JPH01205734A - Optical head device - Google Patents

Optical head device

Info

Publication number
JPH01205734A
JPH01205734A JP63031244A JP3124488A JPH01205734A JP H01205734 A JPH01205734 A JP H01205734A JP 63031244 A JP63031244 A JP 63031244A JP 3124488 A JP3124488 A JP 3124488A JP H01205734 A JPH01205734 A JP H01205734A
Authority
JP
Japan
Prior art keywords
light
convex lens
focal position
head device
receiving elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63031244A
Other languages
Japanese (ja)
Inventor
Seiji Nishiwaki
青児 西脇
Sadao Mizuno
定夫 水野
Noboru Ito
昇 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63031244A priority Critical patent/JPH01205734A/en
Publication of JPH01205734A publication Critical patent/JPH01205734A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To minimize the off tracking of return light and to miniaturize the title device by providing a converging means to converge a converged laser beam on an optical disk recording face and detecting means to respectively detect quartered light flux. CONSTITUTION:The light reflected by an optical disk recording face 6 passes through a diaphragm lens 5 and 1/4 wavelength plate 4 again, reaches a polarizing beam splitter 3 and goes straight on through this. This return light 10 to go straight is narrowed down by a convex lens 7, passes through two parallel plates 8A and 8B and thus, it is level-divided into four. In this case, a difference occurs in the light quantity of the return light on light receiving elements 9C and 9D to the light quantity of the return light on light receiving elements 9A and 9B and a TE signal is generated. Consequently, by obtaining the difference signal of the outputs of adding amplifiers 11A and 11B by a differential amplifier 12A, a tracking error signal can be obtained. Thus, the return light is not deflected, a focus error signal and the tracking error signal can be detected by one photodetector and the title device is miniaturized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は情報を光ディスクに記録または再生する光ヘッ
ド装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical head device for recording or reproducing information on an optical disc.

従来の技術 従来の光ヘッド装置の構成について以下図面に基づいて
説明する。第12図に示すように、半導体レーザーlか
ら出た光は集光レンズ2により集光され、偏光ビームス
プリッタ3.174波長板4及び絞りレンズ5によりプ
リグループの形成された光ディスク記録面6に紋り込ま
れる。この光ディスク記録面6より反射される光は、再
び絞りレンズ5及び174波長板4を経て、 偏光ビー
ムスプリッタ3に到達し、これを直進して凸レンズ7に
より紋られ、ハーフミラ−19により三光束に分離され
る。ハーフミラ−19を透過した光は焦点の手前に設置
された三分割光検出器20に、反射した光は焦点の後ろ
に設置された三分割光検出器21に集光される。
2. Description of the Related Art The structure of a conventional optical head device will be described below with reference to the drawings. As shown in FIG. 12, the light emitted from the semiconductor laser l is focused by a condensing lens 2, and is directed onto an optical disk recording surface 6 on which a pregroup is formed by a polarizing beam splitter 3, a 174 wavelength plate 4, and an aperture lens 5. It's embedded. The light reflected from the optical disc recording surface 6 passes through the aperture lens 5 and the 174-wavelength plate 4 again, reaches the polarizing beam splitter 3, travels straight through this, is reflected by the convex lens 7, and is divided into three beams by the half mirror 19. separated. The light transmitted through the half mirror 19 is focused on a three-split photodetector 20 installed in front of the focal point, and the reflected light is focused on a three-split photodetector 21 installed behind the focal point.

第13図は焦点位置の変化による光検出器上の光分布を
示す説明図であり、差動増幅器22によって受光素子2
0C12ICから差信号を得、フォーカスエラー信号F
Eとし、差動増幅器23によって受光素子2OR,21
Lの和と2OL、2IRの和との差分から、トラッキン
グエラー信号TEを得る。走査光がジャストフォーカス
であれば、第13図(b)に示す様に光検出器20.2
1に於ける戻り光の光分布は対称となり、受光素子20
C,2ICに於ける戻り光の光量に差異はなく、FE倍
信号発生しない。走査光がデイフォーカスとなれば、第
13図(a)、 (c)に示す様に光検出器20.21
に於ける戻り光の光分布は一方が広がり他方が狭まるの
で、受光素子20C,2ICに於ける戻り光の光量に差
異が生じ、FE倍信号発生する。なお戻り光の光分音光
は、走査光が追従しているトラックとその回りの周期的
な他のトラックからの反射によって光が回折分離し、0
次回折光24Cに、1次回折光24Rおよび一1次回折
光24Lが重畳した分布となっている。走査光がトラッ
クのセンターからずれた場合はこの1次回折光24Rと
−1次回折光24Lに位相差が生じ、この位相差より回
折光重畳部に発生する光lの差が作動増幅器23により
増幅されトラッキングエラー信号TEが発生する。
FIG. 13 is an explanatory diagram showing the light distribution on the photodetector due to changes in the focal position.
Obtain the difference signal from 0C12IC, focus error signal F
E, and the light receiving elements 2OR, 21 are connected by the differential amplifier 23.
A tracking error signal TE is obtained from the difference between the sum of L and the sum of 2OL and 2IR. If the scanning light is just focused, the photodetector 20.2 as shown in FIG. 13(b)
The light distribution of the returned light in 1 is symmetrical, and the light receiving element 20
There is no difference in the amount of returned light between C and 2 ICs, and no FE multiplied signal is generated. When the scanning light becomes day focused, the photodetector 20.21 as shown in FIGS. 13(a) and (c)
Since the light distribution of the returned light is widened on one side and narrowed on the other, a difference occurs in the amount of returned light at the light receiving elements 20C and 2IC, and an FE multiplied signal is generated. In addition, the optical diametrical light of the returned light is diffracted and separated by the track that the scanning light is following and periodic reflections from other tracks around it, and the light becomes 0.
The distribution is such that the first-order diffracted light 24R and the first-order diffracted light 24L are superimposed on the second-order diffracted light 24C. When the scanning light deviates from the center of the track, a phase difference occurs between the first-order diffracted light 24R and the -first-order diffracted light 24L, and from this phase difference, the difference in the light L generated in the diffracted light superimposing section is amplified by the operational amplifier 23. A tracking error signal TE is generated.

