waste with a low BOD/N ratio (2.7
1) DO consumption is a major problem in wastewater. In the present invention, as shown in FIG. 3, the nitrified solution circulation chamber is divided into two chambers by a baffle 12, and when the nitrified solution passes through a downward flow chamber 16 and an upward flow chamber 17, DO is consumed by the respiration of microorganisms. It is designed to do so. As shown in FIG. 3, the ratio between the downward flow chamber 16 and the upward flow chamber 17 is such that the downward flow chamber 16 side is narrow and the upward flow chamber 17 side is widened to prevent unnecessary accumulation of sludge. Also the fourth
As shown in the figure, the lower end of the buttful 12 is connected to the upward flow chamber 1.
If the hopper is tilted so as to form the hopper on the 7 side, the effect will be increased due to the sludge blanket formed in the hopper part. The nitrifying liquid, which has consumed DO in this way, is mixed with the precipitated separation water near the upper part of the advection bubble 14 of the precipitation separation chamber 2, and is led to the anaerobic filtration chamber 3.

以上のプロセスにより生物処理された汚水は、
沈澱室7において剥離汚泥を沈降分離させた後、
消毒剤8と接触し、消毒室9にて安定化させた後
流出管10より放流される。
Wastewater that has been biologically treated through the above process is
After the peeled sludge is sedimented and separated in the settling chamber 7,
After coming into contact with the disinfectant 8 and being stabilized in the disinfection chamber 9, it is discharged from the outflow pipe 10.

〔発明の効果〕〔Effect of the invention〕

本発明は、沈澱分離室及び/又は嫌気性過室
と接触ばつ気室、沈澱室、消毒室とをこの順に配
置し、接触ばつ気室と嫌気性過室間に循環室を
設けるとともに、該室の終端部において沈澱分離
室からの流出水又は原水に循環室からの循環水を
混合させた構成としたので下記の効果を奏するも
のである。
The present invention arranges a precipitation separation chamber and/or an anaerobic overchamber, a contact aeration chamber, a precipitation chamber, and a disinfection chamber in this order, and provides a circulation chamber between the contact aeration chamber and the anaerobic overchamber. Since the circulating water from the circulation chamber is mixed with the outflow water or raw water from the sedimentation separation chamber at the end of the chamber, the following effects can be achieved.

(1) 嫌気性過室における脱窒素反応時のDO消
費に要する有機物量の減少が防止でき脱窒素率
が向上するとともに脱窒素反応に使用される有
機物量が増加し処理水質が向上する。
(1) Decrease in the amount of organic matter required for DO consumption during the denitrification reaction in the anaerobic overchamber can be prevented, improving the denitrification rate and increasing the amount of organic matter used for the denitrification reaction, improving the quality of treated water.

(2) 脱窒素反応の向上により、アリカリ度が回復
し処理水のPH低下を防止できる。
(2) By improving the denitrification reaction, the alkalinity level can be restored and a decrease in the pH of the treated water can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す汚水の浄化
装置の平面図、第2図は第1図のA−A断面図、
第3図は第1図のB−B断面拡大図、第4図は他
の実施例のB−B断面拡大図、第5図は従来の生
物学的脱窒素法のフローシートの一例である。 符号の説明、1……流入管、2……沈澱分離
室、3……嫌気性過室、4……移流管、5……
接触ばつ気室、6……散気筒、7……沈澱室、8
……消毒剤、9……消毒室、10……流出管、1
1……循環装置、12,12′……バツフル、1
3……仕切板、14……移流バツフル、15……
移流口、16……下向流室、17……上向流室、
18……脱窒槽、19……硝化槽、20……沈澱
槽、21……硝化液循環、22……返送汚泥、2
3……循環室。
FIG. 1 is a plan view of a sewage purification device showing an embodiment of the present invention, FIG. 2 is a sectional view taken along line A-A in FIG.
Figure 3 is an enlarged view of the B-B cross section in Figure 1, Figure 4 is an enlarged view of the B-B cross section of another example, and Figure 5 is an example of a flow sheet for a conventional biological denitrification method. . Explanation of symbols, 1... Inflow pipe, 2... Sedimentation separation chamber, 3... Anaerobic overchamber, 4... Advection pipe, 5...
Contact air chamber, 6...Diffusion cylinder, 7...Settling chamber, 8
... Disinfectant, 9 ... Disinfection room, 10 ... Outflow pipe, 1
1...Circulation device, 12,12'...Batsuful, 1
3... Partition plate, 14... Advection butsful, 15...
Advection port, 16...downward flow chamber, 17...upward flow chamber,
18... Denitrification tank, 19... Nitrification tank, 20... Sedimentation tank, 21... Nitrification liquid circulation, 22... Return sludge, 2
3...Circulation room.

