JPH0353646B2 - - Google Patents

Info

Publication number
JPH0353646B2
JPH0353646B2 JP56042184A JP4218481A JPH0353646B2 JP H0353646 B2 JPH0353646 B2 JP H0353646B2 JP 56042184 A JP56042184 A JP 56042184A JP 4218481 A JP4218481 A JP 4218481A JP H0353646 B2 JPH0353646 B2 JP H0353646B2
Authority
JP
Japan
Prior art keywords
voltage
mos transistor
output terminal
differential
reference voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56042184A
Other languages
Japanese (ja)
Other versions
JPS57157313A (en
Inventor
Tadahide Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56042184A priority Critical patent/JPS57157313A/en
Publication of JPS57157313A publication Critical patent/JPS57157313A/en
Publication of JPH0353646B2 publication Critical patent/JPH0353646B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/618Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series and in parallel with the load as final control devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Dc-Dc Converters (AREA)

Description

【発明の詳細な説明】 本発明は集積化半導体装置、特に絶縁ゲート型
電界効果トランジスタ、主として、MOS電界効
果トランジスタ(以下、MOSトランジスタ)に
よつて構成され、大電流を充放電する能力を有す
る定電圧源用の集積化半導体装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an integrated semiconductor device, particularly an insulated gate field effect transistor, which is mainly composed of a MOS field effect transistor (hereinafter referred to as a MOS transistor), and has the ability to charge and discharge a large current. The present invention relates to an integrated semiconductor device for a constant voltage source.

MOSトランジスタを用いた回路は、デイジタ
ル、アナログ回路を問わず単一電源で動作するこ
とが望ましく、特に、5V単一電源で動作する集
積回路が広範に用いられつつある。5V単一電源
動作とは、電源電圧VDDとして5Vを用い、接地電
圧GNDとして0Vを用いて動作する回路を言う。
ところが、最近、単一電源動作の集積回路の中
で、3値レベルロツクを用いたメモリや論理回路
を集積化して、高性能の集積回路を実現しようと
いう試みがある。例えば、メモリの一例として、
「1979年8月に開催された第11回固体素子国際会
議のプロシーデイング(原題名“Procedings of
the 11th Conference(1979 International”)on
SOLID STATE DEVICES”)」の第209〜212頁
(1979年8月会議時に同時領布)に所載された
「ブイ・エル・エス・アイダイナミツクメモリ用
テーパー アイソレイテイツド ラム トランジ
スタの解析と設計(原題名“Analysis and
Design of the Taper Isolated Dynamic RAM
Threshold Transistor for VLSI dRMs”)」と
題するピー・ケー・チヤタージー(P.K.
CHATTERJEE)氏等の論文がある。この論文
には、3値レベルのクロツクで駆動する小面積の
メモリセルが記述されており、大容量メモリとし
て集積化する時には3値レベルクロツクを集積回
路内部で発生させる必要がある。しかも、単一電
源の集積回路で3値レベルクロツクを出すために
は、電源電圧と接地電圧以外の定電圧源が必要に
なる。このような3値レベル発生用の定電圧源は
大電流供給能力を備えていなければならない。従
来からよく使われているMOSトランジスタを用
いた定電圧発生回路は、主に、差動アンプ用のレ
フアレンス電圧を発生させるために用いられてお
り、大電流を供給する能力を有していない。又、
このような定電圧回路に電流能力を持たせると、
定常消費電流が増えて集積回路の消費電力が増加
するという欠点もある。
It is desirable for circuits using MOS transistors to operate on a single power supply, regardless of whether they are digital or analog circuits, and in particular, integrated circuits that operate on a single 5V power supply are becoming widely used. 5V single power supply operation refers to a circuit that operates using 5V as the power supply voltage VDD and 0V as the ground voltage GND.
However, recently, there have been attempts to realize high-performance integrated circuits by integrating memories and logic circuits using ternary level locks in single-power supply integrated circuits. For example, as an example of memory,
“Proceedings of the 11th International Conference on Solid State Devices held in August 1979”
the 11th Conference (1979 International) on
``Analysis of Taper Isolated Drum Transistors for Dynamic Memory'' published in pages 209-212 of ``SOLID STATE DEVICES'' (issued at the same time at the August 1979 meeting). Design (original title: “Analysis and
Design of the Taper Isolated Dynamic RAM
PK Chatterjee entitled “Threshold Transistor for VLSI dRMs”
There is a paper by Mr. CHATTERJEE and others. This paper describes a small-area memory cell driven by a three-level clock, and when integrated as a large-capacity memory, it is necessary to generate the three-level clock inside the integrated circuit. Moreover, in order to output a three-level clock from a single power supply integrated circuit, a constant voltage source other than the power supply voltage and ground voltage is required. Such a constant voltage source for generating three-level levels must have a large current supply capability. Constant voltage generation circuits using MOS transistors, which have been commonly used in the past, are mainly used to generate reference voltages for differential amplifiers, and do not have the ability to supply large currents. or,
When such a constant voltage circuit is given current capability,
Another disadvantage is that the steady state current consumption increases and the power consumption of the integrated circuit increases.

