KR970000645B1 - Optical pick up - Google Patents

Optical pick up Download PDF

Info

Publication number
KR970000645B1
KR970000645B1 KR1019940003608A KR19940003608A KR970000645B1 KR 970000645 B1 KR970000645 B1 KR 970000645B1 KR 1019940003608 A KR1019940003608 A KR 1019940003608A KR 19940003608 A KR19940003608 A KR 19940003608A KR 970000645 B1 KR970000645 B1 KR 970000645B1
Authority
KR
South Korea
Prior art keywords
disk
pbs
light
semiconductor laser
reflected
Prior art date
Application number
KR1019940003608A
Other languages
Korean (ko)
Other versions
KR950025650A (en
Inventor
양근영
노성우
Original Assignee
엘지전자 주식회사
이헌조
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사, 이헌조 filed Critical 엘지전자 주식회사
Priority to KR1019940003608A priority Critical patent/KR970000645B1/en
Priority to EP95301180A priority patent/EP0669613A1/en
Priority to US08/393,838 priority patent/US5568457A/en
Priority to JP7037255A priority patent/JPH07287861A/en
Publication of KR950025650A publication Critical patent/KR950025650A/en
Application granted granted Critical
Publication of KR970000645B1 publication Critical patent/KR970000645B1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor
    • G11B7/131Arrangement of detectors in a multiple array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10541Heads for reproducing
    • G11B11/10543Heads for reproducing using optical beam of radiation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0943Methods and circuits for performing mathematical operations on individual detector segment outputs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1356Double or multiple prisms, i.e. having two or more prisms in cooperation

Abstract

The optical pick up system is comprised of a beam generating from a semiconductor laser(1) being irradiated in parallel with an active layer xy-plane of the semiconductor laser(1) so that the beam get to be P-polarized when being irradiated at PBS(polarized beam splitter)(4); a hologram(12) being comprised of a couple of H1, H2, semicircle-type holograms; 6-division optical detector(11) determining position of the hologram(12) for a couple of a semicircle-type beam connected together by a couple of the holograms to maintain a predetermined interval each other; the interval between a couple of the semicircle beams on the 6-division optical detector(11) being equal to line width for 6-division.

Description

광픽업 시스템Optical pickup system

제1도는 종래 광픽업 시스템의 구성도.1 is a block diagram of a conventional optical pickup system.

제2도는 제1도의 광픽업 시스템을 구상하는 8분할 광탐지기의 상세도.FIG. 2 is a detailed view of an eight-segment photodetector that envisions the optical pickup system of FIG.

제3도는 제1도를 설명하기 위한 디스크 상에서의 3-빔의 집속 형태도.FIG. 3 is a converging form of a three beam on a disk to illustrate FIG.

제4도는 제1도를 설명하기 위한 개선된 Wollastone프리즘에 의한 S파 P파의 분리도.4 is a diagram showing the separation of S-wave P waves by an improved Wollastone prism for explaining FIG.

제5도는 제3도의 8분할 광탐지기에 집속되는 5-빔의 형태도.5 is a form of a five-beam focused on the eight-segment photodetector of FIG.

제6도는 제1도의 광픽업 시스템에서 디스크와 대물렌즈 간격이 변화함에 따라 광탐지기상에서 변화되는 빔의 접속도로서, (a)는 초점 에러가 없을 경우의 빔의 집속도. (b)와 (c)는 초점 에러가 발생한 경우의 빔 집속도.6 is a connection diagram of a beam that is changed on a light detector as a disc and an objective lens distance change in the optical pickup system of FIG. 1, and (a) is a beam focusing speed when there is no focus error. (b) and (c) are beam focusing speeds when a focus error occurs.

제7도는 본 발명 광픽업 시스템의 구성도.7 is a block diagram of the optical pickup system of the present invention.

제8도는 본 발명 광픽업 시스템을 구성하는 홀로그램 모듈의 구성도.8 is a block diagram of a hologram module constituting the optical pickup system of the present invention.

제9도는 본 발명 광픽업 시스템을 설명하기 위한 홀로그램에 의한 비점수차의 설명도.9 is an explanatory diagram of astigmatism by holograms for explaining the optical pickup system of the present invention.

제10도는 본 발명 광픽업 시스템을 설명하기 위한 홀로그램에 의한 레이저 빔 회절의 설명도.10 is an explanatory diagram of laser beam diffraction by holograms for explaining the optical pickup system of the present invention.

제11도는 본 발명 광픽업 시스템에서 대물렌즈와 디스크간의 간격변화에 따른 서어보용 광탐지기상에서의 레이저 빔의 집속도로서, (a)는 초점 에러가 발생하지 않을 경우의 빔 집속도. (b)는 디스크와 대물렌즈간의 간격이 가까워질 경우의 빔 집속도. (c)는 디스크와 대물렌즈간의 간격이 멀어질 경우의 빔 집속도.11 is a focusing speed of a laser beam on a servo optical detector according to a change in the distance between an objective lens and a disk in the optical pickup system of the present invention, and (a) is a beam focusing speed when no focus error occurs. (b) is the beam focusing speed when the distance between the disk and the objective lens is close. (c) is the beam focusing speed when the distance between the disk and the objective lens is increased.