発明が解決しようとする課題 このような従来の光ヘッド装置の光学系に於て、ハーフ
ミラ−により戻り光を光軸の異なる三光束に分離するた
め、装置の小型化が困難であった。
Problems to be Solved by the Invention In the optical system of such a conventional optical head device, a half mirror separates the returned light into three beams with different optical axes, making it difficult to miniaturize the device.

また光検出器は二個必要であり装置の低コスト化の妨げ
であった。本発明はかかる問題点に鑑み、戻り光を偏向
(即ち光路の異なる三光束に分離)することなく1個の
光検出器でフォーカスエラー信号とトラッキングエラー
信号の検出を行う光ヘッド装置を提供することを目的と
する。
In addition, two photodetectors were required, which hindered the cost reduction of the device. In view of this problem, the present invention provides an optical head device that detects a focus error signal and a tracking error signal with one photodetector without deflecting the returned light (that is, separating it into three beams with different optical paths). The purpose is to

課題を解決するための手段 本発明は、レーザー光源と、このレーザー光源からのレ
ーザー光を集光し平行光とする集光手段と、集光された
レーザー光を光ディスク記録面上に収束する収束手段と
、この収束手段からの戻り光を再び収束するとともに四
等分に波面分割し、さらに四分割された戻り光のうち光
軸に対して対向する2つの光束を焦点位置Flに結像さ
せ、他の対向する2つの光束を前記光束と同一光軸上の
焦点位置F2に結像させる分割結像手段と、前記焦点位
置FlとF2の間にあって前記四分割された光束をそれ
ぞれ検出する検出手段とを備え、前記検出手段は前記四
分割された戻り光をそれぞれ受光する少なくとも4つの
受光素子D1、D2、D3、D4から成り、DI% D
4及びD2、D3をそれぞれ光軸に対して対向して配設
し、受光素子D1、D2とD3、D4との間、もしくは
D1、D3とD2、D4との問、もしくはDIとD2と
D3とD4との間に隙間をおき、D1、D4の和信号と
D2、D3の和信号との差分てフォーカスエラー信号を
得、D1、D2の和信号とD3、D4の和信号との差分
てトラッキングエラー信号を得ることを特徴とする光ヘ
ッド装置である。
Means for Solving the Problems The present invention provides a laser light source, a condensing means for condensing laser light from the laser light source into parallel light, and a converging means for converging the condensed laser light onto an optical disk recording surface. and a means for converging the return light from the converging means again and dividing the wavefront into four equal parts, and further focusing two light beams facing the optical axis among the four divided return lights at a focal position Fl. , divisional imaging means for forming an image of the other two opposing light beams at a focal point F2 on the same optical axis as the light beam, and a detection unit located between the focal positions Fl and F2 for detecting each of the four divided light beams. and the detection means includes at least four light-receiving elements D1, D2, D3, and D4 that respectively receive the quartered return light, and the detection means includes at least four light-receiving elements D1, D2, D3, and D4, each of which receives the quartered return light, and has a DI% D.
4, D2, and D3 are respectively disposed opposite to the optical axis, and between the light receiving elements D1, D2 and D3, D4, or between D1, D3 and D2, D4, or between DI, D2, and D3. and D4, a focus error signal is obtained by the difference between the sum signal of D1 and D4 and the sum signal of D2 and D3, and the difference between the sum signal of D1 and D2 and the sum signal of D3 and D4 is obtained. This is an optical head device characterized by obtaining a tracking error signal.

作用 上記のような構成により、戻り光を偏向することなく1
個の光検出器でフォーカスエラー信号とトラッキングエ
ラー信号の検出を行うことが出来実施例 以下本発明の実施例を第1図から第11図に基づいて説
明する。尚、第1図から第11図に於て従来の光ディス
ク装置(第12図から第13図)と構成の同じものは同
一番号を付して詳細な説明は省略する。
Effect: With the above-mentioned configuration, the return light is not deflected.
Embodiments The embodiments of the present invention will be described below with reference to FIGS. 1 to 11. Incidentally, in FIGS. 1 to 11, those having the same configuration as the conventional optical disk device (FIGS. 12 to 13) are designated by the same numbers, and detailed explanations thereof will be omitted.