本発明の目的は、上記のような3値レベルクロ
ツク発生等に適し上述の従来の欠点を除去した
MOSトランジスタによつて構成される定電圧源
用の集積化半導体装置を提供することにある。
The purpose of the present invention is to eliminate the above-mentioned conventional drawbacks and to be suitable for generating a three-value level clock as described above.
An object of the present invention is to provide an integrated semiconductor device for a constant voltage source constituted by MOS transistors.

本発明の装置は、ソースを第1の電源にドレイ
ンを出力端子に接続した第1導電型の第1の
MOSトランジスタと、ソースを第2の電源にド
レインを前記出力端子に接続した第2導電型の第
2のMOSトランジスタと、基準電圧発生回路と、
前記出力端子電圧と前記基準電圧を差動入力とす
る第1及び第2の差動増幅器と、少なくとも前記
第1の差動増幅器を通して増幅された第1の信号
を前記第1のMOSトランジスタのゲートに入力
し少なくとも前記第2の差動増幅器を通して増幅
された第2の信号を前記第2のMOSトランジス
タのゲートに入力し前記出力端子の電圧が前記基
準電圧から特定の許容範囲内にある場合には互い
に逆方向に増幅された前記第1及び第2の信号に
よつて前記第1及び第2のMOSトランジスタが
どちらも非導通になり前記出力端子の電圧が前記
許容範囲内からずれた場合には互いに同方向に増
幅された前記第1及び第2の信号によつて前記第
1及び第2のMOSトランジスタのいずれか一方
が導通するようにする手段とを含む。
The device of the present invention includes a first conductive type device having a source connected to a first power source and a drain connected to an output terminal.
a MOS transistor, a second MOS transistor of a second conductivity type whose source is connected to a second power supply and whose drain is connected to the output terminal; a reference voltage generation circuit;
First and second differential amplifiers each having the output terminal voltage and the reference voltage as differential inputs, and a first signal amplified through at least the first differential amplifier are applied to the gate of the first MOS transistor. and a second signal amplified through at least the second differential amplifier is input to the gate of the second MOS transistor, and when the voltage at the output terminal is within a specific tolerance range from the reference voltage. is when both the first and second MOS transistors become non-conductive due to the first and second signals amplified in opposite directions and the voltage at the output terminal deviates from within the allowable range. and means for causing one of the first and second MOS transistors to conduct by the first and second signals amplified in the same direction.