Claims (1)

【特許請求の範囲】 1 沈澱分離室2及び/又は嫌気性過室3と接
触ばつ気室5、沈澱室7、消毒室9とをこの順に
配置し、接触ばつ気室5と嫌気性過室3間に循
環室23を設けるとともに、該室23の終端部に
おいて沈澱分離室2からの流出水又は原水に循環
室23からの循環水を混合させたことを特徴とす
る汚水浄化装置。 2 循環室が、バツフルにより下向流及び上向流
室に形成され、下向流室を上向流室より狭く形成
させたことを特徴とする特許請求の範囲第1項記
載の汚水浄化装置。 3 バツフルが、下端を上向流室側にホツパー状
に傾斜させたものであることを特徴とする特許請
求の範囲第1項または第2項記載の汚水浄化装
置。
[Claims] 1. The precipitation separation chamber 2 and/or the anaerobic overchamber 3, the contact aeration chamber 5, the precipitation chamber 7, and the disinfection chamber 9 are arranged in this order, and the contact aeration chamber 5 and the anaerobic overchamber are arranged in this order. A sewage purification device characterized in that a circulation chamber 23 is provided between the three chambers 2 and 3, and the circulating water from the circulation chamber 23 is mixed with the outflow water or raw water from the sedimentation separation chamber 2 at the end of the chamber 23. 2. The sewage purification device according to claim 1, wherein the circulation chamber is formed into a downward flow chamber and an upward flow chamber by a baffle, and the downward flow chamber is formed narrower than the upward flow chamber. . 3. The sewage purification device according to claim 1 or 2, wherein the buttful has a lower end inclined in the shape of a hopper toward the upward flow chamber.
JP61280474A 1986-11-25 1986-11-25 Sewage purifying device Granted JPS63278599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61280474A JPS63278599A (en) 1986-11-25 1986-11-25 Sewage purifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61280474A JPS63278599A (en) 1986-11-25 1986-11-25 Sewage purifying device

Publications (2)

Publication Number Publication Date
JPS63278599A JPS63278599A (en) 1988-11-16
JPH0417717B2 true JPH0417717B2 (en) 1992-03-26

Family

ID=17625579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61280474A Granted JPS63278599A (en) 1986-11-25 1986-11-25 Sewage purifying device

Country Status (1)

Country Link
JP (1) JPS63278599A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0572810B2 (en) * 1990-09-10 1993-10-13 Tiger Vacuum Bottle Co Ltd

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100348160B1 (en) * 1999-09-28 2002-08-09 주식회사 엔비켐 Advanced biological water treatment system
KR200250140Y1 (en) * 2001-06-13 2001-11-16 주식회사 아이이아이 A waste water disposal plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0572810B2 (en) * 1990-09-10 1993-10-13 Tiger Vacuum Bottle Co Ltd

Also Published As

Publication number Publication date
JPS63278599A (en) 1988-11-16

Similar Documents

Publication Publication Date Title
CN106430845A (en) Kitchen garbage wastewater treatment apparatus
KR100422211B1 (en) Management Unit and Method of Foul and Waste Water
CN217148724U (en) Sewage treatment integrated biological nitrogen and phosphorus removal device
CN208732851U (en) A kind of MBBR high standard sewage disposal system
JP3399443B2 (en) High-load biological treatment method
CN107973488B (en) Method for denitrification treatment of ammonia nitrogen wastewater
CA2300719A1 (en) Membrane supported biofilm process
KR20120064836A (en) A none piping membrane bioreactor with circulation-agitater
JPH1034185A (en) Drainage treatment method
JPH0417717B2 (en)
KR100327545B1 (en) Municipal wastewater treatment system
CN208038125U (en) Device for removing total nitrogen in sewage
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
CN113248015A (en) Integrated sewage treatment equipment
KR100519263B1 (en) Sewage treatment system
KR100402304B1 (en) Biological wastewater treatment system and methods using internal recycling
JP3807945B2 (en) Method and apparatus for treating organic wastewater
CN207259331U (en) A kind of kitchen garbage slurry fermentation waste water processing unit
KR960011888B1 (en) Method and apparatus for biological treatment of waste water including nitrogen and phosphorus
JP3666064B2 (en) Wastewater treatment equipment
JPH11244877A (en) Sewage septic tank with built-in membrane separation vessel
JP2004097926A (en) Water treatment method and water treatment equipment
JP2673488B2 (en) Method and apparatus for treating organic wastewater
JPH0217678Y2 (en)
JP4689007B2 (en) Wastewater purification method