JPH0353689B2 - - Google Patents

Info

Publication number
JPH0353689B2
JPH0353689B2 JP56028783A JP2878381A JPH0353689B2 JP H0353689 B2 JPH0353689 B2 JP H0353689B2 JP 56028783 A JP56028783 A JP 56028783A JP 2878381 A JP2878381 A JP 2878381A JP H0353689 B2 JPH0353689 B2 JP H0353689B2
Authority
JP
Japan
Prior art keywords
magnetic
layer
powder
saturation magnetization
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56028783A
Other languages
Japanese (ja)
Other versions
JPS57143734A (en
Inventor
Masahiro Amamya
Akira Myake
Hiroshi Zaitsu
Yoshinori Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP56028783A priority Critical patent/JPS57143734A/en
Publication of JPS57143734A publication Critical patent/JPS57143734A/en
Publication of JPH0353689B2 publication Critical patent/JPH0353689B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/716Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by two or more magnetic layers

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は磁性層を2重層した磁気記録媒体に
関し、その目的とするところは耐食性および表面
平滑性に優れた前記の磁気記録媒体を提供するこ
とにある。 磁性層を2重層した磁気記録媒体においては、
下層の保磁力を低くし、上層の保磁力を高くすれ
ば、低周波および高周波帯域における感度と周波
数特性を向上できることが知られており、この種
の磁気記録媒体は通常、ポリエステルフイルムな
どの基体表面にまず比較的保持力の低い酸化物磁
性粉末を含む磁性塗料を塗布、乾燥して下層の磁
性層を形成し、さらにこの下層の磁性層上に飽和
磁化量が大きくて比較的保磁力が高い金属磁性粉
末を含む磁性塗料を塗布、乾燥してつくられてい
る。 ところが、上層の磁性層で使用する金属磁性粉
末は、飽和磁化量が大きいほど良好な磁気特性が
得られる反面、空気中の酸素等によつて酸化され
易く、また非常に大きな磁気モーメントを有し粉
末粒子間に大きな相互作用が生じて粒子凝集を起
こし易いため、この種の飽和磁化量の大きな金属
磁性粉末を含む上層の磁性層は、耐食性に欠け、
また金属磁性粉末が凝集してバインダー中での分
散性が劣化した結果、表面平滑性も悪くなるなど
の難点がある。 この発明者らはかかる現状に鑑み、特に上層の
磁性層で使用する金属磁性粉末の飽和磁化量と耐
食性および表面平滑性との関係に着目し、この関
係を調べるため飽和磁化量が種々に異なる金属磁
性粉末を用いて多数の2重層磁気テープをつく
り、各磁気テープについて耐食性のめやすとなる
残留磁束密度の低下率と表面粗さとを測定して
種々検討を行なつた。その結果これらの関係は第
1図および第2図で示されるようなグラフで表わ
され、飽和磁化量が140emu/g以上になると残
留磁束密度の低下率および表面粗さが急激に大き
くなるが、140emu/g以下であれば残留磁束密
度の低下率および表面粗さとも充分に小さくなつ
て磁性層の耐食性および表面平滑性が充分に改善
されることを見いだし、この発明をなすに至つ
た。 この発明において、上層の磁性層で使用される
金属磁性粉末は、飽和磁化量が140emu/gより
大きくなると空気中の酸素等によつて酸化され易
く、また粉末粒子間の相互作用が大きくなつて粒
子凝集を起こしバインダー中での分散性が劣化し
て表面平滑性も良好にならないため、飽和磁化量
が140emu/g以下のものが好ましく使用される。
このような金属磁性粉末としては、鉄、コバル
ト、ニツケル等の単独ないしは合金粉末や鉄に、
Al、Cr、Mn、Si、Znなどの元素を含有させた金
属磁性粉末等があげられ、保磁力は600〜1200エ
ルステツドの範囲のものが好ましく使用される。 また、下層の磁性層で使用される酸化物磁性粉
末としては、γ−Fe2O3粉末、Fe3O4粉末、Co含
有γ−Fe2O3粉末、Co含有Fe3O4粉末およびCrO2
粉末などが好適なものとして使用され、保磁力は
400〜600エルステツドの範囲のものが好ましく使
用される。 上下両磁性層の厚みは、上層の磁性層厚対下層
の磁性層厚の比にして1対1〜1対20の範囲内に
するのが好ましく、下層の磁性層厚に比して上層
の磁性層厚が厚すぎると低周波数領域の特性を充
分に改善できず、薄すぎると耐食性および表面平
滑性を充分に改善することができない。 上下両磁性層の形成は、常法に準じて行なえば
よく、たとえば、まずポリエステルフイルムなど
の基体上に酸化物磁性粉末、バインダー、有機溶
剤およびその他の添加剤を含む磁性塗料を通常の
手段により塗布、乾燥して下層の磁性層を形成
し、次いでこの下層の磁性層上に、飽和磁化量
140emu/g以下の金属磁性粉末、バインダー、
有機溶剤およびその他の添加剤を含む磁性塗料を
通常の手段により塗布、乾燥して上層の磁性層を
形成すればよい。 上下両磁性層を形成する際使用されるバインダ
ーとしては、特に限定されることなく通常バイン
ダーとして使用されるものがいずれも好適なもの
として使用され、また有機溶剤も特に限定される
ことなく、使用するバインダーを溶解するのに適
した溶剤として通常使用されるものがいずれも好
適に使用される。 次に、この発明の実施例について説明する。 実施例 1 <下層用磁性塗料の調製> Co含有γ−Fe2O3磁性粉末(保磁力550エルス
テツド) 80重量部 ニトロセルロースH1/2(旭化成社製、ニトロ
セルロース) 8 〃 タケラツクE−551(武田薬品工業社製、ウレタ
ンプレポリマー) 9重量部 コロネートL(日本ポリウレタン工業社製、三
官能性低分子量イソシアネート化合物)
3 〃 メチルイソブチルケトン 50 〃 トルエン 50 〃 これらの組成物をボールミル中で約48時間混合
分散して下層用磁性塗料を調製した。 <上層用磁性塗料の調製> α−Fe磁性粉末(保磁力850エルステツド、飽
和磁化量130emu/g) 80重量部 VAGH(米国U.C.C社製塩化ビニル−酢酸ビニ
ルービニルアルコール共重合体) 14 〃 タケラツクE−551 5 〃 コロネートL 1 〃 ミリスチン酸 0.6 〃 シリコーンオイル 0.3 〃 ベンガラ 1.6重量部 カーボンブラツク 0.6 〃 メチルイソブチルケトン 60 〃 トルエン 60 〃 この組成物をボールミル中で約48時間混合分散
して上層用磁性塗料を調製した。 <2重層磁気テープの製造> 厚さ12μのポリエステルフイルム上に前記の下
層用磁性塗料を塗布、乾燥し、表面処理を行なつ
た後、さらに60℃で24時間キユアリングを行ない
約4μ厚の下層の磁性層を形成した。次いでこの
磁性層上にさらに前記の上層用磁性塗料を塗布、
乾燥し、表面処理を行なつて約2μ厚の上層の磁
性層を形成した後、所定の巾に栽断して2重層磁
気テープをつくつた。 実施例 2 実施例1における上層用磁性塗料の組成におい
て、保磁力850エルステツド、飽和磁化量
130emu/gのα−Fe磁性粉末に代えて保磁力
850エルステツド、飽和磁化量135emu/gのα−
Fe磁性粉末を同量使用した以外は実施例1と同
様にして2重層磁気テープをつくつた。 実施例 3 実施例1における上層用磁性塗料の組成におい
て、保磁力850エルステツド、飽和磁化量
130emu/gのα−Fe磁性粉末に代えて保磁力
850エルステツド、飽和磁化量139emu/gのα−
Fe磁性粉末を同量使用した以外は実施例1と同
様にして2重層磁気テープをつくつた。 比較例 1 実施例1における上層用磁性塗料の組成におい
て、保磁力850エルステツド、飽和磁化量
130emu/gのα−Fe磁性粉末に代えて保磁力
850エルステツド、飽和磁化量146emu/gのα−
Fe磁性粉末を同量使用した以外は実施例1と同
様にして2重層磁気テープをつくつた。 比較例 2 実施例1における上層用磁性塗料の組成におい
て、保磁力850エルステツド、飽和磁化量
130emu/gのα−Fe磁性粉末に代えて保磁力
850エルステツド、飽和磁化量154emu/gのα−
Fe磁性粉末を同量使用した以外は実施例1と同
様にして2重層磁気テープをつくつた。 各実施例および各比較例で得られた2重層磁気
テープについて耐食性を試験し、表面粗さを測定
した。耐食性試験は得られた磁気テープを60℃、
90%RHの条件下に168時間放置し、残留磁束密
度を測定して放置前と比らべ、残留磁束密度が低
下した割合を百分率で表わして行なつた。また表
面粗さは触針式表面粗さ計で測定した。表面粗さ
の数値は、センターラインアベレージ(C.L.A.)
で表わした。 下表はその結果である。
The present invention relates to a magnetic recording medium having double magnetic layers, and an object thereof is to provide the above-mentioned magnetic recording medium having excellent corrosion resistance and surface smoothness. In a magnetic recording medium with double magnetic layers,