本発明の集積化半導体装置に用いる第1及び第
2の差動増幅器は、差動出力を反転する差動入力
の境が完全に0Vではなく、互いに逆極性で且つ
数mVから数百mVであることが望ましい。つま
り、差動増幅器の入力となる出力端子電圧と基準
電圧とが等しい時には、前記第1及び第2の差動
増幅器は互いに逆方向に増幅され、この結果、前
記第1及び第2のMOSトランジスタのゲートに
は、該両トランジスタを非導通にするようなゲー
ト電圧が印加される。一方、前記出力端子の電圧
が基準電圧から数mVから数百mVずれると、そ
のずれる極性に応じて、前記第1及び第2の差動
増幅器のいずれか一方の差動出力が反転し、その
結果、前記第1及び第2のMOSトランジスタの
いずれか一方のMOSトランジスタが導通する。
すると、前記出力端子の電圧は前記基準電圧とほ
ぼ等しい電圧に戻る。例えば、本発明の集積化半
導体装置において、第1導電型のMOSトランジ
スタをpチヤネルMOSトランジスタ(以後p−
MOSトランジスタ)に、第2導電型のMOSトラ
ンジスタをnチヤネルMOSトランジスタ(以下
n−MOSトランジスタ)に、第1の電源を5V電
源に、第2の電源を接地電源にし、更に、第1及
び第2の差動増幅器の差動出力を反転する差動入
力の境が、それぞれ、−50mV及び+50mVとす
ると、本発明の効果は一層明らかとなる。この50
mVが特許請求の範囲で述べた特定の許容範囲で
ある。つまり、第1の差動増幅器は出力端子電圧
が前記基準電圧より50mV低い電圧を境にして、
差動出力は反転する。同様に、第2の差動増幅器
は、出力端子電圧が前記基準電圧より50mV高い
電圧を境にして、差動出力は反転する。従つて、
前記出力端子電圧が前記基準電圧から±50mV以
内の範囲にある時には、第1のp−MOSトラン
ジスタのゲートには5Vの電源電圧が印加される
ようにし、第2のn−MOSトランジスタのゲー
トには0Vの接地電圧が印加されるようにする。
この場合には、p及びn−MOSトランジスタは
どちらも非導通である。しかし、前記出力端子電
圧が前記基準電圧より50mV以上下がると、第1
の差動増幅器の差動出力は反転する。この結果、
第1のp−MOSトランジスタのゲートに、反転
電圧がフイードバツクされ、そのゲート電圧は
5Vから低電圧に下がり、p−MOSトランジスタ
が導通して、前記出力端子電圧が上昇する。該出
力端子電圧が前記基準電圧より50mV低い電圧よ
り高くなると、p−MOSトランジスタのゲート
電圧は再び5Vに上昇して、前記出力端子への電
流の供給は止まる。他方、前記出力端子電圧が前
記基準電圧より50mV以上高くなると上記と同様
に、第2の差動増幅器の差動出力が反転して、第
2のn−MOSトランジスタのゲートに反転電圧
がフイードバツクされ、そのゲート電圧は0Vか
ら高電圧に上がり、n−MOSトランジスタが導
通して、前記出力端子電圧は下がる。該出力端子
電圧が前記基準電圧より50mV高い電圧より低く
なると、n−MOSトランジスタのゲート電圧は
再び0Vに下がつて、前記出力端子から電流の流
れは止まる。このようにして前記基準電圧から許
容電圧±50mVの範囲内で変動する電圧を発生す
ることができ、上記反転差動入力の電圧差を小さ
くすることによつて、出力電圧の変動電圧を小さ
くすることができる。しかも、基準電圧発生回路
及び第1と第2の差動増幅器の負荷MOSトラン
ジスタのチヤネル幅対チヤネル長の比(W/L)
を小さくして消費電流を少なくし、出力用のp及
びn−MOSトランジスタのW/Lを大きくして、
前記出力端子電圧の変動に対して、大電流を充放
電する能力を持たせるようにすると、本発明の効
果は最大限に発揮される。出力端子電圧が基準電
圧から特定の許容範囲内(ここでは±50mV以
内)にある時は、第1及び第2のMOSトランジ
スタは非導通でありこの両MOSトランジスタで
は電流は消費されず、全回路の消費電流は基準電
圧発生回路と差動増幅器のみで決まるので、消費
電流は少なくなる。他方、出力端子電圧が基準電
圧からの前記許容範囲を越えて変化すると、電流
を充放電する能力の大きな第1あるいは第2の
MOSトランジスタが導通して、大電流を充放電
して出力端子電圧を短時間で基準電圧からの前記
許容範囲内に戻す。従つて、本発明の集積化半導
体装置を用いることによつて、出力電圧の安定時
に消費電流が少なく、出力電圧の変動時に大電流
を充放電する能力を有する定電圧源に適した装置
がMOSトランジスタによつて実現される点で実
用上非常に有益である。
In the first and second differential amplifiers used in the integrated semiconductor device of the present invention, the boundary between the differential inputs that invert the differential output is not completely 0V, but has opposite polarity and is at a range of several mV to several hundred mV. It is desirable that there be. That is, when the output terminal voltage that is input to the differential amplifier and the reference voltage are equal, the first and second differential amplifiers are amplified in opposite directions, and as a result, the first and second MOS transistors are amplified in opposite directions. A gate voltage is applied to the gates of the transistors such that the transistors are rendered non-conductive. On the other hand, if the voltage at the output terminal deviates from the reference voltage by several mV to several hundred mV, the differential output of either the first or second differential amplifier is reversed depending on the polarity of the deviation, and the differential output of either the first or second differential amplifier is reversed. As a result, one of the first and second MOS transistors becomes conductive.
Then, the voltage at the output terminal returns to a voltage substantially equal to the reference voltage. For example, in the integrated semiconductor device of the present invention, the first conductivity type MOS transistor is a p-channel MOS transistor (hereinafter p-channel MOS transistor).
MOS transistor), the second conductivity type MOS transistor is an n-channel MOS transistor (hereinafter referred to as an n-MOS transistor), the first power supply is a 5V power supply, the second power supply is a ground power supply, and the first and second conductivity type MOS transistors are The effect of the present invention becomes even clearer when the boundaries of the differential inputs for inverting the differential outputs of the second differential amplifier are -50 mV and +50 mV, respectively. This 50
