JPH0353699B2 - - Google Patents
Info
- Publication number
- JPH0353699B2 JPH0353699B2 JP21818082A JP21818082A JPH0353699B2 JP H0353699 B2 JPH0353699 B2 JP H0353699B2 JP 21818082 A JP21818082 A JP 21818082A JP 21818082 A JP21818082 A JP 21818082A JP H0353699 B2 JPH0353699 B2 JP H0353699B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- quadrants
- photodetector
- detection
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001514 detection method Methods 0.000 claims description 61
- 230000003287 optical effect Effects 0.000 claims description 34
- 238000010586 diagram Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/08—Disposition or mounting of heads or light sources relatively to record carriers
- G11B7/09—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
- G11B7/0908—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
Landscapes
- Automatic Focus Adjustment (AREA)
- Optical Recording Or Reproduction (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明はビデオ又はPCMオーデイオの光学式
再生装置に適用して好適なフオーカス誤差検出装
置に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a focus error detection device suitable for application to an optical reproduction device for video or PCM audio.
背景技術とその問題点
光学式再生装置として、従来、レーザ光源より
のレーザビームを対物レンズを用いて光学式デイ
スクの記録面上に集束せしめ、この反射ビームを
光検出器の検出面に照射することにより、光検出
器より再生信号を得るようにしたものがある。BACKGROUND TECHNOLOGY AND PROBLEMS Conventionally, as an optical reproducing device, a laser beam from a laser light source is focused onto the recording surface of an optical disk using an objective lens, and this reflected beam is irradiated onto the detection surface of a photodetector. Accordingly, there are devices in which a reproduced signal is obtained from a photodetector.
かかる光学式再生装置に於いて、従来光検出器
の光検出面を円形にすると共に、この検出面を4
等分して4象限の検出部に分割し、光検出器の前
面側に半円柱レンズを配してフオーカス誤差検出
装置を構成し、第1及び第3象限の検出部の検出
出力の和と、第2及び第4象限の検出部の検出出
力の和との差によりフオーカス誤差検出出力を
得、これにより対物レンズの軸上の位置を制御し
て、フオーカスサーボを行なうようにしたものが
ある。以下、これについて図面を参照して説明す
る。 In such an optical reproducing device, the light detection surface of the conventional photodetector is made circular, and this detection surface is
The focus error detection device is constructed by dividing the photodetector into four quadrants of detecting sections, and arranging a semi-cylindrical lens on the front side of the photodetector. , a focus error detection output is obtained from the difference between the sum of the detection outputs of the detection units in the second and fourth quadrants, and the position on the axis of the objective lens is controlled using this to perform focus servo. be. This will be explained below with reference to the drawings.
第1図は半円柱レンズ1を示し、2はその半円
柱面、3は矩形の平面である。平面3上に於いて
その中心を原点Oとし、半円柱面2の母線に平行
なX軸、直角なY軸及び平面3に垂直なZ軸から
成る直交座標を設ける。又、Z軸上に於いて、レ
ンズ1の半円柱面2側で原点Oから所定距離の点
を原点O′とし、Z軸と直角な平面内にX軸及び
Y軸の各正側と45゜の角度をなすx軸及びこれと
直角なy軸から成る直角座標を設ける。そして、
このx,y面内に光検出器の円形の検出面が一致
するようにし、このx,y軸にて検出面を4等分
して光検出器を4象限の光検出部に分割する。 FIG. 1 shows a semi-cylindrical lens 1, 2 is its semi-cylindrical surface, and 3 is a rectangular plane. On the plane 3, the center is set as the origin O, and orthogonal coordinates are provided, which are composed of an X axis parallel to the generatrix of the semi-cylindrical surface 2, a Y axis perpendicular to the plane 3, and a Z axis perpendicular to the plane 3. Also, on the Z-axis, a point at a predetermined distance from the origin O on the side of the semi-cylindrical surface 2 of the lens 1 is set as the origin O', and within a plane perpendicular to the Z-axis there are 45 A rectangular coordinate is provided consisting of an x-axis forming an angle of .degree. and a y-axis perpendicular thereto. and,
The circular detection surface of the photodetector is aligned within the x and y planes, and the detection surface is divided into four equal parts along the x and y axes to divide the photodetector into four quadrants of photodetection sections.
そして、レンズ1の平面2側に、第2図に示す
如く光軸がZ軸と一致し、平面2上のスポツト4
が円形(第2図は斜視図である)となる集束ビー
ムを入射せしめる。円形のスポツト4に対し、
X,Y軸と45゜の角度をなす半径上の軸a〜dを
第1〜第4象限〜に仮りに設ける。 Then, as shown in FIG. 2, on the plane 2 side of the lens 1, the optical axis coincides with the Z axis, and a spot 4 on the plane 2
A focused beam having a circular shape (FIG. 2 is a perspective view) is made incident. For circular spot 4,
Radial axes a to d forming angles of 45 degrees with the X and Y axes are temporarily provided in the first to fourth quadrants.