It is known that sensitivity and frequency characteristics in low and high frequency bands can be improved by lowering the coercive force of the lower layer and increasing the coercive force of the upper layer, and this type of magnetic recording medium usually uses a substrate such as polyester film. First, a magnetic paint containing oxide magnetic powder with a relatively low coercive force is applied to the surface and dried to form a lower magnetic layer, and then a magnetic coating with a large amount of saturation magnetization and a relatively low coercive force is applied on this lower magnetic layer. It is made by applying and drying magnetic paint containing highly magnetic metal powder. However, while the metal magnetic powder used in the upper magnetic layer has a higher saturation magnetization, better magnetic properties can be obtained, but on the other hand, it is easily oxidized by oxygen in the air and has a very large magnetic moment. Because large interactions occur between powder particles and particle aggregation is likely to occur, the upper magnetic layer containing this type of metal magnetic powder with a large amount of saturation magnetization lacks corrosion resistance.
Further, there is a problem that the metal magnetic powder aggregates and its dispersibility in the binder deteriorates, resulting in poor surface smoothness. In view of the current situation, the inventors focused on the relationship between the saturation magnetization of the metal magnetic powder used in the upper magnetic layer and corrosion resistance and surface smoothness, and in order to investigate this relationship, various saturation magnetizations were used. A large number of double-layer magnetic tapes were made using metal magnetic powder, and various studies were conducted by measuring the reduction rate of residual magnetic flux density and surface roughness, which are indicators of corrosion resistance, for each magnetic tape. As a result, these relationships are expressed in the graphs shown in Figures 1 and 2, and when the amount of saturation magnetization exceeds 140 emu/g, the rate of decrease in residual magnetic flux density and surface roughness rapidly increase. , 140 emu/g or less, both the rate of decrease in residual magnetic flux density and surface roughness are sufficiently small, and the corrosion resistance and surface smoothness of the magnetic layer are sufficiently improved, leading to the present invention. In this invention, when the saturation magnetization of the metal magnetic powder used in the upper magnetic layer is greater than 140 emu/g, it is easily oxidized by oxygen in the air, and the interaction between powder particles becomes large. Since particle aggregation occurs, the dispersibility in the binder deteriorates, and the surface smoothness does not improve, those having a saturation magnetization of 140 emu/g or less are preferably used.
Such metal magnetic powders include iron, cobalt, nickel, etc. alone or alloy powders, iron,
Examples include metal magnetic powder containing elements such as Al, Cr, Mn, Si, and Zn, and those having a coercive force in the range of 600 to 1200 oersted are preferably used. In addition, the oxide magnetic powders used in the lower magnetic layer include γ-Fe 2 O 3 powder, Fe 3 O 4 powder, Co-containing γ-Fe 2 O 3 powder, Co-containing Fe 3 O 4 powder, and CrO 2
Powder etc. are preferably used, and the coercive force is
A range of 400 to 600 oersteds is preferably used. The thickness of both the upper and lower magnetic layers is preferably within the range of 1:1 to 1:20 in terms of the ratio of the magnetic layer thickness of the upper layer to the magnetic layer thickness of the lower layer. If the magnetic layer is too thick, the characteristics in the low frequency region cannot be sufficiently improved, and if it is too thin, the corrosion resistance and surface smoothness cannot be sufficiently improved. The formation of both the upper and lower magnetic layers can be carried out according to a conventional method. For example, first, a magnetic paint containing an oxide magnetic powder, a binder, an organic solvent, and other additives is coated on a substrate such as a polyester film by a conventional method. A lower magnetic layer is formed by coating and drying, and then a saturation magnetization amount is applied on this lower magnetic layer.
Metal magnetic powder of 140emu/g or less, binder,