mV is the specific tolerance range stated in the claims. In other words, when the output terminal voltage of the first differential amplifier reaches a voltage 50 mV lower than the reference voltage,
Differential output is inverted. Similarly, in the second differential amplifier, the differential output is inverted when the output terminal voltage reaches a voltage higher than the reference voltage by 50 mV. Therefore,
When the output terminal voltage is within ±50 mV from the reference voltage, a power supply voltage of 5V is applied to the gate of the first p-MOS transistor, and a power supply voltage of 5V is applied to the gate of the second n-MOS transistor. is applied so that 0V ground voltage is applied.
In this case, both the p and n-MOS transistors are non-conducting. However, if the output terminal voltage drops by 50mV or more from the reference voltage, the first
The differential output of the differential amplifier is inverted. As a result,
The inversion voltage is fed back to the gate of the first p-MOS transistor, and the gate voltage is
The voltage drops from 5V to a low voltage, the p-MOS transistor becomes conductive, and the output terminal voltage rises. When the output terminal voltage becomes higher than a voltage that is 50 mV lower than the reference voltage, the gate voltage of the p-MOS transistor rises to 5V again, and the supply of current to the output terminal is stopped. On the other hand, when the output terminal voltage becomes higher than the reference voltage by 50 mV or more, the differential output of the second differential amplifier is inverted, and the inverted voltage is fed back to the gate of the second n-MOS transistor, as described above. , its gate voltage increases from 0V to a high voltage, the n-MOS transistor becomes conductive, and the output terminal voltage decreases. When the output terminal voltage becomes lower than a voltage higher than the reference voltage by 50 mV, the gate voltage of the n-MOS transistor drops to 0V again, and current flow from the output terminal stops. In this way, it is possible to generate a voltage that fluctuates within the allowable voltage range of ±50 mV from the reference voltage, and by reducing the voltage difference of the inverting differential input, the fluctuation voltage of the output voltage is reduced. be able to. Moreover, the channel width to channel length ratio (W/L) of the reference voltage generation circuit and the load MOS transistors of the first and second differential amplifiers
To reduce the current consumption, increase the W/L of the output p and n-MOS transistors,
The effects of the present invention can be maximized by providing the ability to charge and discharge a large current in response to fluctuations in the output terminal voltage. When the output terminal voltage is within a certain tolerance range (in this case, within ±50 mV) from the reference voltage, the first and second MOS transistors are non-conducting, and no current is consumed in these MOS transistors, and the entire circuit Since the current consumption is determined only by the reference voltage generation circuit and the differential amplifier, the current consumption is reduced. On the other hand, if the output terminal voltage changes beyond the above-mentioned allowable range from the reference voltage, the first or second
The MOS transistor becomes conductive, charges and discharges a large current, and returns the output terminal voltage to within the above-mentioned allowable range from the reference voltage in a short time. Therefore, by using the integrated semiconductor device of the present invention, a device suitable for a constant voltage source that consumes little current when the output voltage is stable and has the ability to charge and discharge a large current when the output voltage fluctuates can be realized. It is very useful in practice because it is implemented using transistors.