さて、上述した如く集束ビームがレンズ1の平
面3に入射した場合のレンズ1のXOZ断面及び
YOZ断面に於ける光軸5,6の軌跡について、
第3図を参照して説明する。レンズ1のYOZ断
面に入射する光線6は、YOZ断面が厚さ一定で
あるので、その出射光は入射光と平行に進み、Z
軸上の点Pを通過する。レンズ1のXOZ断面に
入射する光線5は、XOZ断面が凸レンズを構成
しているので、Z軸側に屈折し、Z軸上の点Pの
手前の点P′を通過する。 Now, as mentioned above, the XOZ cross section of lens 1 when the focused beam is incident on plane 3 of lens 1 and
Regarding the trajectory of optical axes 5 and 6 in the YOZ cross section,
This will be explained with reference to FIG. Since the YOZ cross section has a constant thickness, the light ray 6 that enters the YOZ cross section of the lens 1 travels parallel to the incident light, and the Z
It passes through point P on the axis. Since the XOZ cross section constitutes a convex lens, the light ray 5 incident on the XOZ cross section of the lens 1 is refracted toward the Z axis side and passes through a point P' in front of the point P on the Z axis.
さて、第3図に於いて、点P,P′の中間の点
O′(第1図参照)に検出器の検出面DTが位置し、
検出面DT上の照射ビームのスポツト4′は第5
図に示す如く円形になつたとき、対物レンズより
の集束ビームが光学式デイスクの記録面に焦点を
結ぶものとする。かくすると、対物レンズよりの
集束ビームの焦点が光学式デイスクの手前が向う
側に結ばれたということは、光検出器の検出面の
位置が点O′より手前の点αか向う側の点βにず
れたことと等価になり、夫々光検出器の検出面
DTのスポツト4′は、第4図及び第6図に示す
如く楕円となる。即ち、この楕円スポツト4′は
第4図の場合は第1及び第3象限,に於いて
x軸に対し45゜の方向に長径を有し、第6図の場
合は第2及び第4象限,に於いてx軸に対し
45°の方向に長径を有する。尚、第4図〜第6図
に於いて、軸a′〜d′は夫々第2図の軸a〜dに対
応する。 Now, in Figure 3, a point midway between points P and P'
The detection surface DT of the detector is located at O' (see Figure 1),
The spot 4' of the irradiation beam on the detection surface DT is the fifth
When the beam becomes circular as shown in the figure, it is assumed that the focused beam from the objective lens is focused on the recording surface of the optical disk. Thus, the fact that the focus of the focused beam from the objective lens is focused on the front side of the optical disk means that the detection surface of the photodetector is positioned from point α in front of point O′ to point β on the opposite side. This is equivalent to the deviation of the detection surface of the photodetector.
The DT spot 4' has an elliptical shape as shown in FIGS. 4 and 6. That is, this elliptical spot 4' has its major axis in the direction of 45° to the x-axis in the first and third quadrants in the case of FIG. 4, and in the second and fourth quadrants in the case of FIG. , with respect to the x-axis
It has a major axis in the 45° direction. Note that in FIGS. 4 to 6, axes a' to d' correspond to axes a to d in FIG. 2, respectively.
そこで、光検出器の検出面がスポツト4′より
大きいものとすれば、4象限の光検出部のうち、
第1及び第3象限,の光検出部の検出出力の
和と、第2及び第4象限,の光検出部の検出
出力の和との差により、対物レンズの光学式記録
媒体に対するフオーカス状態が検出される。従つ
て、上記差が零となるように対物レンズをその光
軸上に移動させることにより、フオーカスサーボ
が可能となる。 Therefore, if the detection surface of the photodetector is larger than the spot 4', then among the four quadrants of photodetection parts,
The focus state of the objective lens on the optical recording medium is determined by the difference between the sum of the detection outputs of the photodetectors in the first and third quadrants and the sum of the detection outputs of the photodetectors in the second and fourth quadrants. Detected. Therefore, by moving the objective lens on its optical axis so that the above difference becomes zero, focus servo becomes possible.
しかしながら、かかる半円柱レンズ1の出射ビ
ームは、ビーム分布の相似性が保たれていないた
め、半円柱レンズを光検出器と組合せた場合、光
検出器から、光分布の対称性による正しいトラツ
キング誤差信号(フオーカス誤差信号と分離し
て)を得ることは困難である。 However, since the beam distribution of the emitted beam from the semi-cylindrical lens 1 is not maintained, when the semi-cylindrical lens is combined with a photodetector, the correct tracking error due to the symmetry of the light distribution is detected from the photodetector. Obtaining the signal (separately from the focus error signal) is difficult.
そこで、本出願人は先に、4象限の各々に於い
て軸対称性を有し、出射ビームのビーーム分布が
相似性を保ち、且つ光軸を含む平面の角度の違い
によつて異なるパワーを有する光学素子(レン
ズ)を用いたフオーカス誤差検出装置を提案し
た。 Therefore, the applicant first developed a system that has axial symmetry in each of the four quadrants, maintains similarity in the beam distribution of the emitted beam, and produces different powers depending on the angle of the plane containing the optical axis. We have proposed a focus error detection device using an optical element (lens).
以下に図面を参照して、かかるフオーカス誤差
検出装置につき詳細に説明する。 The focus error detection device will be described in detail below with reference to the drawings.