제12도는 본 발명 광픽업 시스템을 구성하는 Wollastone프리즘에 의한 S파와 P파의 분리도.12 is a diagram illustrating separation of S and P waves by Wollastone prism constituting the optical pickup system of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 반도체 레이저 2 : 3-빔용 회절격자DESCRIPTION OF SYMBOLS 1 Semiconductor laser 2: 3-beam diffraction grating

3 : 시준렌즈 4 : 편광빔 분할기3: collimating lens 4: polarizing beam splitter

5 : 반사거울 6 : 대물렌즈5: reflective mirror 6: objective lens

7 : 개선된 Wollastone프리즘 8 : 결상렌즈7: improved Wollastone prism 8: imaging lens

9 : 오목렌즈 10 : 8분할 광탐지기9: concave lens 10: 8 split photodetector

11 : 6분할 광탐지기 12 : 2분할 홀로그램11: 6 split photodetector 12: 2 split hologram

13 : 모듈 14 : 집속렌즈13 module 14 focusing lens

15 : 2분할 광탐지기 16 : 엑추에이터15: two-part photodetector 16: actuator

17 : Wollastone프리즘17: Wollastone Prism

본 발명은 광픽업 시스템에 관한 것으로 종래 광픽업 시스템의 복잡한 구조로 인한 부품수의 증가와 무게증가로 인한 독취속도 저하 및 제조원가상승등의 문제를 해결할 수 있는 광픽업 시스템을 제공하기 위한 것이다.The present invention relates to an optical pickup system, and to provide an optical pickup system capable of solving problems such as a decrease in a reading speed and a manufacturing cost increase due to an increase in the number of parts and a weight increase due to a complicated structure of a conventional optical pickup system.

종래의 광픽업 장치는 첨부한 도면 제1도와 같이 광원으로 사용하는 반도체 레이저(1)와, 광디스크의 트랙킹 에러(traking error) 검출용 보조빔(sub beam)을 만들어 주는 회절격자(2)와, 상기 회절격자를 통과한 빔을 평행광으로 만들어 주는 시준렌즈(collimator lens)(3)와, S-편광된 빔을 100% 반사시키고 이와 수직한 방향으로 편광된 P-편광된 빔을 각각 50%씩 반사 및 투과시키는 편광빔 분할기(polarizing beam splitter : 이하 PBS로 약칭, 4)와 상기 PBS를 통과한 빔을 디스크 방향으로 꺽어주는 반사거울(5)과, 상기 반사거울에 의해 디스크 상에서 반사된 평행광을 집속시키는 대물렌즈(6)의 순으로 반도체 레이저로 부터 발산한 빔이 진행하며,디스크에 의해 반사된 빔은 대물렌즈를 거쳐 다시 평행광으로 되어 상기 반사거울(5), PBS(4)를 거친 후, S파, P파 그리고 S파와 P파가 섞인 3개의 빔으로 입사되는 빔을 분리하는 개선된 Wollastone프리즘(7)에 입사되고, 상기 개선된 Wollastone프리즘에 의해 분리된 3개의 빔은 결상렌즈(8)를 통과한 후 초점 에러(focus error) 검출용 원환(圓環)형 표면(toric surface)을 가지는 오목렌즈(9)에 의해 8분할로 구성된 광탐지기(photodetectors : 10)에 결상되도록 구성된다.The conventional optical pickup apparatus includes a semiconductor laser 1 used as a light source as shown in FIG. 1, a diffraction grating 2 for making a sub beam for tracking error of an optical disc, A collimator lens 3 for converting the beam passing through the diffraction grating into parallel light, and a 50% reflectance of the S-polarized beam and a P-polarized beam polarized in a direction perpendicular thereto. Polarizing beam splitter (4), which reflects and transmits, and a reflective mirror (5) for bending a beam passing through the PBS in a direction of a disk, and parallel reflected on the disk by the reflective mirror. The beam emitted from the semiconductor laser proceeds in the order of the objective lens 6 for focusing the light, and the beam reflected by the disk is converted into parallel light again through the objective lens, so that the reflective mirror 5 and PBS 4 After passing through, S wave, P wave and S wave and P wave An incident light beam is incident on an improved Wollastone prism 7 that separates the incident beam into three beams, which are separated by the improved Wollastone prism, after passing through the imaging lens 8 and then focusing on a focus error. By the concave lens 9 having a toric surface for detection, it is configured to form an image in photodetectors 10 composed of eight divisions.

상기와 같이 구성된 종래 광픽업 장치의 동작을 첨부한 도면 제1도 내지 제6도를 참조하여 설명하면 다음과 같다.The operation of the conventional optical pickup device configured as described above will be described with reference to FIGS. 1 to 6.

반도체 레이저에서 발산하는 레이저 빔은 회절격자(2)에 의해 주빔(main beam)과 두개의 보조빔(sub beam)으로 회절되고 이 3개의 빔은 시준렌즈(collimator lens:3)에 의해 평행광으로 되어 PBS(4)에 입사된다.The laser beam emitted from the semiconductor laser is diffracted by the diffraction grating 2 into a main beam and two sub beams, and these three beams are converted into parallel light by a collimator lens 3. And enters the PBS 4.

상기 PBS를 투과한 3빔은 반사거울(5)에 의해 디스크쪽으로 반사되어 대물렌즈(6)에 의해 제3도와 같이 디스크 상에 집속되어 주빔(main beam)은 정보 독취 및 초점 에러검출에 사용되고 두개의 보조빔은 트랙킹 에러(tracking error)를 검지하는데 사용된다.The three beams passing through the PBS are reflected by the reflective mirror 5 toward the disk and focused on the disk by the objective lens 6 as shown in FIG. 3 so that the main beam is used for information reading and focus error detection. The auxiliary beam of is used to detect a tracking error.

이 3개의 빔은 디스크에 기록된 정보(pit정보나 자화방향에 의한 kerr rotation) 및 트랙킹 에러 검지에 필요한 정보를 가지고 디스크 상에서 반사되어 상기 에 언급한 바와 같이 대물렌즈(6), 반사거울(5), 그리고 PBS(4)를 거쳐 개선된 Wollastone프리즘에 입사된다.These three beams are reflected on the disk with information recorded on the disk (pit information or kerr rotation by the magnetization direction) and information necessary for tracking error detection, and as described above, the objective lens 6 and the reflecting mirror 5 And then into the improved Wollastone prism via the PBS (4).