次に、図面を参照して本発明を詳細に説明す
る。
Next, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の集積化半導体装置の一実施例
を示すブロツク図である。図において、Qp1は
第1のp−MOSトランジスタを、Qn2は第2の
n−MOSトランジスタを、1は基準電圧発生回
路を、2は第1の差動増幅器を、3は第2の差動
増幅器を、4は第1の電圧シフト用増幅器を、5
は第2の電圧シフト用増幅器を、N1は定電圧出
力端子を、N2は第1のp−MOSトランジスタ
のゲート端子を、N3は第2のn−MOSトラン
ジスタのゲート端子を、Rは定電圧源線を、Cは
定電圧源線の負荷容量を、VDDは5V電源線を、
GNDは接地線を、それぞれ示す。第1のp−
MOSトランジスタQp1は、ソースを5V電源線
VDDに、ドレインを出力端子N1に、それぞれ接
続しており、第2のn−MOSトランジスタQn2
は、ソースを0V接地線GNDに、ドレインを出力
端子N1にそれぞれ接続している。第1の差動増
幅器2の2つの差動入力端子は、定電圧源線R及
び基準電圧発生回路1の出力端子にそれぞれ接続
し、第2の差動増幅器3の2つの差動入力端子
は、定電圧源線R及び基準電圧発生回路1の出力
端子にそれぞれ接続している。第1の電圧シフト
用増幅器4は、第1の差動増幅器2の差動出力を
更に増幅し、定電圧源線Rの電圧V0が基準電圧
V1より許容電圧Vaだけ低い電圧V11より高い時
には出力電圧を5Vにし、逆に、電圧V0が基準電
圧V11より低い時には出力電圧を0Vにする働らき
をする。同様に、第2の電圧シフト用増幅器5
は、第2の差動増幅器3の差動出力を更に増幅
し、定電圧源線Rの電圧V0が基準電圧V1より許
容電圧Vaだけ高い電圧V12より低い時には、出力
電圧を0Vにし、逆に、電圧V0が電圧V12より高
い時には、出力電圧を5Vにする働らきをする。
一例として、基準電圧V1を2.5Vに、許容電圧Va
を50mVにすると、定電圧源線Rの電圧V0
2.45V(V11)は2.55V(V12)の間に保持される。
つまり、電圧V0が2.45Vと2.55Vの間にある時に
は、p−MOSトランジスタQp1のゲート電圧V2
は5Vに、n−MOSトランジスタQn2のゲート
電圧V3は0Vに、それぞれ保持されるが、定電圧
源線Rの電圧V0が2.45Vより低くなると、第1の
差動増幅器2の差動出力が反転し、電圧シフト用
増幅器4の出力電圧は5Vから減少する。ゲート
電圧V2が5Vからp−MOSトランジスタQp1の
閾値電圧よりも低下すると、p−MOSトランジ
スタQp1は導通し、出力端子N1に電流が流れ
込み、電圧V0が上昇する。逆に、電圧V0が2.55V
より高くなると、第2の差動増幅器3の差動出力
が反転し、電圧シフト用増幅器5の出力電圧は
0Vから上昇する。ゲート電圧V3が0Vからn−
MOSトランジスタQn2の閾値電圧以上に上昇す
る。n−MOSトランジスタQn2は導通し、出力
端子N1から接地線に電流が流れ出し、電圧V0
が低下する。このように、本実施例では、定電圧
源線Rの電圧V0が電圧V11とV12の間に常に保た
れるとともに、MOSトランジスタQp1及びQn
2が同時に導通することがなく、差動増幅器2及
び3をそれぞれ反転するための入力電圧V0に、
V12−V11=100mVの電圧差があるため、本実施
例の回路は発振しにくいフイードバツク回路とな
つている。
FIG. 1 is a block diagram showing an embodiment of an integrated semiconductor device of the present invention. In the figure, Qp1 is the first p-MOS transistor, Qn2 is the second n-MOS transistor, 1 is the reference voltage generation circuit, 2 is the first differential amplifier, and 3 is the second differential amplifier. 4 is the first voltage shift amplifier; 5 is the first voltage shift amplifier;
is the second voltage shift amplifier, N1 is the constant voltage output terminal, N2 is the gate terminal of the first p-MOS transistor, N3 is the gate terminal of the second n-MOS transistor, and R is the constant voltage C is the load capacity of the constant voltage source line, V DD is the 5V power line,
GND indicates the grounding wire. first p-
MOS transistor Qp1 connects the source to the 5V power line
V DD and the drain is connected to the output terminal N1, respectively, and the second n-MOS transistor Qn2
The source is connected to the 0V ground line GND, and the drain is connected to the output terminal N1. The two differential input terminals of the first differential amplifier 2 are connected to the constant voltage source line R and the output terminal of the reference voltage generation circuit 1, respectively, and the two differential input terminals of the second differential amplifier 3 are connected to the constant voltage source line R and the output terminal of the reference voltage generation circuit 1, respectively. , are connected to the constant voltage source line R and the output terminal of the reference voltage generating circuit 1, respectively. The first voltage shift amplifier 4 further amplifies the differential output of the first differential amplifier 2 so that the voltage V 0 of the constant voltage source line R becomes the reference voltage.
When the voltage is higher than V 11 which is lower than V 1 by the allowable voltage Va, the output voltage is set to 5V, and conversely, when the voltage V 0 is lower than the reference voltage V 11 , the output voltage is set to 0V. Similarly, the second voltage shift amplifier 5
further amplifies the differential output of the second differential amplifier 3, and sets the output voltage to 0V when the voltage V0 of the constant voltage source line R is lower than the voltage V12 , which is higher than the reference voltage V1 by the allowable voltage Va. , Conversely, when the voltage V 0 is higher than the voltage V 12 , it serves to make the output voltage 5V.
As an example, if the reference voltage V 1 is 2.5V, the allowable voltage Va
When is set to 50 mV, the voltage V 0 of the constant voltage source line R is
2.45V (V 11 ) is held between 2.55V (V 12 ).
In other words, when the voltage V 0 is between 2.45V and 2.55V, the gate voltage V 2 of the p-MOS transistor Qp1
is held at 5V, and the gate voltage V3 of the n-MOS transistor Qn2 is held at 0V. However, when the voltage V0 of the constant voltage source line R becomes lower than 2.45V, the differential voltage of the first differential amplifier 2 The output is inverted and the output voltage of the voltage shift amplifier 4 is reduced from 5V. When the gate voltage V2 falls from 5V to below the threshold voltage of the p-MOS transistor Qp1, the p-MOS transistor Qp1 becomes conductive, current flows into the output terminal N1, and the voltage V0 increases. Conversely, voltage V 0 is 2.55V
When the voltage becomes higher, the differential output of the second differential amplifier 3 is inverted, and the output voltage of the voltage shift amplifier 5 becomes
Increases from 0V. Gate voltage V3 from 0V to n-
The voltage rises above the threshold voltage of MOS transistor Qn2. The n-MOS transistor Qn2 becomes conductive, current flows from the output terminal N1 to the ground line, and the voltage V 0
decreases. In this way, in this embodiment, the voltage V 0 of the constant voltage source line R is always maintained between the voltages V 11 and V 12 , and the MOS transistors Qp1 and Qn
to the input voltage V 0 for inverting the differential amplifiers 2 and 3, respectively, without simultaneous conduction of the differential amplifiers 2 and 3;
Since there is a voltage difference of V 12 −V 11 =100 mV, the circuit of this embodiment is a feedback circuit that is difficult to oscillate.