The upper magnetic layer may be formed by applying a magnetic paint containing an organic solvent and other additives by conventional means and drying. The binder used when forming both the upper and lower magnetic layers is not particularly limited, and any binder that is normally used can be suitably used, and organic solvents can also be used without particular limitations. Any commonly used solvent suitable for dissolving the binder may be suitably used. Next, embodiments of the invention will be described. Example 1 <Preparation of magnetic paint for lower layer> Co-containing γ-Fe 2 O 3 magnetic powder (coercive force 550 oersted) 80 parts by weight Nitrocellulose H1/2 (manufactured by Asahi Kasei Corporation, nitrocellulose) 8 Takerak E-551 ( (manufactured by Takeda Pharmaceutical Co., Ltd., urethane prepolymer) 9 parts by weight Coronate L (manufactured by Nippon Polyurethane Industries, Ltd., trifunctional low molecular weight isocyanate compound)
3 〃 Methyl isobutyl ketone 50 〃 Toluene 50 〃 These compositions were mixed and dispersed in a ball mill for about 48 hours to prepare a magnetic paint for the lower layer. <Preparation of magnetic paint for upper layer> α-Fe magnetic powder (coercive force 850 oersted, saturation magnetization 130 emu/g) 80 parts by weight VAGH (vinyl chloride-vinyl acetate-vinyl alcohol copolymer manufactured by UCC, USA) 14 Takerak E-551 5 Coronate L 1 Myristic acid 0.6 Silicone oil 0.3 Red red 1.6 parts by weight Carbon black 0.6 Methyl isobutyl ketone 60 Toluene 60 This composition was mixed and dispersed in a ball mill for about 48 hours to form the magnetic upper layer. A paint was prepared. <Manufacture of double-layer magnetic tape> The magnetic paint for the lower layer is applied onto a polyester film with a thickness of 12 μm, dried, and subjected to surface treatment, and then cured for 24 hours at 60°C to form a lower layer with a thickness of approximately 4 μm. A magnetic layer was formed. Next, the above-mentioned upper layer magnetic paint is further applied on this magnetic layer,
After drying and surface treatment to form an upper magnetic layer about 2 μm thick, the tape was cut to a predetermined width to produce a double-layer magnetic tape. Example 2 In the composition of the magnetic paint for the upper layer in Example 1, the coercive force was 850 oersted, and the amount of saturation magnetization was
Coercive force in place of 130emu/g α-Fe magnetic powder
850 oersted, α- with saturation magnetization 135emu/g
A double-layer magnetic tape was prepared in the same manner as in Example 1 except that the same amount of Fe magnetic powder was used. Example 3 In the composition of the magnetic paint for the upper layer in Example 1, the coercive force was 850 oersted, and the amount of saturation magnetization was
Coercive force in place of 130emu/g α-Fe magnetic powder
850 Oersted, α- with saturation magnetization 139emu/g
A double-layer magnetic tape was prepared in the same manner as in Example 1 except that the same amount of Fe magnetic powder was used. Comparative Example 1 In the composition of the magnetic paint for the upper layer in Example 1, the coercive force was 850 oersted, and the amount of saturation magnetization was
Coercive force in place of 130emu/g α-Fe magnetic powder
850 oersted, α- with saturation magnetization 146 emu/g
A double-layer magnetic tape was prepared in the same manner as in Example 1 except that the same amount of Fe magnetic powder was used. Comparative Example 2 In the composition of the magnetic paint for the upper layer in Example 1, the coercive force was 850 oersted, and the amount of saturation magnetization was
Coercive force in place of 130emu/g α-Fe magnetic powder
850 Oersted, α- with saturation magnetization 154emu/g
A double-layer magnetic tape was prepared in the same manner as in Example 1 except that the same amount of Fe magnetic powder was used. The double-layer magnetic tapes obtained in each Example and each Comparative Example were tested for corrosion resistance and measured for surface roughness. Corrosion resistance test was performed on the obtained magnetic tape at 60℃.
After being left under conditions of 90% RH for 168 hours, the residual magnetic flux density was measured, and the reduction in residual magnetic flux density was expressed as a percentage compared to before being left. Furthermore, the surface roughness was measured using a stylus type surface roughness meter. Surface roughness values are center line average (CLA)
It was expressed as The table below shows the results.