かかるフオーカス誤差検出装置に用いるレンズ
は、第7図に示す如く、共に光軸Zを含む互いに
直交する2平面、即ちXZ面、YZ面で区切られた
4象限のレンズ領域7a〜7dを有し、第1及び
第3象限のレンズ領域7a,7cの焦点距離が互
いに等しく(f1とするる)、第2及び第4象限の
レンズ領域7b,7dの焦点距離が互いに等しく
(f2とする)、且つ第1及び第3象限7a,7cの
レンズ領域の焦点距離f1と、第2及び第4象限の
レンズ領域7b,7dの焦点距離f2とが互いに異
なり、各レンズ領域7a〜7dが夫々軸対称性を
有するものである。尚、焦点距離f1,f2はf1≠f2
であれば、正負のいずれでも良く、一方が∞でも
良い。 As shown in FIG. 7, the lens used in such a focus error detection device has four quadrant lens regions 7a to 7d separated by two mutually orthogonal planes, ie, the XZ plane and the YZ plane, both of which include the optical axis Z. , the focal lengths of the lens regions 7a and 7c in the first and third quadrants are equal to each other (denoted as f 1 ), and the focal lengths of the lens regions 7b and 7d in the second and fourth quadrants are equal to each other (denoted as f 2) . ), and the focal length f 1 of the lens regions 7a and 7c in the first and third quadrants is different from the focal length f 2 of the lens regions 7b and 7d in the second and fourth quadrants, and each lens region 7a to 7d is different from each other. have axial symmetry. Note that the focal lengths f 1 and f 2 are f 1 ≠ f 2
If so, it may be positive or negative, or one may be ∞.
レンズ7はここでは平凸レンズの場合で、上述
のX,Y軸から成る直角座標(Oを原点とする)
はその平面7A上に設け、このX及びY軸と光軸
上のZ軸とで直交座標を構成している。 Lens 7 is a plano-convex lens here, and the rectangular coordinates (with O as the origin) consisting of the above-mentioned X and Y axes
is provided on the plane 7A, and the X and Y axes and the Z axis on the optical axis constitute orthogonal coordinates.
かかるレンズ7の作り方としては2通りがあ
る。その1つは、異なる屈折率の2種類のガラ
ス、プラスチツク等のレンズ材料から成る4象限
の素材を接着等により合体し、しかる後この合体
された素材を研摩して、レンズ7を得るものであ
る。 There are two ways to make such a lens 7. One is to combine four quadrants of lens materials such as two types of glasses and plastics with different refractive indexes by adhesion or the like, and then polish the combined materials to obtain the lens 7. be.
他の1つは、ガラス、プラスチツク等の同じレ
ンズ材料で異なる曲率、即ち異なる焦点距離のレ
ンズを研摩し、各レンズを夫々4象限に分割し、
各レンズ領域を2つずつ接着等により合体して、
レンズ7を得るものである。 The other method involves polishing lenses of different curvatures, that is, different focal lengths, using the same lens material such as glass or plastic, and dividing each lens into four quadrants.
Two of each lens area are combined by gluing, etc.
A lens 7 is obtained.
又、Z軸上に於いて、レンズ1の球面7B側で
原点Oから所定距離の点をO′とし、Z軸と直角
な平面内に於いて、X軸及びY軸と夫々平行なx
軸及びy軸から成る直角座標を設ける。そして、
このx,y平面内に光検出器の円形の検出面が一
致するようにし、このx,y軸にて検出面を4等
分して光検出器を4象限の光検出部に分割する。 Also, on the Z-axis, a point at a predetermined distance from the origin O on the spherical surface 7B side of the lens 1 is O', and in a plane perpendicular to the Z-axis, x parallel to the X-axis and Y-axis, respectively.
A rectangular coordinate is provided consisting of an axis and a y-axis. and,
The circular detection surface of the photodetector is aligned within the x and y planes, and the detection surface is equally divided into four by the x and y axes to divide the photodetector into four quadrants of photodetection sections.
そして、レンズ7の平面7A側に、光軸がZ軸
と一致し、平面7A上の断面が円形となる平行ビ
ームを入射せしめる。 Then, a parallel beam whose optical axis coincides with the Z axis and whose cross section on the plane 7A is circular is made to enter the plane 7A side of the lens 7.
さて、上述した如く平行ビームがレンズ7の平
面7Aに入射した場合の、x軸上の断面の第1象
限及び第2象限のレンズ領域7a,7bに入射す
る光線5,6の軌跡について、第8図を参照して
説明する。レンズ7のレンズ領域7aに入射する
光線5の出射光はZ軸側に屈折してZ軸上の焦点
F1を通過する。レンズ(7)のレンズ領域7bに入
射する光線6の出射光はZ軸側に屈折し、Z軸上
の焦点F1の向う側の焦点F2を通過する。 Now, when a parallel beam is incident on the plane 7A of the lens 7 as described above, the trajectories of the light rays 5 and 6 that are incident on the lens regions 7a and 7b in the first and second quadrants of the cross section on the x-axis are as follows. This will be explained with reference to FIG. The output light of the light ray 5 that enters the lens area 7a of the lens 7 is refracted toward the Z-axis side and reaches the focal point on the Z-axis.
Pass F1 . The output light of the light ray 6 that enters the lens region 7b of the lens (7) is refracted toward the Z-axis side and passes through the focal point F 2 on the opposite side of the focal point F 1 on the Z-axis.