第1図に示した実施例の更に具体的な回路例を
第2図に示す。第1図と第2図において、同一記
号が付けられた回路成分は同一のものを示す。第
2図において、破線で囲まれた回路ブロツク1,
2,3,4,5は、それぞれ、基準電圧発生回
路、第1の差動増幅器、第2の差動増幅器、第1
の電圧シフト用増幅器、第2の電圧シフト用増幅
器を示すが、これらの回路は従来からよく知られ
た回路であつて、何もこれらの回路に限定される
必要はなく、同じ機能を有する他の回路に置き換
えることができる。第2図の回路は単なる1つの
具体例にすぎない。
A more specific circuit example of the embodiment shown in FIG. 1 is shown in FIG. In FIG. 1 and FIG. 2, circuit components labeled with the same symbols indicate the same components. In FIG. 2, circuit blocks 1,
2, 3, 4, and 5 are a reference voltage generation circuit, a first differential amplifier, a second differential amplifier, and a first differential amplifier, respectively.
A voltage shift amplifier and a second voltage shift amplifier are shown, but these circuits are conventionally well-known circuits, and there is no need to be limited to these circuits, and other circuits having the same function may be used. It can be replaced with the following circuit. The circuit of FIG. 2 is merely one example.

第1及び第2の差動増幅器2,3は相補型
MOSトランジスタを用いた差動増幅器である。
出力電圧を反転させる入力電圧V0に数十〜数百
mVの電圧差を持たせるには、負荷用p−MOS
トランジスタとドライブ用n−MOSトランジス
タ(Qp21とQn23、Qp22とQn24,Qp3
1とQn33、Qp32とQn34)の)W/Lを
変える、)モビリテイの比を変える、)閾値
電圧を変える等の方法によつて実現できる。一例
として、)のW/Lを変える方法を述べる。負
荷用p−MOSトランジスタQp21,Qp22,
Qp31,Qq32のW/Lを、それぞれ、1,
2,2,1とし、ドライブ用n−MOSトランジ
スタQn23,Qn24,Qn33,Qn34のW/
Lを10から20の間の任意の値にすると、基準電圧
V1が2.5Vで定電圧源線Rの電圧V0が2.5Vの時に
は、差動増幅器2及び3の差動出力V21,V22
びV31,V32の間に、V21<V22及びV31>V32の関
係が成立し、電圧V0が2.4Vの時には、V21>V22
及びV31>V32の関係が、電圧V0が2.6Vの時には、
V21<V22及びV31<V32の関係が、それぞれ成立
する。上記2つの差動増幅器が反転するそれぞれ
の入力電圧V0の電圧差あるいは許容電圧Vaを縮
めるには、ペアとなつている負荷用p−MOSト
ランジスタQp21とQp22、及びQp31とQp
32のW/Lの差を小さくすると容易に実現でき
る。又、前述の),)の方法によつても、同
様に反転入力端子V0に電圧差を持たせることが
できる。
The first and second differential amplifiers 2 and 3 are complementary type
This is a differential amplifier using MOS transistors.
In order to have a voltage difference of several tens to hundreds of mV in the input voltage V 0 that inverts the output voltage, a p-MOS for the load is required.
Transistors and drive n-MOS transistors (Qp21 and Qn23, Qp22 and Qn24, Qp3
1 and Qn33, Qp32 and Qn34)) by changing the W/L,) by changing the mobility ratio, and) by changing the threshold voltage. As an example, a method of changing the W/L of ) will be described. Load p-MOS transistors Qp21, Qp22,
W/L of Qp31 and Qq32 are 1,
2, 2, 1, and the drive n-MOS transistors Qn23, Qn24, Qn33, Qn34 W/
If L is any value between 10 and 20, the reference voltage
When V 1 is 2.5V and the voltage V 0 of the constant voltage source line R is 2.5V, between the differential outputs V 21 , V 22 and V 31 , V 32 of the differential amplifiers 2 and 3, V 21 <V 22 and V 31 > V 32 holds true, and when voltage V 0 is 2.4V, V 21 > V 22
And the relationship of V 31 > V 32 is, when the voltage V 0 is 2.6V,
The relationships V 21 <V 22 and V 31 <V 32 hold true. In order to reduce the voltage difference between the input voltages V 0 or the allowable voltage Va that the two differential amplifiers invert, the load p-MOS transistors Qp21 and Qp22 and Qp31 and
This can be easily achieved by reducing the difference in W/L of 32. Also, by the methods of ) and ) described above, it is possible to similarly provide a voltage difference to the inverting input terminal V 0 .