第1図は本発明の第1の実施例に於ける光ヘッド装置の
構成図を示す。第1図に示すように、半導体レーザlか
ら出た光は集光レンズ2により集光され平行光となった
後、偏光ビームスプリッタ3.174波長板4および絞
りレンズ5によりプリグループの形成された光ディスク
記録而6に絞り込まれる。この光ディスク記録面6より
反射された光は、ふたたび絞りレンズ5および1/4波
長板4を通り、偏光ビームスプリッタ3に到達し、これ
を直進する。この直進してきた戻り光lOは凸レンズ7
によって絞られ、2個の平行平板8A、8Bを透過する
ことで四等分に波面分割される。
FIG. 1 shows a configuration diagram of an optical head device in a first embodiment of the present invention. As shown in FIG. 1, the light emitted from the semiconductor laser 1 is condensed by a condensing lens 2 to become parallel light, and then a pre-group is formed by a polarizing beam splitter 3, a wavelength plate 4 and an aperture lens 5. The list was narrowed down to 6 types of optical disc recording. The light reflected from the optical disk recording surface 6 passes through the aperture lens 5 and the quarter-wave plate 4 again, reaches the polarizing beam splitter 3, and travels straight through it. This returning light lO that has traveled straight is reflected by the convex lens 7
The wavefront is divided into four equal parts by passing through two parallel flat plates 8A and 8B.

第2図は第1の実施例に於ける波面分割朗−光検出部の
説明図であり、平行平板8A、8Bは戻り光lOの光軸
に対して対向するよう設置されこの平行平板8A、8B
により戻り光は四等分に波面分割される。四分割された
戻り光のうち光軸に対して対向する2つの光束(平行平
板を透過しない側)は光軸上の焦点位置Flに収束し、
他の対向する2つの光束(平行平板を透過する側)は光
軸上の焦点位置F2に収束する。戻り光は焦点位置Fl
とF2の間に設置された5分割の光検出器9によって受
光される。平行平板8A、8Bの板厚をt、屈折率をn
とすれば、第2図(b)に示す如く焦点位置F1とF2
との隔差はt (1−1/n)となる。光検出器9は受
光素子9A、9B、9C19D、9Eに分割され、加算
増幅器11A、11B、IIC,IIDによってそれぞ
れ受光素子9A、9Bの和信号、9A、9Dの和信号、
9B、9Cの和信号、9C59Dの和信号を得、差動増
幅器12Aによって加算増幅器11A、IIDの出力の
差信号を得、トラッキングエラー信号TEとし、差動増
幅器12Bによって加算増幅器11B、IICの出力の
差信号を得、フォーカスエラー信号FEとする。
FIG. 2 is an explanatory diagram of the wavefront splitting light detecting section in the first embodiment, in which parallel flat plates 8A and 8B are installed to face the optical axis of the returned light lO. 8B
The wavefront of the returned light is divided into four equal parts. Of the four divided return lights, two light beams facing the optical axis (the sides that do not pass through the parallel plate) converge at the focal point Fl on the optical axis,
The other two opposing light fluxes (on the sides that pass through the parallel plate) converge at a focal point F2 on the optical axis. The returned light is at the focal position Fl
The light is received by a five-divided photodetector 9 installed between F2 and F2. The thickness of the parallel plates 8A and 8B is t, and the refractive index is n.
Then, as shown in FIG. 2(b), the focal positions F1 and F2 are
The difference between the two is t (1-1/n). The photodetector 9 is divided into light receiving elements 9A, 9B, 9C19D, and 9E, and sum signals of the light receiving elements 9A, 9B, sum signals of 9A, 9D,
A sum signal of 9B and 9C and a sum signal of 9C59D are obtained, and a difference signal between the outputs of the summing amplifier 11A and IID is obtained by the differential amplifier 12A, which is used as a tracking error signal TE, and the output of the summing amplifier 11B and IIC is obtained by the differential amplifier 12B. A difference signal is obtained and used as a focus error signal FE.

第3図は焦点位置の変化に対する光検出器上の光分布を
示す説明図であり、光ディスク記録面−hの走査光がジ
ャストフォーカスであれば、第3財1(c)に示す様に
光検出器9に於ける戻り光の光分布は平行平板透過光1
0A、IODと平行平板未透過光10B、IOcとも対
称となり、走査光がデイフォーカスとなれば、(a)、
 (b)、 (d)、 (e)に示す様に光検出器9に
於ける戻り光の光分布は一方(平行平板透過光10A、
10Dもしく−は平行平板未透過光10B、10C)が
広がり他方(平行平板未透過光10B、IOcもしくは
平行平板透過光10A、10D)が狭まる。
FIG. 3 is an explanatory diagram showing the light distribution on the photodetector with respect to changes in the focal position. If the scanning light on the optical disc recording surface -h is just in focus, the light will be The light distribution of the returned light at the detector 9 is the parallel plate transmitted light 1
0A, IOD and the parallel plate untransmitted light 10B, IOc are also symmetrical, and if the scanning light becomes day focus, (a),
As shown in (b), (d), and (e), the light distribution of the returned light at the photodetector 9 is one way (parallel plate transmitted light 10A,
10D or -, parallel plate untransmitted light 10B, 10C) widens, and the other (parallel plate untransmitted light 10B, IOc or parallel plate transmitted light 10A, 10D) narrows.

なお、(b)では焦点F2が光検出器9上にあり平行平
板透過光10A、IODは絞られて受光素子9Eの中に
収まり、(d)では焦点Flが光検出器9上にあり平行
平板未透過光10B、IOCは紋られて受光素子9Eの
中に収まる。
In addition, in (b), the focal point F2 is on the photodetector 9, and the parallel plate transmitted light 10A, IOD is narrowed down and fits into the light receiving element 9E, and in (d), the focal point Fl is on the photodetector 9, and the parallel plate transmitted light 10A is focused. The flat plate non-transmitted light 10B and IOC are reflected and fit into the light receiving element 9E.