さて、第8図に於いて、焦点F1,F2の中間の
点O′(第7図参照)に検出器の検出面DTが位置
しているときに、検出面DT上の照射ビームのス
ポツト4′が第10図に示す如く円形になつたと
き、対物レンズよりの集束ビームが光学式デイス
クの記録面に焦点を結ぶものとする。かくする
と、対物レンズよりの集束ビームの焦点が光学式
デイスクの手前か向う側に結ばれたということ
は、光検出器の検出面の位置が点O′より手前の
点αか向う側の点βにずれたことと等価になり、
夫々光検出器の検出面DTのスポツト4′は、第
9図及び第11図に示す如く半径の異なる1/4円
の組合わされたものとなる。第9図のスポツト
4′は第2及び第4象限の径が大きい1/4円と、第
1及び第3象限の径か小さい1/4円とから構成さ
れている。第11図のスポツト4′は、第1及び
第3象限の径が大きい1/4円と、第2及び第4象
限の径が小さい1/4円とから構成されている。 Now, in Fig. 8, when the detection surface DT of the detector is located at a point O' between the focal points F 1 and F 2 (see Fig. 7), the irradiation beam on the detection surface DT is When the spot 4' becomes circular as shown in FIG. 10, it is assumed that the convergent beam from the objective lens is focused on the recording surface of the optical disk. In this way, the fact that the focus of the focused beam from the objective lens is either in front of or on the opposite side of the optical disk means that the detection surface of the photodetector is positioned at point α in front of point O′ or point β on the opposite side. It is equivalent to a deviation,
The spots 4' on the detection surface DT of each photodetector are a combination of quarter circles having different radii, as shown in FIGS. 9 and 11. The spot 4' in FIG. 9 is composed of a 1/4 circle with a large diameter in the second and fourth quadrants and a 1/4 circle with a small diameter in the first and third quadrants. The spot 4' in FIG. 11 is composed of a 1/4 circle with a large diameter in the first and third quadrants and a 1/4 circle with a small diameter in the second and fourth quadrants.
第9図〜第11図に於いて、スポツト4′の各
象限内の光量は等しいが、1/4円の半径が異なる
場合は単位面積当りの光量が異なるため、明暗が
できる。 In FIGS. 9 to 11, the amount of light in each quadrant of the spot 4' is equal, but when the radius of the quarter circle is different, the amount of light per unit area is different, resulting in brightness and darkness.
そこで、第9図〜第11図に示す如く、光検出
器の検出面DTの輪郭を、半径の小さい1/4円の
半径より小さい半径の円形となし、その検出面
DTをx軸、y軸で4等分して4象限の検出部を
形成する。かくすると、各検出部の検出出力はそ
のスポツト4′の単位面積当りの光量に比例する。 Therefore, as shown in Figures 9 to 11, the outline of the detection surface DT of the photodetector is made into a circle with a radius smaller than the radius of a quarter circle, and the detection surface
The DT is divided into four equal parts along the x-axis and the y-axis to form a four-quadrant detection section. Thus, the detection output of each detection section is proportional to the amount of light per unit area of the spot 4'.
尚、ある面に集束ビームが照射されている場合
に、その集束ビームのスポツト内の円形領域内の
光量(%)と、そのビームの集束状態との関係は
第12図の曲線S1,S2,S3の如くである。曲線S1
は集束ビームがその面で焦点を結んだ場合であ
り、曲線S2,S3はその面の前後に焦点を結んだ場
合の曲線を示す。従つて、所定の半径ρ0の円形領
域での光量(エンサークルドエネルギー)を検出
すれば、集束ビームのその面上での集束状態を検
出することができる。 When a focused beam is irradiated onto a certain surface, the relationship between the amount of light (%) in a circular area within the spot of the focused beam and the focused state of the beam is shown by the curves S 1 and S in Figure 12. 2 , S3 . curve S 1
is the case where the focused beam is focused on that plane, and curves S 2 and S 3 are the curves when the focused beam is focused before and after that plane. Therefore, by detecting the amount of light (encircled energy) in a circular region with a predetermined radius ρ 0 , it is possible to detect the focusing state of the focused beam on that surface.
そこで、光検出器の4象限の光検出部のうち、
第1及び第3象限,の光検出部の検出出力の
和と、第2及び第4象限,の光検出部の検出
出力の和との差により、対物レンズの光学式記録
媒体に対する集束状態が検出される。従つて、上
記差が零となるように対物レンズをその光軸上に
移動させることにより、フオーカスサーボが可能
となる。 Therefore, among the photodetecting parts in the four quadrants of the photodetector,
The difference between the sum of the detection outputs of the photodetectors in the first and third quadrants and the sum of the detection outputs of the photodetectors in the second and fourth quadrants determines the focusing state of the objective lens with respect to the optical recording medium. Detected. Therefore, by moving the objective lens on its optical axis so that the above difference becomes zero, focus servo becomes possible.