第1及び第2の電圧シフト用増幅器4,5は差
動増幅器とインバータ回路から構成されている
が、第1及び第2の差動増幅器2,3の増幅度が
大きい場合には、電圧シフト用増幅器はインバー
タ回路だけでもよい。電圧シフト用増幅器は、定
電圧源線Rの電圧V0が反転電圧V1+Vaを境にし
て、第1あるいは第2のMOSトランジスタのゲ
ート電圧V2あるいはV5を、0Vあるいは5Vに完
全にシフトさせる役目を果たす。第1及び第2の
MOSトランジスタQp1とQn2のW/Lは、定
電圧源線Rの負荷容量Cと変動電圧の大きさによ
つて決まる。例えば、C=1000pFで、電圧V0
1Vの電圧変動が考えられる時には、トランジス
タQp1,Qn2のW/Lは約100にすることによ
つて、200nsec程度で出力端子の電圧V0を安定さ
せることができる。又、消費電流に関しては、定
常状態で電流が流れる回路は、基準電圧発生回路
1、第1及び第2の差動増幅器2,3、第1及び
第2の電圧シフト用増幅器4,5内の差動増幅器
だけであり、これらの負荷トランジスタのW/L
を小さくしておけば、全体回路での定常消費電流
は小さくすることができる。
The first and second voltage shift amplifiers 4 and 5 are composed of a differential amplifier and an inverter circuit, but when the amplification degree of the first and second differential amplifiers 2 and 3 is large, the voltage shift The amplifier for this purpose may be just an inverter circuit. The voltage shift amplifier completely changes the gate voltage V 2 or V 5 of the first or second MOS transistor to 0V or 5V when the voltage V 0 of the constant voltage source line R reaches the inversion voltage V 1 +Va. It plays a role in shifting. first and second
The W/L of the MOS transistors Qp1 and Qn2 is determined by the load capacitance C of the constant voltage source line R and the magnitude of the fluctuating voltage. For example, with C=1000pF and voltage V 0
When a voltage fluctuation of 1V is considered, by setting the W/L of the transistors Qp1 and Qn2 to about 100, the voltage V0 at the output terminal can be stabilized in about 200 nsec. Regarding current consumption, the circuits through which current flows in a steady state are the reference voltage generation circuit 1, the first and second differential amplifiers 2 and 3, and the first and second voltage shift amplifiers 4 and 5. It is only a differential amplifier, and the W/L of these load transistors
By keeping the value small, the steady current consumption in the entire circuit can be reduced.

以上の説明から明らかなように、本発明を用い
ると定電圧源線の電圧が安定な時に消費電流が少
ないにもかかわらず電圧が変動した時に大電流の
充放電を行なつて短時間で出力電圧を一定電圧に
戻すことを可能にする集積化半導体装置を提供す
ることができる。しかも、これをMOSトランジ
スタによつて実現できるため集積化が容易で実用
上非常に有利である。
As is clear from the above explanation, when the present invention is used, the current consumption is small when the voltage of the constant voltage source line is stable, but when the voltage fluctuates, a large current can be charged and discharged and output in a short time. An integrated semiconductor device can be provided that allows the voltage to be returned to a constant voltage. Furthermore, since this can be realized using MOS transistors, integration is easy and is very advantageous in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の集積化半導体装置の一実施例
を示すブロツク図及び第2図は前記実施例の一例
を示す回路図である。 図において、1…基準電圧発生回路、2…第1
の差動増幅器、3…第2の差動増幅器、4…第1
の電圧シフト用増幅器、5…第2の電圧シフト用
増幅器、Qp1…第1のp−MOSトランジスタ、
Qn2…第2のn−MOSトランジスタ、C…定電
圧電源線の負荷容量、R…定電圧源線、VDD…5V
電源線、GND…0V接地線。
FIG. 1 is a block diagram showing an embodiment of an integrated semiconductor device of the present invention, and FIG. 2 is a circuit diagram showing an example of the embodiment. In the figure, 1... reference voltage generation circuit, 2... first
differential amplifier, 3...second differential amplifier, 4...first
voltage shift amplifier, 5... second voltage shift amplifier, Qp1... first p-MOS transistor,
Qn2...second n-MOS transistor, C...load capacitance of constant voltage power supply line, R...constant voltage power supply line, V DD ...5V
Power line, GND...0V grounding line.