第4図(a)はデイフォーカス量に対する加算増幅器1
1B、IICの出力信号であり、デイフォーカスの状態
A、  B、  C,D、  Eはそれぞれ第3図(a
)、(b)、(c)、(d)、(e)での光分布の状態
に相当する。13Bは加算増幅器11Bの出力信号13
Cは加算増幅器11Cの出力信号である。出力信号13
Bがデイフォーカスの状態Bでゼロとなるのは平行平板
透過光10A、10Dが絞られて受光素子9Eの中に収
まるからであり、同様に出力信号13Cがデイフォーカ
スの状態りでゼロとなるのは平行平板未透過光lOB、
、IOCが絞られて受光素子9Eの中に収まるからであ
る。第4図(b)はデイフォーカス量に対するフォーカ
スエラー信号を示す説明図であり、フォーカス引き込み
に必要な8字カーブが得られる。
FIG. 4(a) shows the summing amplifier 1 for the day focus amount.
These are the output signals of 1B and IIC, and day focus states A, B, C, D, and E are shown in Figure 3 (a).
), (b), (c), (d), and (e). 13B is the output signal 13 of the summing amplifier 11B
C is the output signal of the summing amplifier 11C. Output signal 13
The reason why B becomes zero in the day focus state B is because the parallel plate transmitted light beams 10A and 10D are focused and fit into the light receiving element 9E, and similarly, the output signal 13C becomes zero in the day focus state. is parallel plate untransmitted light lOB,
This is because the IOC is narrowed down and fits inside the light receiving element 9E. FIG. 4(b) is an explanatory diagram showing a focus error signal with respect to the day focus amount, and a figure-eight curve necessary for focus pull-in is obtained.

第5図(a)は波面分割直前の戻り光の光分布を示し、
走査光が追従している光ディスク記録面上のトラックと
その回りの周期的な他のトラックからの反射によって光
が回折分離し、戻り光IOは0次回折光10Cに、1次
回折光10Lおよび一1次回折光10Rが重畳した分布
となっている。
Figure 5(a) shows the optical distribution of the returned light just before wavefront division,
The light is diffracted and separated by the track on the optical disk recording surface that the scanning light is following and periodic reflections from other tracks around it, and the returned light IO is divided into 0th-order diffracted light 10C, 1st-order diffracted light 10L and 11 The distribution is such that the second-order diffraction light 10R is superimposed.

第5図(b)はジャストフォーカスでの光検出器上の光
分布を示し、戻り光10のうち平行平板8A、8Bを透
過しない領域は光軸に対し反転するが平行平板8A、8
Bを透過する領域は反転しない。従って、0次回折光1
0Cに1次回折光10[、が重畳した分布は、受光素子
9A、9B、9E上に現れ、0次回折光10Cに−1次
回折光10Rが重畳した分布は受光素子9C,9D、9
E上に現れる。走査光がトラックのセンターからずれた
場合、この1次回折光10Rと一1次回折光10Lに位
相差が生じ、この位相差より回折光重畳部に光量差が発
生する。即ち、受光素子9A、9B上の戻り光の光量に
対する、9C19Dに於ける戻り光の先爪に差異が生じ
、TE倍信号発生する。従って、差動増幅器12Aによ
って加算増幅it IA、IIDの出力の差信号を得る
ことで、トラッキングエラー信号が得られる。即ち本実
施例によって、戻り光を偏向(光路の異なる三光束に分
離)することなく1個の光検出器でフォーカスエラー信
号とトラッキングエラー信号の検出を行うことが出来る
FIG. 5(b) shows the light distribution on the photodetector at just focus, and the region of the returned light 10 that does not pass through the parallel plates 8A, 8B is reversed with respect to the optical axis, but the parallel plates 8A, 8B are inverted with respect to the optical axis.
The area that transmits B is not inverted. Therefore, the 0th order diffracted light 1
A distribution in which the 1st-order diffracted light 10[, is superimposed on 0C appears on the light receiving elements 9A, 9B, and 9E, and a distribution in which -1st-order diffracted light 10R is superimposed on the 0th-order diffracted light 10C appears on the light-receiving elements 9C, 9D, and 9.
Appears on E. When the scanning light deviates from the center of the track, a phase difference occurs between the first-order diffracted light 10R and the first-order diffracted light 10L, and this phase difference causes a difference in light amount in the diffracted light superimposing section. That is, there is a difference in the amount of the returned light on the light receiving elements 9A and 9B in the tip of the returned light on 9C19D, and a TE multiplied signal is generated. Therefore, a tracking error signal can be obtained by obtaining a difference signal between the outputs of the summing amplifiers it IA and IID using the differential amplifier 12A. That is, according to this embodiment, the focus error signal and the tracking error signal can be detected with one photodetector without deflecting the returned light (separating it into three beams with different optical paths).