又、このレンズ7の出射ビームはビーム分布の
相似性が保たれるから、レンズ7を光検出器と組
合せた場合、光分布の対称性による正しいトラツ
キング誤差信号を得ることができる。その方法と
しては、上述の差の検出出力から周波数分離によ
りフオーカス誤差信号(低周波)及びトラツキン
グ誤差信号(高周波)を得ることができる。又、
光検出器の4象限の光検出部のうち、第1及び第
2(又は第1及び第4)象限,(,)の
光検出部の検出出力の和と、第3及び第4(又は
第2及び第3)象限,(,)の光検出部
の検出出力の和との差により、トラツキング状態
が検出される。従つて、この差が零となるように
例えばトラツキングミラーを制御してトラツキン
グサーボを行なえば良い。尚、再生信号は、全て
の象限の光検出部の検出出力の和により得られ
る。 Furthermore, since the beam distribution of the beam emitted from the lens 7 maintains similarity, when the lens 7 is combined with a photodetector, a correct tracking error signal can be obtained due to the symmetry of the light distribution. As a method for this, a focusing error signal (low frequency) and a tracking error signal (high frequency) can be obtained by frequency separation from the above-mentioned difference detection output. or,
Among the four quadrants of the photodetector, the sum of the detection outputs of the first and second (or first and fourth) quadrants and (,) photodetector, and the third and fourth (or The tracking state is detected based on the difference between the sum of the detection outputs of the photodetectors in the second and third quadrants (,). Therefore, tracking servo may be performed by controlling, for example, a tracking mirror so that this difference becomes zero. Note that the reproduced signal is obtained by the sum of the detection outputs of the photodetectors in all quadrants.
次に第13図を参照して、上述した第7図のレ
ンズ7を用いたフオーカス誤差信号検出装置を適
用した光学式再生装置の一例について説明する。
レーザー光源10からの発散レーザービームをコ
リメータレンズ11により平行ビームにし、これ
を偏光ビームスプリツタ12−1/4波長板13を
介してガルバノミラー(トラツキングミラー)1
4にて反射させて後、対物レンズ15により光学
式デイスク16上に焦点を結ばせるようにする。
この光学式デイスク16の反射ビームを対物レン
ズ15−ガルバノミラー14−1/4波長板13を
介してビームスプリツタ12に入射せしめ、その
反射波たる略平行なビームをレンズ7を介して光
検出器17の光検出面DT上に焦点を結ばせる。
18は光検出器17の各検出部よりの4つの出力
端子である。 Next, with reference to FIG. 13, an example of an optical reproducing device to which the focus error signal detection device using the lens 7 of FIG. 7 described above is applied will be described.
A diverging laser beam from a laser light source 10 is made into a parallel beam by a collimator lens 11, and is sent to a galvanometer mirror (tracking mirror) 1 via a polarizing beam splitter 12-1/4 wavelength plate 13.
4 and then focused onto an optical disk 16 by an objective lens 15.
The reflected beam from the optical disk 16 is made incident on the beam splitter 12 via the objective lens 15 - galvano mirror 14 - 1/4 wavelength plate 13, and the reflected wave, which is a substantially parallel beam, is optically detected via the lens 7. The light is focused on the light detection surface DT of the device 17.
18 are four output terminals from each detection section of the photodetector 17.
ところで、上述したレンズ7と組合せてフオー
カス誤差信号検出装置を構成する光検出器として
第9図〜第11図に示した構成のものを使用する
と次のような欠点がある。上述の第9図〜第11
図について説明した光検出器の光検出面DTの第
1〜第4象限〜の光検出部間には、実際には
第14図に示すような夫々帯状の不感帯があり、
光学式再生装置に於けるデフオーカスの程度が頗
る大きいときには第14図に示す如く、光検出器
の光検出面DTに入射する照射ビームのスポツト
4′のうち、半径が小さく光密度の高いスポツト
部分の大部分は、不感帯NDの光検出面DTの中
心部付近に落ちてしまうため、フオーカス誤差検
出装置より得られるフオーカス誤差信号に検出誤
差が含まれることになる。 By the way, when a photodetector having the configuration shown in FIGS. 9 to 11 is used as a photodetector that constitutes a focus error signal detection device in combination with the above-mentioned lens 7, there are the following drawbacks. Figures 9 to 11 above
There are actually band-shaped dead zones between the first to fourth quadrants of the photodetector surface DT of the photodetector described in the figure, as shown in FIG.
When the degree of defocus in an optical reproducing device is extremely large, as shown in FIG. 14, a spot portion with a small radius and a high optical density is selected among the spots 4' of the irradiation beam incident on the photodetection surface DT of the photodetector. Since most of the difference falls near the center of the photodetection surface DT in the dead zone ND, the focus error signal obtained from the focus error detection device includes a detection error.
即ち、対物レンズ及びデイスク間のフオーカス
時の距離を基準としたデフオーカス量(μm)に
対するフオーカス誤差信号のレベル(相対値)の
特性曲線(S字カーブ)は、第15図に示す如く
集束点Aを挟む点B−B′間の直線領域を越えた
後、更にデフオーカス量の絶対値が増大したと
き、フオーカス誤差信号のレベルの絶対値は小と
なるが点C,C′で一時的にその符号が反転する。
このため、対物レンズを駆動する電磁駆動装置
に、このようなフオーカス誤差信号を供給する
と、対物レンズに対するフオーカス制御が誤動作
することになる。 That is, the characteristic curve (S-curve) of the level (relative value) of the focus error signal with respect to the amount of defocus (μm) based on the distance during focusing between the objective lens and the disk is as shown in FIG. When the absolute value of the defocus amount further increases after crossing the linear region between points B and B' that sandwich the range, the absolute value of the focus error signal level becomes small, but it temporarily increases at points C and C'. The sign is reversed.
Therefore, if such a focus error signal is supplied to the electromagnetic drive device that drives the objective lens, the focus control for the objective lens will malfunction.