【表】 上表から明らかなように、この発明で得られた
磁気テープ(実施例1〜3)は従来の磁気テープ
(比較例1〜2)に比し、耐食性即ち残留磁束密
度の低下率および表面粗さがいずれも小さくなつ
ており、このことからこの発明によつて得られる
磁性層が2層構造の磁気記録媒体は、耐食性およ
び表面平滑性が一段と向上されていることがわか
る。
[Table] As is clear from the above table, the magnetic tapes obtained by the present invention (Examples 1 to 3) have a lower corrosion resistance, that is, the rate of decrease in residual magnetic flux density, than the conventional magnetic tapes (Comparative Examples 1 to 2). Both the surface roughness and the surface roughness were reduced, and it can be seen from this that the magnetic recording medium having a two-layer magnetic layer structure obtained by the present invention has further improved corrosion resistance and surface smoothness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は上層の磁性層に金属磁性粉末を用いて
得られる2重層磁気テープの金属磁性粉末の飽和
磁化量と残留磁束密度の低下率との関係図、第2
図は同金属磁性粉末の飽和磁化量と表面粗さとの
関係図である。
Figure 1 is a diagram of the relationship between the saturation magnetization amount of metal magnetic powder and the rate of decrease in residual magnetic flux density of a double-layer magnetic tape obtained by using metal magnetic powder in the upper magnetic layer.
The figure is a diagram showing the relationship between the saturation magnetization amount and surface roughness of the same metal magnetic powder.