第6図は本発明の第2の実施例に於ける光検出部の説明
図である。光検出器9は受光素子9A、9B、9C19
D、  9E、  9F、9Gに分割され、加算tff
mW l I A、11B、  I IC,l IDニ
よってそれぞれ受光素子9A、9Bの和信号、9A、9
D(7)和信号、9B、9C(7)和信号、9c、9D
の和信号を得、差動増幅器12Bによって加算増幅器1
1B、IICの出力の差信号を得、フォーカスエラー信
号FEとする。差動増幅器12Aによって加算増幅器1
1A、IIDの出力の差信号15を得、差動増幅器12
Cによって受光素子9F、9Gの差信号16を得て高周
波濾波器14に通した後、これを加算増幅器12Cで差
信号I5に加算してトラッキングエラー信号とする。一
般に調整誤差や温度変化に伴う位置ずれにより戻り光1
0は光検出器9の中心からX方向やX方向にずれる。特
にX方向の位置ずれにより差信号15にオフセットが加
わる。第7図(a)はX方向の位置ずれに伴う溝横断時
の差信号15を示し、Vlのオフセットが加わっている
。従って差信号I5をトラッキングエラー信号に用いて
トラッキング制御を行えば、オフセット量v1に相当し
たオフトラッキング(トラックはずれ)をおこす。第7
図(b)は溝横断時の差動増幅器12Cの出力信号16
を示す。受光素子9F、9G−ヒの光分布はO次回折光
に±1次回折光が重畳する領域が狭く、そのほとんどが
O次回折光のみの領域であるので、差信号16はX方向
の位置ずれに伴うオフセット成分v2に対する溝横断時
の変動成分v3が比較的小さい。第7図(c)は高周波
濾波器14後の信号を示し、溝横断時の変動成分v3が
除去され、オフセット成分v2のみ残る。第7図(d)
はトラッキングエラー信号を示し、差信号15で現れた
オフセット成分が除去され、戻り光の位置ずれによるオ
フトラッキングを防ぐことができる。
FIG. 6 is an explanatory diagram of a photodetector in a second embodiment of the present invention. The photodetector 9 includes light receiving elements 9A, 9B, and 9C19.
Divided into D, 9E, 9F, 9G and added tff
mW l I A, 11B, I IC, l ID are the sum signals of the light receiving elements 9A, 9B, 9A, 9, respectively.
D (7) Sum signal, 9B, 9C (7) Sum signal, 9c, 9D
The sum signal of summing amplifier 1 is obtained by differential amplifier 12B.
A difference signal between the outputs of 1B and IIC is obtained and used as a focus error signal FE. Summing amplifier 1 by differential amplifier 12A
1A, the difference signal 15 of the output of IID is obtained, and the differential amplifier 12
After a difference signal 16 between the light receiving elements 9F and 9G is obtained by C and passed through a high frequency filter 14, it is added to a difference signal I5 by a summing amplifier 12C to obtain a tracking error signal. Generally, the return light 1 is due to positional deviation due to adjustment error or temperature change.
0 is shifted from the center of the photodetector 9 in the X direction or in the X direction. In particular, an offset is added to the difference signal 15 due to the positional shift in the X direction. FIG. 7(a) shows a difference signal 15 when crossing the groove due to positional deviation in the X direction, and an offset of Vl is added. Therefore, if tracking control is performed using the difference signal I5 as a tracking error signal, off-tracking (track deviation) corresponding to the offset amount v1 will occur. 7th
Figure (b) shows the output signal 16 of the differential amplifier 12C when crossing the groove.
shows. In the light distribution of the light receiving elements 9F and 9G-H, the area where the ±1st-order diffracted light is superimposed on the O-order diffracted light is narrow, and most of this is an area containing only the O-order diffracted light, so the difference signal 16 is generated due to the positional shift in the X direction. The fluctuation component v3 at the time of groove crossing with respect to the offset component v2 is relatively small. FIG. 7(c) shows the signal after the high frequency filter 14, in which the fluctuating component v3 when crossing the groove is removed and only the offset component v2 remains. Figure 7(d)
indicates a tracking error signal, the offset component appearing in the difference signal 15 is removed, and off-tracking due to positional deviation of the returned light can be prevented.

第8図は本発明の第3の実施例に於ける光検出部の説明
図である。検出器9は受光素子9A、9B、9C,9D
、9F、9Gに分割され、加算増幅器11A、IIB、
IIC,IIDによってそれぞれ受光素子9A、9Bの
和信号、9A、9Dの和信号、9B、9Cの和信号、9
C19Dの和信号を得、差動増幅器12Bによって加算
増幅器11B、IICの出力の差信号を得、フォーカス
エラー信号FEとする。差動増幅器12Aによって加算
増幅器11A、IIDの出力の差信号15を得、差動増
幅器12Cによって受光素子9F、9Gの差信号16を
得て高周波濾波器14に通した後、これを加算増幅器1
2Cで差信号15に加算してトラッキングエラー信号と
する。第2の実施例と同様に、差信号15で現れるオフ
セット成分が除去され、戻り光の位置ずれによるオフト
ラッキングを防ぐことができる。
FIG. 8 is an explanatory diagram of a photodetector in the third embodiment of the present invention. The detector 9 includes light receiving elements 9A, 9B, 9C, and 9D.
, 9F, 9G, and summing amplifiers 11A, IIB,
By IIC and IID, the sum signal of the light receiving elements 9A and 9B, the sum signal of 9A and 9D, the sum signal of 9B and 9C, and 9
A sum signal of C19D is obtained, and a difference signal of the outputs of the summing amplifier 11B and IIC is obtained by the differential amplifier 12B, which is used as a focus error signal FE. A difference signal 15 between the outputs of the summing amplifiers 11A and IID is obtained by the differential amplifier 12A, and a difference signal 16 between the light receiving elements 9F and 9G is obtained by the differential amplifier 12C, which is passed through the high frequency filter 14.
It is added to the difference signal 15 at 2C to obtain a tracking error signal. As in the second embodiment, the offset component appearing in the difference signal 15 is removed, and off-tracking due to positional deviation of the returned light can be prevented.

第9図は本発明の第4の実施例に於ける波面分割部、光
検出部の説明図である。分割線に沿って一定幅の遮光領
域を設けるため、平板17を挟んで平板17と平行平板
8A、8Bを接合する。これにより平行平板8A、8B
の位置設定が容易となる。更に平板17を挟んだ結果、
光検出器9上の光分布はy方向にδの隙間が生じ、光検
出器9が第3の実施例に述べた形状であればy方向に戻
り光の位置ずれが生じても、位置ずれがδ/2以下であ
る限り、差信号15にオフセットが生じず、差信号15
をトラッキングエラー信号に用いてトラッキング制御を
行っても、オフトラッキングは生じない。
FIG. 9 is an explanatory diagram of a wavefront division section and a photodetection section in the fourth embodiment of the present invention. In order to provide a light shielding area of a constant width along the dividing line, the flat plate 17 and the parallel flat plates 8A and 8B are joined with the flat plate 17 in between. As a result, parallel plates 8A and 8B
It becomes easy to set the position. As a result of further sandwiching the flat plate 17,
In the light distribution on the photodetector 9, a gap of δ occurs in the y direction, and if the photodetector 9 has the shape described in the third embodiment, even if the light returns in the y direction and the position shifts, there will be no position shift. As long as δ/2 or less, no offset occurs in the difference signal 15, and the difference signal 15
Even if tracking control is performed using this as a tracking error signal, off-tracking will not occur.

第1O図は本発明の第5の実施例に於ける波面分割部の
説明図であり、凸レンズ7と凹レンズ18との間に平行
平板8A、8Bを設置することで戻り光IOを四等分に
波面分割する。この場合、凸レンズ7と凹レンズIfと
を組み合わせることで戻り光を無収差に収束させ、かつ
平行平板8A、8Bの板厚りを小さくすることが可能で
ある。戻り光が無収差に収束することはフォーカスル制
御感度が向上し、溝横断時のフォーカスエラー信号振幅
の低減につながる効果がある。
FIG. 1O is an explanatory diagram of the wavefront dividing section in the fifth embodiment of the present invention, in which the returned light IO is divided into four equal parts by installing parallel plates 8A and 8B between the convex lens 7 and the concave lens 18. The wavefront is divided into In this case, by combining the convex lens 7 and the concave lens If, it is possible to converge the returned light without aberration and to reduce the thickness of the parallel plates 8A and 8B. Convergence of the returned light without aberration improves the focus control sensitivity and has the effect of reducing the amplitude of the focus error signal when crossing the groove.

第11図は本発明の第6の実施例に於ける波面分割部の
説明図であり、焦点距離flの四分割凸レンズ7A、7
Dと焦点距ばF2の四分割凸レンズ7B、7Cを組み合
わせることでも、焦点距離の等しい四分割凸レンズ7A
、7B、7C,7Dを7A、7Dが7B、7Cに比べ光
軸方向にずらして組み合わせることでも、焦点位置Fl
とF2とに隔差を持たせることが出来る。また四分割凸
レンズ7A、7B、7C,7Dをフレネルレンズで構成
することでも焦点位置FlとF2とに隔差を持たせるこ
とが出来る。
FIG. 11 is an explanatory diagram of the wavefront dividing section in the sixth embodiment of the present invention, and shows the four-part convex lenses 7A and 7 having a focal length fl.
By combining D and the four-segment convex lenses 7B and 7C with a focal length of F2, the four-segment convex lens 7A with the same focal length can be created.
, 7B, 7C, and 7D can be combined with 7A, 7D shifted in the optical axis direction compared to 7B, 7C, the focal position Fl
It is possible to provide a difference between F2 and F2. Furthermore, by configuring the four-part convex lenses 7A, 7B, 7C, and 7D with Fresnel lenses, it is possible to provide a difference between the focal positions Fl and F2.

発明の効果 以り本発明の光ヘッド装置により、戻り光を偏向するこ
となく1個の光検出器でフォーカスエラー信号とトラッ
キングエラー信号の検出を行うことが出来、戻り光の位
置ずれによるオフトラッキングが小さく、装置の小型化
、低コスト化に極めて有効である。
As a result of the invention, the optical head device of the present invention allows detection of a focus error signal and a tracking error signal with a single photodetector without deflecting the returned light, thereby preventing off-tracking due to positional deviation of the returned light. It is extremely effective in reducing the size and cost of devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例に於ける光ヘッド装置の
要部構成図、第2図は同装置の波面分割部、光検出部の
説明図、第3図は同装置の焦点位置の変化による光検出
器に受光される光分布図、第4図は同装置のデイフォー
カス量に対する加算増幅器の出力信号波長図、フォーカ
スエラー信号を示す説明図、第5図(a)は同装置の波
面分割直前の戻り光の光分布図、(b)はジャストフォ
ーカスでの光検出器上の光分布を示す説明図、第6図は
本発明の第2の実施例に於ける光検出部の説明図、第7
図は同装置の溝横断時の信号出力示す説明図、第8図は
本発明の第3の実施例に於ける光検出部の説明図、第9
図は本発明の第4の実施例に於ける波面分割部、光検出
部の説明図、第1θ図は本発明の第5の実施例に於ける
波面分割部の説明図、第11図は本発明の第6の実施例
に於ける波面分割部の説明図、第12図は従来の光ヘッ
ド装置の要部構成図、第13図は同装置の焦点位置の変
化による光検出器に受光される光分布図である。 l・・・半導体レーザ、2・・・集光レンズ、7・・・
凸レンズ、8A、8B・・・平行平板、9・・・光検出
器。 /−−一手導林ν−プ― 第4図 第5図 (α) (b) /d−一高朋3/Y濾汲五 15、/ろ一一羨4言号 第6図 第7図 (C1) 第8図 1どこ  /44 第9図 /7−子敷
FIG. 1 is a configuration diagram of the main parts of an optical head device according to the first embodiment of the present invention, FIG. 2 is an explanatory diagram of the wavefront division section and photodetection section of the same device, and FIG. 3 is a focal point of the same device. Fig. 4 is a diagram of the distribution of light received by the photodetector due to changes in position; Fig. 4 is a diagram of the output signal wavelength of the summing amplifier with respect to the day focus amount of the same device; an explanatory diagram showing the focus error signal; Fig. 5(a) is the same A light distribution diagram of the returned light just before the wavefront division of the device, (b) is an explanatory diagram showing the light distribution on the photodetector at just focus, and FIG. 6 is a diagram showing the light detection in the second embodiment of the present invention. Explanatory diagram of the section, 7th
The figure is an explanatory diagram showing the signal output when crossing the groove of the same device, FIG. 8 is an explanatory diagram of the photodetection section in the third embodiment of the present invention, and FIG.
The figure is an explanatory diagram of the wavefront division section and the photodetection section in the fourth embodiment of the present invention, FIG. 1θ is an explanatory diagram of the wavefront division section in the fifth embodiment of the present invention, and FIG. An explanatory diagram of the wavefront splitting section in the sixth embodiment of the present invention, FIG. 12 is a configuration diagram of the main parts of a conventional optical head device, and FIG. 13 is a diagram showing the light received by the photodetector due to changes in the focal position of the same device. FIG. l... Semiconductor laser, 2... Condensing lens, 7...
Convex lens, 8A, 8B... Parallel plate, 9... Photodetector. /--Issute Dourin ν-Pu- Fig. 4 Fig. 5 (α) (b) /d-Ichitakatomo 3/Y filter 515, /ro Ichien 4 words Fig. 6 Fig. 7 (C1) Figure 8 1 Where/44 Figure 9/7-Chishiki

Claims (7)