発明の目的
かかる点に鑑み、本発明は、光学的再生装置に
於けるデフオーカスの程度が頗る大きくなつて、
光検出器の光検出面に入射するビームのスポツト
のうち半径が小さく光密度の高いスポツト部分が
生じても、これは不感帯の影響を受けず、フオー
カス誤差信号に対する検出誤差とはならないフオ
ーカス誤差検出装置を提案しようとするものであ
る。Purpose of the Invention In view of the above, the present invention aims to solve the problem as the degree of defocus in optical reproducing devices has become extremely large.
Focus error detection Even if a spot with a small radius and high light density occurs among the beam spots incident on the photodetector surface of the photodetector, this spot is not affected by the dead zone and does not become a detection error for the focus error signal. This is an attempt to propose a device.
発明の概要
本発明によるフオーカス誤差検出装置は、デイ
スクからの読取り光が入射する光検出器と、読取
り光の光検出器に至る光路上に設けられたレンズ
とを有し、レンズは、共に光軸を含む互いに直交
する2平面で区切らた4象限のレンズ領域を具備
し、第1及び第3象限のレンズ領域のの焦点距離
が互いに等しく、第2及び第4象限のレンズ領域
の焦点距離が互いに等しく、且つ第1及び第3象
限のレンズ領域の焦点距離と上記第2及び第4象
限のレンズ領域の焦点距離とが互いに異なり、各
レンズ領域が夫々軸対称性を具備して成り、光検
出器の光検出面はレンズの第1〜第4象限のレン
ズ領域に対応して4分割された第1〜第4象限の
光検出部から成る円環状に形成されて成り、第1
及び第3象限の光検出部よりの各検出出力の和
と、第2及び第4象限の光検出部よりの各検出出
力の和との差によりフオーカス誤差信号を得るよ
うにしたものである。Summary of the Invention A focus error detection device according to the present invention includes a photodetector into which reading light from a disk is incident, and a lens provided on an optical path of the reading light to the photodetector. It has four quadrant lens regions separated by two mutually orthogonal planes including the axis, the focal lengths of the lens regions in the first and third quadrants are equal to each other, and the focal lengths of the lens regions in the second and fourth quadrants are equal to each other. The focal lengths of the lens regions in the first and third quadrants are equal to each other, and the focal lengths of the lens regions in the second and fourth quadrants are different from each other, and each lens region has axial symmetry. The photodetecting surface of the detector is formed in an annular shape consisting of photodetecting parts in the first to fourth quadrants divided into four parts corresponding to the lens areas in the first to fourth quadrants of the lens.
A focus error signal is obtained from the difference between the sum of the detection outputs from the photodetectors in the third quadrant and the sum of the detection outputs from the photodetectors in the second and fourth quadrants.
かかる本発明によれば、光学式再生装置に於け
るデフオーカスの程度が頗る大きくなつて、光検
出器の光検出面に入射するビームのスポツトのう
ち半径が小さく光密度の高いスポツト部分が生じ
ても、これは不感帯の影響を受けず、フオーカス
誤差信号に対する検出誤差とはならないフオーカ
ス誤差検出装置を得ることができる。 According to the present invention, the degree of defocus in the optical reproducing device becomes extremely large, and a spot portion with a small radius and high optical density is generated among the spots of the beam incident on the photodetection surface of the photodetector. However, it is possible to obtain a focus error detection device that is not affected by the dead zone and does not become a detection error for the focus error signal.
実施例
以下に第16図を参照して本発明の一実施例を
説明する。光検出器を、その光検出面DTがレン
ズ7の第1〜第4象限のレンズ領域7a〜7dに
対応して4分割された第1〜第4象限〜の光
検出部から成る円環状に形成する。そして、第1
及び第3象限,の光検出部よりの各検出出力
の和と、第2及び第4象限,の光検出部より
の各検出出力の和との差によりフオーカス誤差信
号を得るようにする。Embodiment An embodiment of the present invention will be described below with reference to FIG. The photodetector is formed into an annular shape whose photodetecting surface DT is divided into four parts corresponding to the lens regions 7a to 7d of the first to fourth quadrants of the lens 7, and consists of photodetecting parts in the first to fourth quadrants. Form. And the first
A focus error signal is obtained by the difference between the sum of the detection outputs from the photodetectors in the second and fourth quadrants and the sum of the detection outputs from the photodetectors in the second and fourth quadrants.