이 입사빔은 상기 개선된 Wollastone프리즘을 통과하면서 주빔은 편광에 따라 다시 S파, P파, S+P파의 3개의 빔으로 나뉘어지게 되어 제4도에 표시한 것처럼 총 5개의 빔이 결상렌즈(8)에 입사되어, 상기 결상렌즈로부터 나오는 빔들의 벌어진 각도를 증가시키는 동시에 초점에러 검지를 위해 주빔에 비점수차(astigmatism)를 발생시키는 원환형 표면을 가지는 오목렌즈(9)에 의해 각 5개의 빔이 제5도와 같이 8분할 광탐지기(photodectors : 10)에 집속된다.The incident beam passes through the improved Wollastone prism and the main beam is divided into three beams of S-wave, P-wave, and S + P-wave according to the polarization, so that a total of five beams are formed as shown in FIG. Each of the five concave lenses 9 having an annular surface which is incident on (8) and increases the flared angle of the beams exiting the imaging lens and at the same time generates astigmatism in the main beam for focus error detection. The beam is focused on 8-segment photodectors 10 as shown in FIG.

보조빔에 의한 트랙킹 에러검지는 3빔 검지방법에 의해 8분할 광탐지기에서 e와 f의 신호차 즉, 하기의(1)식과 같이 트랙킹 에러신호(TES)로 검지하며, 초점에러 검지는 제6도에서와 같이 광디스크와 대물렌즈간의 간격이 변화함에 따라 비점수차에 의한 8분할 광탐지기 a, b, c, d에서의 빔의 변화에 의한 신호차 즉, 하기식(2)의 초점에러신호(FES)로 검지한다.The tracking error detection by the auxiliary beam is detected by the signal difference between e and f, i.e., the tracking error signal TES as shown in Equation 1 below, in the eight-segment photodetector by the three-beam detection method. As shown in the figure, as the distance between the optical disk and the objective lens changes, the signal difference due to the beam change in the eight-segmented light detectors a, b, c, and d due to astigmatism, that is, the focus error signal of Equation (2) FES).

TES(Tracking Error Signal)=Se-SfTES (Tracking Error Signal) = Se-Sf

(Se,Sf는 각각 8분할 광탐지기의 검지신호)(Se and Sf are detection signals of 8-segment photodetector)

FES(Focus Error Signal)=(Sa+Sc)-(Sb+Sd)FES (Focus Error Signal) = (Sa + Sc)-(Sb + Sd)

그러므로 트랙킹 초점에러가 발생하지 않으면 TES=0, FES=0이 된다. 디스크상에 기록된 정보 독취는 광자기 신호 (자화방향에 의한 kerr rotation)인 경우에는 S파와 P파의 신호차인 8분할 광탐지기 i.j의 신호차 즉, 하기의 (3)식에 의해 검지된다.Therefore, if no tracking focus error occurs, TES = 0, FES = 0. In the case of the magneto-optical signal (kerr rotation in the magnetization direction), the information read on the disk is detected by the signal difference of the eight-segment photodetector i.j, that is, the signal difference between the S wave and the P wave, that is, the following equation (3).

광정보 신호(광자기 신호)=Si-SjOptical information signal (photomagnetic signal) = Si-Sj

또한 컴팩트 디스크에 기록된 요철 형상의 pit신호인 경우에는 제(4)식과 같이 8분할 광탐지기 i와 j의 광량변화에 의해 검지된다.In the case of the uneven-shaped pit signal recorded on the compact disc, as shown in Equation (4), it is detected by the light quantity change of the eight-segment light detectors i and j.

광정보 신호(pit 신호)=Si+SjOptical information signal (pit signal) = Si + Sj

그러나, 이러한 종래 광픽업 시스템은 3-빔 법에 의해 도킹에러를 검지하기 위해 회절격자를 사용하고, 포커스 에러를 검지하기 위하여 비점수차법을 사용하며, 광자기 디스크상에 기록된 정보를 읽기 위해 제작이 어렵고 가격이 비싼 원환형 표면을 가지는 오목렌즈 및 제작이 어려운 개선된 Wollaston프리즘을 사용하였다.However, such a conventional optical pickup system uses a diffraction grating to detect a docking error by a 3-beam method, an astigmatism method to detect a focus error, and reads information recorded on a magneto-optical disk. A concave lens with a toroidal surface that is difficult and expensive to manufacture and an improved Wollaston prism that is difficult to fabricate were used.

종래의 이러한 광학계 구조는 광학부품 수를 증가시켜 광픽업시스템 자체의 무게증가에 의한 독취 속도의 저하 뿐만 아니라 제조 원가를 상승시키는 단점을 내포하고 있다.The conventional optical system has a disadvantage of increasing the cost of manufacturing as well as the reduction of the reading speed due to the increase in the weight of the optical pickup system itself by increasing the number of optical components.

따라서 본 발명의 목적은 상기의 문제점을 해결하기 위한 것이다.Accordingly, an object of the present invention is to solve the above problems.