Claims (1)

【特許請求の範囲】[Claims] 1 ソースを第1の電源にドレインを出力端子に
接続した第1導電型の第1のMOSトランジスタ
と、ソースを第2の電源にドレインを前記出力端
子に接続した第2導電型の第2のMOSトランジ
スタと、基準電圧発生回路と、前記出力端子の電
圧と前記基準電圧を差動入力とする第1及び第2
の差動増幅器と、少なくとも前記第1の差動増幅
器を通して増幅された第1の信号を前記第1の
MOSトランジスタのゲートに入力し少なくとも
前記第2の差動増幅器を通して増幅された第2の
信号を前記第2のMOSトランジスタのゲートに
入力し前記出力端子の電圧が前記基準電圧から特
定の許容範囲内にある場合には互いに逆方向に増
幅された前記第1及び第2の信号によつて前記第
1及び第2のMOSトランジスタがどちらも非導
通になり前記出力端子の電圧が前記許容範囲内か
らずれた場合には互いに同方向に増幅された前記
第1及び第2の信号によつて前記第1及び第2の
MOSトランジスタのいずれか一方が導通するよ
うにする手段とを含むことを特徴とする集積化半
導体装置。
1 A first MOS transistor of a first conductivity type whose source is connected to a first power supply and a drain connected to an output terminal, and a second MOS transistor of a second conductivity type whose source is connected to a second power supply and whose drain is connected to the output terminal. a MOS transistor, a reference voltage generation circuit, and first and second transistors each having a voltage at the output terminal and the reference voltage as differential inputs;
and a first signal amplified through at least the first differential amplifier.
A second signal input to the gate of the MOS transistor and amplified through at least the second differential amplifier is input to the gate of the second MOS transistor, and the voltage at the output terminal is within a specific tolerance range from the reference voltage. , the first and second MOS transistors become non-conductive due to the first and second signals amplified in opposite directions, and the voltage at the output terminal falls within the allowable range. If the deviation occurs, the first and second signals are amplified in the same direction as each other.
An integrated semiconductor device comprising: means for making one of the MOS transistors conductive.
JP56042184A 1981-03-23 1981-03-23 Integrated semiconductor device Granted JPS57157313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56042184A JPS57157313A (en) 1981-03-23 1981-03-23 Integrated semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56042184A JPS57157313A (en) 1981-03-23 1981-03-23 Integrated semiconductor device

Publications (2)

Publication Number Publication Date
JPS57157313A JPS57157313A (en) 1982-09-28
JPH0353646B2 true JPH0353646B2 (en) 1991-08-15

Family

ID=12628909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56042184A Granted JPS57157313A (en) 1981-03-23 1981-03-23 Integrated semiconductor device

Country Status (1)

Country Link
JP (1) JPS57157313A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760351B2 (en) * 1985-06-10 1995-06-28 株式会社東芝 Intermediate potential generation circuit
JPH07113862B2 (en) * 1987-02-27 1995-12-06 沖電気工業株式会社 Reference voltage generation circuit
US4742292A (en) * 1987-03-06 1988-05-03 International Business Machines Corp. CMOS Precision voltage reference generator
JP2667167B2 (en) * 1987-05-07 1997-10-27 松下電器産業株式会社 Voltage generation circuit
JPH0690654B2 (en) * 1987-11-09 1994-11-14 三洋電機株式会社 Intermediate potential generation circuit
JPH0690655B2 (en) * 1987-12-18 1994-11-14 株式会社東芝 Intermediate potential generation circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482111A (en) * 1977-12-14 1979-06-30 Tokyo Keiki Kk Transmitting circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482111A (en) * 1977-12-14 1979-06-30 Tokyo Keiki Kk Transmitting circuit

Also Published As

Publication number Publication date
JPS57157313A (en) 1982-09-28

Similar Documents

Publication Publication Date Title
EP0103093B1 (en) Multi-bit-per-cell read only memory circuit
US4920284A (en) CMOS level converter circuit with reduced power consumption
US4584492A (en) Temperature and process stable MOS input buffer
KR100419816B1 (en) Signal potential conversion circuit
US6150851A (en) Charge transfer amplifier circuit, voltage comparator, and sense amplifier
US5534800A (en) Sense amplifier, SRAM, and microprocessor
JPH0447398B2 (en)
KR950022092A (en) Comparator circuit
US4617477A (en) Symmetrical output complementary buffer
JP2701546B2 (en) Charge transfer device having signal charge detection circuit
US3946369A (en) High speed MOS RAM employing depletion loads
US6466054B2 (en) Level converter circuit
EP0405105A2 (en) Reference voltage generator for precharging bit lines of a transistor memory
CA2096627C (en) Reference voltage generator for dynamic random access memory
US10127975B2 (en) Determination circuit
US6806743B2 (en) Semiconductor integrated circuit device
JPH0353646B2 (en)
US4467456A (en) Memory circuit
JPH0249519B2 (en)
JPS6196587A (en) Sense amplifier circuit
US4469960A (en) Voltage translating circuit
EP0233734B1 (en) Clock signal generating circuit
JPS5922435A (en) Latch circuit
JP2771880B2 (en) Semiconductor device
JP2543852B2 (en) Nogate for clamping logic low output