又、光検出器の光検出面DTの第1〜第4象限
〜の光検出部の内側に中央部CTが光検出部
(これは無くても良いが、あつた方が再生信号の
効率が大となる)を設ける。尚、第16図は集束
時のスポツト4′を示している。光検出器の光検
出面DTを含む平面へのビームの全入射光量をI0、
光検出面DTの第1〜第4象限〜及び中央部
CTへのビームの入射光量を夫々1〜4,ICTと
すると、情報再生光量Ipは、
Ip=I1+I2+I3+I4+ICT≒I0
となる。又、フオーカス誤差光量IFEは、
IFE=(I1+I3)−(I2+I4)
となる。更に、トラツキング誤差光量ITEは、
ITE=(I1+I2)−(I3+I4)又は
ITE=(I1+I4)−(I2+I3)
となる。因みに、第9図〜第11図に示す光検出
器の場合は、情報再生光量IpはIp<I0となる。 Also, inside the photodetecting sections in the first to fourth quadrants of the photodetecting surface DT of the photodetector, a central CT is placed as a photodetecting section (this may be omitted, but the efficiency of the reproduced signal is improved if ) will be provided. Incidentally, FIG. 16 shows the spot 4' at the time of focusing. The total amount of light incident on the beam to the plane containing the photodetector surface DT of the photodetector is I 0 ,
1st to 4th quadrants and central part of photodetection surface DT
Assuming that the incident light amount of the beam to the CT is 1 to 4 and I CT respectively, the information reproducing light amount I p is I p =I 1 +I 2 +I 3 +I 4 +I CT ≈I 0 . Also, the focus error light amount I FE is I FE = (I 1 + I 3 ) - (I 2 + I 4 ). Further, the tracking error light amount I TE is I TE = (I 1 + I 2 ) − (I 3 + I 4 ) or I TE = (I 1 + I 4 ) − (I 2 + I 3 ). Incidentally, in the case of the photodetector shown in FIGS. 9 to 11, the information reproducing light amount I p satisfies I p <I 0 .
かかる光検出器を用いたフオーカス誤差検出装
置によれば、光学式再生装置に於けるデフオーカ
スの程度が頗る大きくなつて、光検出器の光検出
面DTに入射するビームのスポツト4′のうち半
径が小さく光密度の高いスポツト部分が生じて
も、これは不感帯の影響を受けず、フオーカス誤
差信号に対する検出誤差とはならない。即ち、対
物レンズ及びデイスク間のフオーカス時の距離を
基準としたデフオーカス量(μm)に対するフオ
ーカス誤差信号のレベル(相対値)の特性曲線
(S字カーブ)は、第17図に示す如く集束点A
を挾む点B−B′間の直線領域を越えた後、更に
デフオーカス量が増大したとき、フオーカス誤差
信号のレベルの絶対値が漸時小となるだけで、一
時的にその符号が反転することはない。 According to the focus error detection device using such a photodetector, the degree of defocus in the optical reproducing device becomes extremely large, and the radius of the spot 4' of the beam incident on the photodetection surface DT of the photodetector increases. Even if a spot portion with a small amount of light and a high light density occurs, this spot portion is not affected by the dead zone and does not become a detection error for the focus error signal. That is, the characteristic curve (S-shaped curve) of the level (relative value) of the focus error signal with respect to the amount of defocus (μm) based on the distance during focusing between the objective lens and the disk is as shown in FIG.
When the amount of defocus increases further after exceeding the linear region between points B and B' that intersect the two points, the absolute value of the level of the focus error signal gradually decreases, and its sign temporarily reverses. Never.
又、光検出器の光検出面DTの中央部CTに光
検出部を設けることで、再生信号の効率が高くな
る。 Further, by providing a photodetection section in the center CT of the photodetection surface DT of the photodetector, the efficiency of the reproduced signal is increased.
発明の効果
かかる本発明によれば、光学式再生装置に於け
るデフオーカスの程度が頗る大きくなつて、光検
出器の光検出面に入射するビームのスポツトのう
ち半径が小さく光密度の高いスポツト部分が生じ
ても、これは不感帯の影響を受けず、フオーカス
誤差信号に対する検出誤差とはならないフオーカ
ス誤差検出装置を得ることができる。 Effects of the Invention According to the present invention, the degree of defocus in the optical reproducing device is greatly increased, and among the spots of the beam incident on the photodetection surface of the photodetector, the spot portion with a small radius and high optical density is Even if this occurs, it is possible to obtain a focus error detection device that is not affected by the dead zone and does not become a detection error for the focus error signal.
第1図は従来の半円柱レンズを示す斜視図、第
2図はビームスポツトを示す斜視図、第3図は第
1図の半円柱レンズの入射光線の軌跡を示す線
図、第4図,第5図及び第6図は夫々ビームスポ
ツトを示す線図、第7図は先に提案したレンズの
一例を示す斜視図、第8図は第7図のレンズの入
射光線の軌跡を示す線図、第9図,第10図及び
第11図は夫々光検出器の一例及びそれに対する
ビームスポツトを示す線図、第12図は特性曲線
図、第13図は第7図のレンズを適用した光学式
再生装置を示す斜視図、第14図は光検出器の一
例及びそれに対するビームスポツトを示す線図、
第15図は光検出器の一例のデフオーカス量対フ
オーカス誤差信号レベル特性曲線図、第16図は
本発明の一実施例に使用する光検出器の一例及び
それに対応するスポツトを示す線図、第17図は
その光検出器のデフオーカス量対フオーカス誤差
信号レベル特性曲線図である。
7はレンズ、7a〜7bは第1〜第4象限のレ
ンズ領域、DTは光検出器の光検出面、〜は
第1〜第4象限、CTは中央部である。
Fig. 1 is a perspective view showing a conventional semi-cylindrical lens, Fig. 2 is a perspective view showing a beam spot, Fig. 3 is a line diagram showing the locus of the incident ray of the semi-cylindrical lens in Fig. 1, Fig. 4, Figures 5 and 6 are line diagrams showing the beam spot, Figure 7 is a perspective view showing an example of the previously proposed lens, and Figure 8 is a line diagram showing the locus of the incident ray of the lens in Figure 7. , FIG. 9, FIG. 10, and FIG. 11 are diagrams showing an example of a photodetector and the beam spot for each, FIG. 12 is a characteristic curve diagram, and FIG. 13 is an optical diagram to which the lens of FIG. 7 is applied. FIG. 14 is a perspective view showing an example of a photodetector and a line diagram showing a beam spot for the photodetector;
FIG. 15 is a characteristic curve of the amount of defocus versus focus error signal level of an example of a photodetector, FIG. 16 is a diagram showing an example of a photodetector used in an embodiment of the present invention and its corresponding spots, and FIG. FIG. 17 is a characteristic curve diagram of the amount of defocus versus focus error signal level of the photodetector. 7 is a lens, 7a to 7b are lens regions in the first to fourth quadrants, DT is a light detection surface of a photodetector, ~ is a first to fourth quadrant, and CT is a central portion.