이와 같은 본 발명의 목적은 반도체 레이저로부터 발생한 광을 평행광으로 변환하는 시준렌즈와, 상기 반도체 레이저로부터 발생된 빔 및 광디스크 상에서 반사된 빔의 평행광 중 S편광빔은 전반사, P편광된 빔의 일부는 반사하고 일부는 통과시키는 편광빔 분할기(PBS)와, 상기 PBS와 디스크 사이에 위치하여 상기 PBS를 통과한 빔은 디스크 상으로, 디스크에서 반사된 빔은 다시 PBS로 경로를 변환하는 반사거울과, 상기 반사거울과 디스크 사이에 위치하여 반사거울로부터 반사된 빔을 디스크로 접속시키고 동시에 디스크에서 반사된 빔은 평행광으로 변환하는 대물렌즈와, 상기 반도체 레이저와 시준렌즈 사이에 위치하여 디스크상에서 반사되어 상기 PBS를 통과한 P편광된 빔을 회절 및 집속시키고 비점수차를 일으키는 홀로그램과, 상기 홀로그램에 의해 집속되는 빔을 검지하여 에러신호를 검출해 내는 6분할 광탐지기와, 디스크에서 반사된 빔이 PBS를 거쳐 분활된 S편광빔과 P편광빔 일부를 검지하여 기록된 정보신호를 검출하는 2분할 광탐지기와, 상기 PBS와 2분할 광탐지기 사이에 위치하여 P파와 S파를 분리하는 Wollaston프리즘과, 상기 분리된 P파와 S파를 2분할 광탐지기에 각각 접속시키는 집속렌즈로 구성하여, 특히, 광디스크면을 x,y평면, 상기 광디스크 상부 수직방향을 Z축이라 정의할 때, 상기 반도체 레이저로부터 발상하는 빔이 PBS에 입사된 때 편광이 P-편광이 되도록 반도체 레이저의 활성층이 xy-평면에 평행하도록 하고, 상기 홀로그램은 반원형인 두개의 홀로그램, H1, H2로 구성하며, 상기 6분할 광탐지기는 두 개의 홀로그램에 의하여 접속된 두 반원형 빔이 서로 일정 간격을 유지하도록 홀로그램의 위치를 결정하고, 상기 6분할 광탐지기상의 두 반원형 빔간의 거리는 6분할용 선폭과 같게 구성하므로서 달성될 수 있다.The object of the present invention is the collimation lens for converting the light generated from the semiconductor laser into parallel light, and the S-polarized beam of the parallel light of the beam generated from the semiconductor laser and the beam reflected on the optical disk is the total reflection, P-polarized beam of A polarizing beam splitter (PBS) that partially reflects and some passes, and a reflective mirror that is located between the PBS and the disk and that passes through the PBS onto the disk, and the beam reflected from the disk converts the path back to the PBS And an objective lens positioned between the reflective mirror and the disk to connect the beam reflected from the reflective mirror to the disk, and at the same time converting the beam reflected from the disk into parallel light, and positioned between the semiconductor laser and the collimating lens on the disk. A hologram that reflects and diffracts and focuses a P-polarized beam that has passed through the PBS and causes astigmatism, and by the hologram 6-segmented light detector for detecting focused signal and detecting error signal, and 2-segmented light for detecting information signal recorded by detecting part of S-polarized beam and P-polarized beam whose beam reflected from disk is split through PBS In particular, the optical disc comprises a Wollaston prism positioned between the PBS and the two-segment photodetector to separate the P and S waves, and a focusing lens for connecting the separated P and S waves to the two-segment photodetector. When the plane is defined as the x, y plane and the vertical direction of the optical disc as the Z axis, the active layer of the semiconductor laser is parallel to the xy-plane such that the polarization becomes P-polarized when the beam generated from the semiconductor laser is incident on the PBS. The hologram is composed of two semi-circular holograms, H 1 and H 2 , and the six-segment photodetector has two holes so that the two semi-circular beams connected by the two holograms maintain a constant distance from each other. By determining the position of the program, the distance between the two semi-circular beams on the six-segment photodetector can be achieved by configuring the six-segment line width.

본 발명은 제7도와 같이 광원으로 반도체 레이저(1), 홀로그램(12), 반도체 레이저로부터 발하하는 빔을 평행광으로 만드는 시준렌즈(3)와, S-편광된 빔은 100% 반사하고 P-편광된 빔은 50% 통과, 50%는 반사하는 편광빔 분할기(polarizing beam splitter : PBS, 4)와, 상기 PBS를 통과한 빔을 디스크 방향으로 꺽어주는 반사거울(5)과, 그리고 디스크상에 반사거울에 의해 반사된 레이저 빔이 진행하며, 디스크에 의해 반사된 빔은 대물렌즈(6)를 거쳐 다시 평행광으로 되어 반사거울(5)을 거친 후 PBS(4)에 입사되고, 상기 PBS에 입사된 빔에서 S-편광된 빔 100%와 P-편광된 빔의 50%는 Wollaston프리즘(17)을 향해 반사되어 상기 Wollaston프리즘을 통과한 후 집속렌즈(14)에 의해 2분할된 광탐지기(12)상에 집속되고 P-편광된 빔 50%는 PBS(4)를 그대로 통과한후 시준렌즈(3)에 의해 집속되고 집속되는 빔이 홀로그램(12)을 통과하면서 6분할 광탐지기(11)상에서 회절, 접속되도록 광학계를 구성하였다.According to the seventh embodiment of the present invention, the semiconductor laser 1, the hologram 12, the collimating lens 3 which makes the beam emitted from the semiconductor laser into parallel light, and the S-polarized beam reflect 100% as P7. A polarizing beam splitter (PBS, 4) for passing 50% of the polarized beam and reflecting 50%, a reflecting mirror (5) for bending the beam passing through the PBS in the direction of the disc, and on the disc The laser beam reflected by the reflecting mirror proceeds, and the beam reflected by the disk becomes parallel light again through the objective lens 6, passes through the reflecting mirror 5, and then enters the PBS 4. In the incident beam, 100% of the S-polarized beam and 50% of the P-polarized beam are reflected toward the Wollaston prism 17, passed through the Wollaston prism, and then split into two by the focusing lens 14 50% of the focused and P-polarized beams on (12) pass through the PBS (4) as it is and then focused by the collimator lens (3) Beams are formed the diffraction optical system so as to be connected on the six-segment photodetector (11) while passing through the hologram 12 to be.

또한 반도체 레이저로부터 발산하는 빔이 상기 PBS에 입사될 때 편광이 P-편광이 되도록 반도체 레이저의 활성층이 xy-평면에 평행하도록 구성한다.In addition, the active layer of the semiconductor laser is configured to be parallel to the xy-plane such that the polarization becomes P-polarized light when a beam diverging from the semiconductor laser is incident on the PBS.