Claims (1)

【特許請求の範囲】[Claims] 1 基体上に酸化物磁性粉末を含む第1の磁性層
と金属磁性粉末を含む第2の磁性層とを重層形成
した磁気記録媒体において、上層となる第2の磁
性層の金属磁性粉末として飽和磁化量が
140emu/g以下の金属磁性粉末を使用したこと
を特徴とする磁気記録媒体。
1. In a magnetic recording medium in which a first magnetic layer containing an oxide magnetic powder and a second magnetic layer containing a metal magnetic powder are formed on a substrate, the metal magnetic powder of the second upper magnetic layer is saturated. The amount of magnetization
A magnetic recording medium characterized by using metal magnetic powder of 140 emu/g or less.
JP56028783A 1981-02-27 1981-02-27 Magnetic recording medium Granted JPS57143734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56028783A JPS57143734A (en) 1981-02-27 1981-02-27 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56028783A JPS57143734A (en) 1981-02-27 1981-02-27 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS57143734A JPS57143734A (en) 1982-09-06
JPH0353689B2 true JPH0353689B2 (en) 1991-08-15

Family

ID=12258008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56028783A Granted JPS57143734A (en) 1981-02-27 1981-02-27 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS57143734A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59172144A (en) * 1983-03-20 1984-09-28 Hitachi Maxell Ltd Magnetic recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256508A (en) * 1975-11-05 1977-05-10 Fuji Photo Film Co Ltd Novel magnetic recording medium
JPS5354002A (en) * 1976-10-26 1978-05-17 Sony Corp Magnetic recording medium
JPS5565405A (en) * 1978-11-13 1980-05-16 Hitachi Ltd Ferromagnetic metal powder for magnetic recording medium
JPS5613526A (en) * 1979-07-11 1981-02-09 Tdk Corp Magnetic recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256508A (en) * 1975-11-05 1977-05-10 Fuji Photo Film Co Ltd Novel magnetic recording medium
JPS5354002A (en) * 1976-10-26 1978-05-17 Sony Corp Magnetic recording medium
JPS5565405A (en) * 1978-11-13 1980-05-16 Hitachi Ltd Ferromagnetic metal powder for magnetic recording medium
JPS5613526A (en) * 1979-07-11 1981-02-09 Tdk Corp Magnetic recording medium

Also Published As

Publication number Publication date
JPS57143734A (en) 1982-09-06

Similar Documents

Publication Publication Date Title
US7115331B2 (en) Magnetic recording medium having narrow pulse width characteristics
JPS58139337A (en) Magnetic recording medium
JP2744114B2 (en) Multi-frequency superimposed magnetic recording method and magnetic recording medium for multi-frequency superimposed magnetic head recording
JPS61216116A (en) Magnetic recording medium
JPH0353689B2 (en)
JPS6292128A (en) Magnetic recording medium
US20070224459A1 (en) Magnetic recording medium including carbon nanotubes
US4818608A (en) Magnetic recording medium
JP2659957B2 (en) Magnetic powder, manufacturing method thereof, and magnetic recording medium using the magnetic powder
JPH0770044B2 (en) Magnetic recording medium
JPS62219321A (en) Magnetic recording medium
JP2989874B2 (en) Magnetic recording media
JPS6356608B2 (en)
JP2703984B2 (en) Magnetic recording media
JP3194294B2 (en) Magnetic recording media
JP2568753B2 (en) Magnetic recording media
JPS58150132A (en) Magnetic recording medium
JPH0619829B2 (en) Magnetic recording medium
JP3226564B2 (en) Magnetic recording media
JPS58146025A (en) Magnetic recording medium
JPH0729151A (en) Magnetic recording medium
JPS6035323A (en) Magnetic recording medium
JPS59144042A (en) Magnetic recording medium
JPH0319608B2 (en)
JPS59144039A (en) Magnetic recording medium