Claims (1)
と、上記読取り光の光検出器に至る光路上に設け
られたレンズとを有し、上記レンズは、共に光軸
を含む互いに直交する2平面で区切られた4象限
のレンズ領域を具備し、第1及び第3象限のレン
ズ領域のの焦点距離が互いに等しく、第2及び第
4象限のレンズ領域の焦点距離が互いに等しく、
且つ上記第1及び第3象限のレンズ領域の焦点距
離と、上記第2及び第4象限のレンズ領域の焦点
距離とが互いに異なり、上記各レンズ領域が夫々
軸対称性を具備して成り、上記光検出器の光検出
面は上記レンズの上記第1〜第4象限のレンズ領
域に対応して4分割された第1〜第4象限の光検
出部から成る円環状に形成されて成り、上記第1
及び第3象限の光検出部よりの各検出出力の和
と、上記第2及び第4象限の光検出部よりの各検
出出力の和との差によりフオーカス誤差信号を得
るようにしたことを特徴とするフオーカス誤差検
出装置。1. It has a photodetector into which the reading light from the disk enters, and a lens provided on the optical path of the reading light leading to the photodetector, and both of the lenses are arranged in two mutually orthogonal planes including the optical axis. comprising a lens area in four divided quadrants, the focal lengths of the lens areas in the first and third quadrants are equal to each other, and the focal lengths of the lens areas in the second and fourth quadrants are equal to each other,
and the focal lengths of the lens regions in the first and third quadrants are different from each other, and the focal lengths of the lens regions in the second and fourth quadrants are different from each other, and each of the lens regions has axial symmetry, and The light detection surface of the photodetector is formed in an annular shape consisting of photodetection parts in the first to fourth quadrants divided into four corresponding to the lens regions in the first to fourth quadrants of the lens, and 1st
A focus error signal is obtained by the difference between the sum of the detection outputs from the photodetectors in the third quadrant and the sum of the detection outputs from the photodetectors in the second and fourth quadrants. Focus error detection device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21818082A JPS59110042A (en) | 1982-12-13 | 1982-12-13 | Focus error detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21818082A JPS59110042A (en) | 1982-12-13 | 1982-12-13 | Focus error detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59110042A JPS59110042A (en) | 1984-06-25 |
JPH0353699B2 true JPH0353699B2 (en) | 1991-08-15 |
Family
ID=16715863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21818082A Granted JPS59110042A (en) | 1982-12-13 | 1982-12-13 | Focus error detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59110042A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6452231A (en) * | 1987-08-24 | 1989-02-28 | Matsushita Electric Ind Co Ltd | Optical disk device |
JPH01205734A (en) * | 1988-02-12 | 1989-08-18 | Matsushita Electric Ind Co Ltd | Optical head device |
-
1982
- 1982-12-13 JP JP21818082A patent/JPS59110042A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59110042A (en) | 1984-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0127448B1 (en) | Focussing error detecting apparatus | |
JPS6227456B2 (en) | ||
US4924082A (en) | Optical scanning device, mirror objective suitable for use in said device and optical write and/or read apparatus provided with said device | |
US4501493A (en) | Apparatus for detecting a position of an optical pickup | |
US5172369A (en) | Optical pickup, optical information recording carrier and recording and reproducing apparatus thereof | |
JP2000206411A (en) | Optical device, optical head and information reproducing device using them | |
JPS60263341A (en) | Optical head | |
JPS58220248A (en) | Optical pickup | |
JPH0353699B2 (en) | ||
JPS6117103A (en) | Polarizing beam splitter | |
JPS61261837A (en) | Erasable optical head | |
JP2005535063A (en) | Scanning device including an objective lens formed of two kinds of materials | |
GB2129931A (en) | Apparatus for detecting position of optical pick-up | |
JPS5952437A (en) | Optical reproducer | |
JPS62129944A (en) | Optical head | |
JP2656036B2 (en) | Light head | |
CA1177166A (en) | Apparatus for detecting a position of an optical pickup | |
JPS6192447A (en) | Information recording medium | |
JP3108953B2 (en) | Magneto-optical signal detector and recording / reproducing device | |
JP2647151B2 (en) | Optical head device | |
JPH0731373Y2 (en) | Optical pickup device | |
JPH0219537B2 (en) | ||
JPS59107303A (en) | Composite lens | |
KR100641088B1 (en) | Optical Pickup Apparatus | |
JP2578203B2 (en) | Light head |