상기 홀로그램(2)은 제8도, 제9도 그리고 제10도와 같이 두개의 반원형 홀로그램 (H1,H2)으로 구성하고, 두 홀로그램의 참조광의 위치는 레이저 다이오드의 발광점으로 하며, 홀로그램 H1, H2의 물체광의 위치는 제9도와 같이 Y.Z방향의 집속점이 각각 F1, F2가 되도록 하여 두 집속점 F1과 F2 사이에 원형으로 빔이 형성되는 위치 Q1에 홀로그램 H1에 의한 빔이 집속되고 Q2 위치에 홀로그램 H2에 의한 빔이 집속되도록 한다. 또한 홀로그램 H1, H2에 의해 집속되는 빔은 제8, 제9, 10도에서와 같이 6-분할 광탐지기(11)상에서 거리 d만큼 떨어지게 하며 이 거리(d)는 6-분할 광탐지기의 PD1, PD2, PD6와 PD3, PD4, PD5를 경계짓는 분할선의 선폭과 같게 한다.The hologram 2 is composed of two semicircular holograms H1 and H2 as shown in FIGS. 8, 9 and 10, and the positions of the reference lights of the two holograms are the light emitting points of the laser diodes, and the holograms H1 and H2. As shown in FIG. 9, the beam of the hologram H1 is focused at the position Q1 where the beam is circularly formed between the two focal points F1 and F2 such that the focal point in the YZ direction is F1 and F2, respectively, as shown in FIG. The beam by H2 is focused. Also, the beams focused by the holograms H1, H2 are separated by a distance d on the six-segmented light detector 11 as in the eighth, ninth, and tenth degrees, and this distance d is the PD1, It is equal to the line width of the dividing line that borders PD2, PD6 and PD3, PD4, and PD5.

상기 언급된 6분할 광탐지기는 제11도와 같이 정방형의 크기를 대각선 방향으로 4등분 Z방향으로 2등분하여 6분할로 만들어 Wollaston프리즘(17)은 제12도와 같이 S파와 P파가 혼합된 빔이 입사될 때 두파가 일정 각도를 유지하면서 분리되도록 구성한다.The above-mentioned six-segment photodetector divides the size of the square into two equal parts by dividing the square in four directions in the diagonal direction as shown in FIG. 11 to make the Wollaston prism 17 a beam mixed with S and P waves as shown in FIG. When incident, two waves are separated while maintaining an angle.

반도체 레이저(1)로부터 발산하는 레이저 빔은 홀로그램(12) 통과시 0차, +1-1차 회절빔이 발생하는데 단지 0차 회절빔 만이 홀로그램을 통과하게 되고, 이 0차 회절빔은 시준렌즈(3)에 의해 평행광으로 되어 PBS에 의해 50%만이 투과된 후 반사거울(5)에 의해 진행방향이 바뀌어 대물렌즈(6)에 의해 디스크 상에 집속된다. 디스크 상에 집속된 빔은 디스크 상에서 반사되어 대물렌즈(6)에 의해 다시 평행광으로 되고 이 평행광은 반사거울(5)을 거친 후 PBS(4)에 입사되는데 만약 디스크에 정보가 기록되어 있다면 PBS에 입사되는 평행광에 S-파 성분이 포함되어 있고 디스크에 정보가 기록되지 않은 상태이면 S-파 성분이 존재하지 않게 된다.The laser beam diverging from the semiconductor laser 1 generates the 0th and + 1-1th diffraction beams when passing through the hologram 12. Only the 0th diffraction beam passes through the hologram, and the 0th diffraction beam is a collimated lens. The light is converted into parallel light by (3), and only 50% is transmitted by the PBS. Then, the direction of travel is changed by the reflecting mirror 5 and focused on the disk by the objective lens 6. The beam focused on the disk is reflected on the disk and becomes parallel light again by the objective lens 6, and the parallel light passes through the reflecting mirror 5 and then enters the PBS 4, if information is recorded on the disk. If the S-wave component is included in the parallel light incident on the PBS and no information is recorded on the disc, the S-wave component does not exist.

그러므로 만약 디스크에 정보가 기록된 상태이면 PBS에 입사되는 평행광에는 S-파 성분이 포함되어 있으므로 S-파는 PBS에서 100% 반사되고, P-파는 50%는 통과하고, 50%는 반사되어 반사된 100%의 S파 50%의 P파는 Wollaston프리즘(17)쪽으로 혼합되어 입사되며, 시준렌즈(3)쪽으로는 50% 통과한 P-파 만이 입사하게 된다.Therefore, if information is recorded on the disk, the parallel light incident on the PBS contains S-wave components, so that the S-waves are reflected by 100% in the PBS, P-waves are passed by 50%, and 50% are reflected and reflected. 100% S-wave and 50% P-wave are mixed and incident toward the Wollaston prism (17), and only P-wave passing by 50% is incident to the collimator lens (3).

상기 Wollaston(17)으로 입사된 S,P파의 혼합파는 Wollaston prism에 의해 제12도와 같이 일정할 각도를 가지고 분리되고 접속렌즈(14)에 의해 2분할 광탐지기(12)상에 접속되어 디스크 상에 기록된 정보를 읽게되는데 디스크 상에 기록된 정보가 광자기 신호인 경우(자화방향에 의한 kerr rotation)에는 2분할 광탐지기(12)의 PD7와 PD8의 신호차 즉, 하기의 (5)식에The mixed wave of the S and P waves incident on the Wollaston 17 is separated by a Wollaston prism at a constant angle as shown in FIG. 12 and connected to the two-segment photodetector 12 by the connection lens 14 to form a disk. If the information recorded on the disk is a magneto-optical signal (kerr rotation according to the magnetization direction), the signal difference between PD7 and PD8 of the two-segment photodetector 12, that is, the following equation (5) on

광정보 신호(광자기 신호)=S7-S8(Si : PDi의 전기적 신호)Optical information signal (opto-magnetic signal) = S7-S8 (Si: electrical signal of PDi)