【特許請求の範囲】[Claims] (1)レーザー光源と、このレーザー光源からのレーザ
ー光を集光し平行光とする集光手段と、集光されたレー
ザー光を光ディスク記録面上に収束する収束手段と、こ
の収束手段からの戻り光を再び収束するとともに四等分
に波面分割し、さらに四分割された戻り光のうち光軸に
対して対向する2つの光束を焦点位置F1に結像させ、
他の対向する2つの光束を前記光束と同一光軸上の焦点
位置F2に結像させる分割結像手段と、前記焦点位置F
1とF2の間にあって前記四分割された光束をそれぞれ
検出する検出手段を備え、前記検出手段は前記四分割さ
れた戻り光をそれぞれ受光する少なくとも4つの受光素
子D1、D2、D3、D4から成り、D1とD4及びD
2とD3をそれぞれ光軸に対し対向して配設し、前記受
光素子D1、D2とD3、D4との間、もしくはD1、
D3とD2、D4との間、もしくはD1とD2とD3と
D4との間に隙間をおくことを特徴とする光ヘッド装置
(1) A laser light source, a focusing means for condensing the laser light from the laser light source into parallel light, a converging means for converging the focused laser light onto the optical disk recording surface, and a converging means for converging the laser light from the converging means The returning light is converged again and the wavefront is divided into four equal parts, and two light beams facing the optical axis of the four divided return lights are imaged at the focal position F1,
divisional imaging means for forming an image of the other two opposing light beams at a focal position F2 on the same optical axis as the light beam, and the focal position F2;
1 and F2 for detecting each of the four divided light beams, and the detection means includes at least four light receiving elements D1, D2, D3, and D4 that respectively receive the four divided return lights. , D1 and D4 and D
2 and D3 are respectively disposed opposite to the optical axis, and between the light receiving elements D1, D2 and D3, D4, or between D1,
An optical head device characterized in that a gap is provided between D3, D2, and D4, or between D1 and D2, and D3 and D4.
(2)請求項1において、受光素子D1、D4の和信号
とD2、D3の和信号との差分でフォーカスエラー信号
を得、D1、D2の和信号とD3、D4の和信号との差
分でトラッキングエラー信号を得ることを特徴とする光
ヘッド装置。
(2) In claim 1, the focus error signal is obtained by the difference between the sum signal of the light receiving elements D1 and D4 and the sum signal of D2 and D3, and the focus error signal is obtained by the difference between the sum signal of D1 and D2 and the sum signal of D3 and D4. An optical head device characterized by obtaining a tracking error signal.
(3)請求項1において、分割結像手段を凸レンズと光
軸に対して対向しかつ戻り光を四分割するよう配された
2つの透明平行平板で構成し、前記凸レンズを透過した
2つの光束を焦点位置F1に結像させ、前記凸レンズと
透明平行平板を透過した2つの光束を焦点位置F2に結
像させることを特徴とする光ヘッド装置。
(3) In claim 1, the dividing image forming means is constituted by a convex lens and two transparent parallel flat plates facing the optical axis and arranged so as to divide the returned light into four parts, and the two light beams transmitted through the convex lens are An optical head device is characterized in that an image is formed at a focal position F1, and two light beams transmitted through the convex lens and a transparent parallel plate are imaged at a focal position F2.
(4)請求項1において、分割結像手段を凸レンズと凹
レンズと、それらの間にあって光軸に対し対向しかつ戻
り光を四分割するよう配された2つの透明平行平板で構
成し、前記凸レンズと凹レンズを透過した2つの光束を
焦点位置F1に結像させ、前記凸レンズと透明平行平板
と凹レンズを透過した2つの光束を焦点位置F2に結像
させることを特徴とする光ヘッド装置。
(4) In claim 1, the dividing image forming means is constituted by a convex lens, a concave lens, and two transparent parallel flat plates disposed between them to face the optical axis and divide the returned light into four parts, and the convex lens An optical head device characterized in that two light beams transmitted through a convex lens, a transparent parallel plate, and a concave lens are imaged at a focal position F1, and two light beams transmitted through the convex lens, a transparent parallel plate, and a concave lens are imaged at a focal position F2.
(5)請求項3または4において、2つの透明平行平板
に、戻り光を分割する分割線に沿って一定幅の遮光領域
を設けたことを特徴とする光ヘッド装置。
(5) An optical head device according to claim 3 or 4, characterized in that the two transparent parallel flat plates are provided with a light-shielding area of a constant width along a dividing line that divides the returned light.
(6)請求項1において、分割結像手段は、4つの分割
レンズから成り、かつ光軸に対し対向した位置に同一の
焦点距離を有するよう配された第1、第2の2組の凸レ
ンズで構成し、第1の凸レンズを透過した2つの光束を
焦点位置F1に結像させ、第2の凸レンズを透過した2
つの光束を焦点位置F2に結像させることを特徴とする
光ヘッド装置。
(6) In claim 1, the divided imaging means is composed of four divided lenses, and two sets of convex lenses, a first and a second convex lens, are arranged to have the same focal length at positions opposite to the optical axis. The two light fluxes transmitted through the first convex lens are imaged at the focal position F1, and the two light fluxes transmitted through the second convex lens are imaged at the focal position F1.
An optical head device characterized by focusing two light beams on a focal position F2.
(7)請求項2において、受光素子D1、D2の間に受
光素子D5、受光素子D3、D4の間に受光素子D5、
D6を配設し、前記受光素子D5、D6の差信号を高周
波濾波し、トラッキングエラー信号に加えることを特徴
とする光ヘッド装置。
(7) In claim 2, a light receiving element D5 is provided between the light receiving elements D1 and D2, a light receiving element D5 is provided between the light receiving elements D3 and D4,
An optical head device characterized in that an optical head device D6 is provided, and a difference signal between the light receiving elements D5 and D6 is subjected to high frequency filtering and added to a tracking error signal.
JP63031244A 1988-02-12 1988-02-12 Optical head device Pending JPH01205734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63031244A JPH01205734A (en) 1988-02-12 1988-02-12 Optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63031244A JPH01205734A (en) 1988-02-12 1988-02-12 Optical head device

Publications (1)

Publication Number Publication Date
JPH01205734A true JPH01205734A (en) 1989-08-18

Family

ID=12325966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63031244A Pending JPH01205734A (en) 1988-02-12 1988-02-12 Optical head device

Country Status (1)

Country Link
JP (1) JPH01205734A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952437A (en) * 1982-09-17 1984-03-27 Sony Corp Optical reproducer
JPS59110042A (en) * 1982-12-13 1984-06-25 Sony Corp Focus error detector
JPS6489040A (en) * 1987-09-30 1989-04-03 Toshiba Corp Focus controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952437A (en) * 1982-09-17 1984-03-27 Sony Corp Optical reproducer
JPS59110042A (en) * 1982-12-13 1984-06-25 Sony Corp Focus error detector
JPS6489040A (en) * 1987-09-30 1989-04-03 Toshiba Corp Focus controller

Similar Documents

Publication Publication Date Title
JP3155287B2 (en) Optical information recording / reproducing device
KR100424837B1 (en) Optical pickup apparatus
KR970000645B1 (en) Optical pick up
KR980011162A (en) Magneto-optical recording / reproducing apparatus
JPH01205734A (en) Optical head device
JPH08287511A (en) Optical pickup device and photodetector
JPH1011785A (en) Optical head
JPH05120755A (en) Optical head
JPH08287510A (en) Optical pickup device
JPH06168462A (en) Optical head
JP2638778B2 (en) Optical head device
JPH0792319A (en) Optical element and optical device using the same
JP3966434B2 (en) Optical pickup device
JPH0519852Y2 (en)
JPS62145546A (en) Optical disk information reproducing device
JPH0636374A (en) Magneto-optical head device
JPH10269587A (en) Optical pickup device
JP2993273B2 (en) Magneto-optical head device
JP3401288B2 (en) Light detection unit
JP3123216B2 (en) Magneto-optical head device
JPH0194542A (en) Optical head device
JPH0863778A (en) Optical pickup
JP2647945B2 (en) Optical information recording / reproducing device
JPH11161973A (en) Optical information recording/reproducing device
JP2001344845A (en) Magneto-optical pickup device