의해 검지되며, 컴팩트 디스크에 기록된 요철 형상의 광정보신호 신호인 경우에는Detected in the case of an uneven optical information signal signal recorded on a compact disc,

광정보 신호(pit신호)=S7+S8Optical information signal (pit signal) = S7 + S8

제6식과 같이 광량 변화에 의해 검지된다. 한편, PBS를 통과한 50%의 P-파는 초점에러와 트랙킹 에러를 검지하는데 사용한다. 이를 보다 상세히 설명하면 PBS를 통과한 후 P-파는 시준렌즈(3)에 의해 반도체 레이저 발광면 상에 집속되고, 이 집속되는 빔이 홀로그램의 참조광 역할을 하여 제9도에서와 같이 홀로그램 H1, H2의 물체광의 위치인 Y, Z방향의 집속점 F1, F2에 집속하는 빔이 재생된다. 이 두 접속점 F1, F2사이에서 원형으로 빔이 형성되는 Q1, Q2위치에 6분할 광탐지기(11)를 설치하면 재생되는 빔을 제8, 9, 10도에 표시한 것처럼 6분할 광탐지기가 검지하므로써 초점에러와 트랙킹 에러 검지에 필요한 신호가 발생한다. 즉 홀로그램에 상기와 같이 시준렌즈(3)에 의해 빔이 집속되면, 그 집속되는 빔은 홀로그램 H1에 의해 6분할 광탐지기(11)의 -Y방향에 있는 Q1에 회절, 집속되고, H2에 의해 6분할 광탐지기의 +Y방향에 있는 Q2점에 각각 회절 집속되어 초점에러가 없는 경우에는 제11도 (a)와 같이 6분할 광탐지시상에 빔이 원형으로 형성되어 PD1, PD4, (PD2+PD3), (PD5+PD6)에 입사되는 광량이 같게 되고 디스크와 대물렌즈가 가까워지게 되면 제11도의 (b)와 같이 빔이 Z방향으로 집속되면서 Y-방향으로 길죽하게 빔의 모양이 바뀌어 PD1과 PD4에 입사되는 광량이 (PD2+PD3)와 (PD5+PD6)에 입사되는 광량보다 커지게 되고 반대로 (c)와 같이 디스크와 대물렌즈의 간격이 멀어지면 빔은 Y-방향으로 집속되어 Z-방향으로 길죽하게 빔의 모양이 바뀌어 (PD2+PD3)와 (PD5+PD6)에 입사되는 광량이 PD1과 PD4에 입사하는 광량보다 크게 된다.It is detected by the light quantity change as in the sixth formula. On the other hand, 50% of P-waves passing through PBS are used to detect focus errors and tracking errors. In more detail, after passing through the PBS, the P-wave is focused on the semiconductor laser emitting surface by the collimating lens 3, and the focused beam serves as a reference light of the hologram, and thus the holograms H1 and H2 as shown in FIG. Beams focused at the focal points F1 and F2 in the Y and Z directions, which are positions of the object light, are reproduced. When the six-segment photodetector 11 is installed at the positions Q1 and Q2 in which the beam is formed in a circle between these two connection points F1 and F2, the six-segment photodetector detects the reproduced beam as shown in the eighth, nineth, and tenth degrees. This generates the signals necessary to detect focus errors and tracking errors. That is, when the beam is focused on the hologram by the collimating lens 3 as described above, the focused beam is diffracted and focused on Q1 in the -Y direction of the six-segment photodetector 11 by the hologram H1, and by H2. When there is no focus error by diffraction focusing at each Q2 point in the + Y direction of the 6-segment photodetector, as shown in FIG. 11 (a), a beam is formed in a circular shape at the time of 6-segment photodetection, so that PD1, PD4, (PD2 + PD3), when the amount of light incident on (PD5 + PD6) becomes the same and the disk and the objective lens become closer, the beam is focused in the Z direction as shown in (b) of FIG. And the amount of light incident on PD4 becomes larger than the amount of light incident on (PD2 + PD3) and (PD5 + PD6), and conversely, when the distance between the disk and the objective lens is far away as shown in (c), the beam is focused in the Y-direction and Z The beam shape changes in the-direction so that the amount of light incident on (PD2 + PD3) and (PD5 + PD6) enters PD1 and PD4. It is larger than the amount of light.

그러므로, 초점에러 신호(FES)를 하기식(7)과 같이 구성하게 되면Therefore, if the focal error signal FES is constructed as

Focus Error Signal(FES)=(S1+S4)-(S2+S3+S5+S5)Focus Error Signal (FES) = (S1 + S4)-(S2 + S3 + S5 + S5)

초점에러가 발생하지 않을 경우에는 FES=0가 되고 광디스크와 대물렌즈가 가까워져 발생하는 초점에러는 FES0이 되며, 광디스크와 대물렌즈가 멀어져 발생하는 초점에러는 FES0이 되므로 FES신호에 따라 엑추에이터(actuator)(12)로 대물렌즈를 상하로 움직여 주므로써 초점에러를 보정할 수 있다.If no focus error occurs, FES = 0 and the focus error caused by the optical disk and the objective lens is closer to FES0, and the focus error caused by the optical disk and the objective lens farther from the lens becomes FES0.According to the FES signal, the actuator (actuator) By moving the objective lens up and down with (12), the focus error can be corrected.

본 발명에 의한 트랙킹 에러 보정은 2분할 홀로그램의 경계선이 디스크 트랙의 접선 방향과 같으므로 디스크 안쪽으로 위치해 있는 홀로그램 H1이 디스크 바깥쪽에 위치한 홀로그램 H2보다 더 많은 광량을 받아 결국 PD1, PD2 그리고 PD6가 받는 빔의 세기가 PD3, PD4 그리고 PD5가 바든 빔의 세기보다 커지게 되므로, 하기의 (8)식과 같이 트랙킹 에러 신호체계(TES)를Tracking error correction according to the present invention, since the boundary of the two-segment hologram is the same as the tangential direction of the disc track, the hologram H1 located inside the disc receives more light than the hologram H2 located outside the disc, so that PD1, PD2 and PD6 receive Since the beam intensity becomes greater than the beam intensity of PD3, PD4 and PD5, the tracking error signal system (TES) is expressed as shown in Equation 8 below.

Tracking Error Signal(TES)=(S1+S2+S6)-(S3+S4+S5)Tracking Error Signal (TES) = (S1 + S2 + S6)-(S3 + S4 + S5)

를 구성하면 집속빔이 트랙 안쪽으로 치우쳐 있을 경우에는 TES0이 되고, 빔이 바깥쪽으로 치우쳐져 있으면 반대현상이 일어나 TES0이 되므로 TES신호에 따라 엑추에이터(actuator)(12)로 대물렌즈를 좌우로 움직이어 트랙킹에러를 보정한다. 이와 같이 하여 본 발명에 의한 광픽업 시스템이 트랙킹에러, 초점에러를 보정하고 디스크에 기록된 정보를 읽을 수 있는 것이다.If the focused beam is biased inside the track, it becomes TES0, and if the beam is biased outwards, the opposite phenomenon occurs and becomes TES0. Correct the tracking error. In this way, the optical pickup system according to the present invention can correct tracking errors and focus errors and read information recorded on the disc.

이상에서 설명한 바와 같이 본 발명에 의한 2분할 홀로그램을 사용하여 비점수차법 및 푸시-플(push-pull) 방법을 혼용한 1-beam방식으로 신호를 검지하는 광픽업 시스템은 종래에서 사용하는 2-빔용 회절 격자를 사용하지 않고도 초점 및 트랙킹 에러 신호 검출을 정확하게 할 수 있고, 디스크 상에 기록된 광자기 신호나 광정보(pit) 신호를 검출할 수 있게 하므로 구성을 간략화 할 수 있고 제조원가를 절감할 수 있게 해 주는 효과가 있다As described above, the optical pickup system that detects a signal by using a two-segmented hologram according to the present invention in a one-beam method using astigmatism and a push-pull method is a two-way optical pickup system. It is possible to accurately detect focus and tracking error signals without using a diffraction grating for beams, and to detect magneto-optical or pit signals recorded on a disc, thereby simplifying configuration and reducing manufacturing costs. It is effective to be able to

Claims (5)

반도체 레이저로부터 발생한 광을 평행광으로 변환하는 시준렌즈와, 상기 반도체 레이저로부터 발생된 빔 및 광디스크 상에서 반사된 빔의 평행광 중 S편광빔은 전반사, P편광된 빔의 일부는 반사하고 일부는 통과시키는 편광빔 분할기(PBS)와, 상기 PBS와 디스크 사이에 위치하여 상기 PBS를 통과한 빔은 디스크 상으로, 디스크에서 반사된 빔은 다시 PBS로 경로를 변환하는 반사거울과, 상기 반사거울과 디스크 사이에 위치하여 반사거울로부터 반사된 빔을 디스크로 집속시키고 동시에 디스크에서 반사된 빔은 평행광으로 변환하는 대물렌즈와, 상기 반도체 레이저와 시준렌즈 사이에 위치하여 디스크 상에서 반사되어 상기 PBS를 통과한 P편광된 빔을 회절 및 집속시키고 비점수차를 일으키는 홀로그램과, 상기 홀로그램에 의해 집속되는 빔을 검지하여 에러신호를 검출해 내는 6분할 광탐지기와, 디스크에서 반사된 빔이 PBS를 거쳐 분할된 S편광빔과 P편광빔 일부를 검지하여 기록된 정보신호를 검출하는 2분할 광탐지기와, 상기 PBS와 2분할 광탐지기 사이에 위치하여 P파와 S파를 분리하는 Wollaston프리즘과, 상기 분리된 P파와 S파를 2분할 광탐지기에 각각 집속시키는 집속렌즈로 구성한 것을 특징으로 하는 광픽업 시스템.A collimation lens for converting the light generated from the semiconductor laser into parallel light, and the S-polarized beam reflects a part of the totally reflected light and a part of the P-polarized beam out of the parallel light of the beam generated from the semiconductor laser and the beam reflected on the optical disk. A polarizing beam splitter (PBS), a reflection mirror that is located between the PBS and the disk and passes the beam through the PBS onto the disk, and the beam reflected from the disk converts the path back to the PBS, and the reflection mirror and the disk. An objective lens positioned between the focused mirror and a beam reflected from the reflective mirror to the disk, and at the same time the beam reflected from the disk is converted into parallel light, and positioned between the semiconductor laser and the collimating lens and reflected on the disk to pass through the PBS. A hologram that diffracts and focuses the P-polarized beam and causes astigmatism, and detects a beam focused by the hologram A six-segment photodetector for detecting the LR signal, a two-segment photodetector for detecting a portion of the S-polarized beam and the P-polarized beam whose beams reflected from the disk are split through the PBS, and detecting the recorded information signal; An optical pickup system comprising: a Wollaston prism positioned between two split light detectors to separate P and S waves; and a focused lens for focusing the separated P and S waves onto a two split light detector. 제1항에 있어서, 광디스크면을 x, y평면, 상기 광디스크 상부 수직방향을 Z축이라 정의할 때, 상기 반도체 레이저의 활성층은 레이저로부터 발산하는 빔이 PBS에 입사될 때 편광이 P-편광이 되도록 반도체 레이저의 활성층이 xy-평면에 평행하도록 구성함을 특징으로 하는 광픽업 시스템.The optical layer according to claim 1, wherein when the optical disk plane is defined as x, y planes, and the upper vertical direction of the optical disc as Z-axis, the active layer of the semiconductor laser is characterized in that P-polarized light is generated when a beam emitted from the laser is incident on the PBS. Wherein the active layer of the semiconductor laser is configured to be parallel to the xy-plane. 제1항에 있어서, 상기 홀로그램은 반원형인 두 개의 홀로그램 H1,H2로 구성함을 특징으로 하는 광픽업 시스템.The optical pickup system of claim 1, wherein the hologram comprises two holograms H 1 and H 2 that are semicircular. 제1항에 있어서, 상기 6분할 광탐지기는 두 개의 홀로그램에 의하여 집속된 두 반원형 빔이 서로 일정 간격을 유지하도록 홀로그램의 위치를 결정하는 것을 특징으로 하는 광픽업 시스템.The optical pickup system of claim 1, wherein the six-segment photodetector determines the positions of the holograms so that the two semicircular beams focused by the two holograms maintain a predetermined distance from each other. 제1항에 있어서, 상기 6분할 광탐지기상의 두 반원형 빔간의 거리는 6분할용 선폭과 같게 구성함을 특징으로 하는 광픽업 시스템.The optical pickup system of claim 1, wherein the distance between the two semicircular beams on the six-segment photodetector is equal to the six-segment line width.
KR1019940003608A 1994-02-26 1994-02-26 Optical pick up KR970000645B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1019940003608A KR970000645B1 (en) 1994-02-26 1994-02-26 Optical pick up
EP95301180A EP0669613A1 (en) 1994-02-26 1995-02-23 Optical pickup system
US08/393,838 US5568457A (en) 1994-02-26 1995-02-24 Optical pickup system for reading or writing information on disk using hologram device and wollaston prism
JP7037255A JPH07287861A (en) 1994-02-26 1995-02-24 Optical pickup system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940003608A KR970000645B1 (en) 1994-02-26 1994-02-26 Optical pick up

Publications (2)

Publication Number Publication Date
KR950025650A KR950025650A (en) 1995-09-18
KR970000645B1 true KR970000645B1 (en) 1997-01-16

Family

ID=19377900

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940003608A KR970000645B1 (en) 1994-02-26 1994-02-26 Optical pick up

Country Status (4)

Country Link
US (1) US5568457A (en)
EP (1) EP0669613A1 (en)
JP (1) JPH07287861A (en)
KR (1) KR970000645B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2748905B2 (en) * 1995-09-29 1998-05-13 日本電気株式会社 Optical head device
JP2000311377A (en) * 1999-04-28 2000-11-07 Sharp Corp Optical pickup device
JP2002056561A (en) * 2000-08-10 2002-02-22 Mitsumi Electric Co Ltd Optical pickup device
EP1553570B1 (en) * 2002-10-10 2008-10-08 Matsushita Electric Industrial Co., Ltd. Optical head and optical disk unit
WO2007018561A1 (en) * 2005-07-29 2007-02-15 Mike Joulakian Water purification arrangement
US20090245068A1 (en) * 2008-03-31 2009-10-01 Panasonic Corporation Optical pickup device and optical disc drive
KR102044864B1 (en) * 2012-12-13 2019-12-06 삼성디스플레이 주식회사 Laser patterning examing apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4905216A (en) * 1986-12-04 1990-02-27 Pencom International Corporation Method for constructing an optical head by varying a hologram pattern
NL8802988A (en) * 1988-12-05 1990-07-02 Philips Nv DEVICE FOR SCANNING AN INFORMATION SHEET WITH OPTICAL RADIATION.
EP0390445A3 (en) * 1989-03-27 1992-01-22 Matsushita Electric Industrial Co., Ltd. Optical pickup head
US5050153A (en) * 1989-06-06 1991-09-17 Wai-Hon Lee Semiconductor laser optical head assembly
JP2902415B2 (en) * 1989-09-14 1999-06-07 シャープ株式会社 Optical head
US5446719A (en) * 1992-02-05 1995-08-29 Sharp Kabushiki Kaisha Optical information reproducing apparatus
JPH05282723A (en) * 1992-03-31 1993-10-29 Matsushita Electric Ind Co Ltd Magnetooptic head device
EP0576072B1 (en) * 1992-06-23 1997-12-03 Koninklijke Philips Electronics N.V. Polarization-sensitive beam splitter, method of manufacturing such a beam splitter and magneto-optical scanning device including such a beam splitter
KR950013702B1 (en) * 1993-07-15 1995-11-13 엘지전자주식회사 Optical pick up apparatus of optical disk

Also Published As

Publication number Publication date
KR950025650A (en) 1995-09-18
US5568457A (en) 1996-10-22
JPH07287861A (en) 1995-10-31
EP0669613A1 (en) 1995-08-30

Similar Documents

Publication Publication Date Title
US5115423A (en) Optomagnetic recording/reproducing apparatus
US4935911A (en) Optical head device for recording and reproducing information
JPH0460933A (en) Optical pickup head device
KR970004210B1 (en) Optical pick-up apparatus
KR970000645B1 (en) Optical pick up
KR950013702B1 (en) Optical pick up apparatus of optical disk
US5153860A (en) Optical pickup apparatus for detecting and correcting focusing and tracking errors in detected recorded signals
JP2570563B2 (en) Optical head device
KR980011162A (en) Magneto-optical recording / reproducing apparatus
JP3484767B2 (en) Optical head device, optical information device, and hybrid element
JPH0750532B2 (en) Optical head device
JPH07161060A (en) Optical pickup device
JPH06168462A (en) Optical head
US6094412A (en) Optical information storage unit
JP3213650B2 (en) Optical pickup
JPH0327978B2 (en)
KR960000270B1 (en) Optical pick-up apparatus
JP2683004B2 (en) Magneto-optical recording / reproducing device
JPS63311631A (en) Optical head device
JP2790264B2 (en) Optical pickup
JP2578203B2 (en) Light head
JPH0191344A (en) Pickup for magneto-optical recording medium
JPS63263635A (en) Optical pickup device
JPH0212620A (en) Optical head device
JPH10134396A (en) Optical head

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20021227

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee