JPH0353434A - Electron gun for color television picture tube - Google Patents

Electron gun for color television picture tube

Info

Publication number
JPH0353434A
JPH0353434A JP18732689A JP18732689A JPH0353434A JP H0353434 A JPH0353434 A JP H0353434A JP 18732689 A JP18732689 A JP 18732689A JP 18732689 A JP18732689 A JP 18732689A JP H0353434 A JPH0353434 A JP H0353434A
Authority
JP
Japan
Prior art keywords
electrode
focusing electrode
electron beam
focusing
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18732689A
Other languages
Japanese (ja)
Other versions
JP3050386B2 (en
Inventor
Yoshiaki Takahashi
高橋 芳昭
Yukiyoshi Furuyama
古山 征義
Sakae Ishii
栄 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Consumer Electronics Co Ltd
Japan Display Inc
Original Assignee
Hitachi Device Engineering Co Ltd
Hitachi Ltd
Hitachi Consumer Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Device Engineering Co Ltd, Hitachi Ltd, Hitachi Consumer Electronics Co Ltd filed Critical Hitachi Device Engineering Co Ltd
Priority to JP1187326A priority Critical patent/JP3050386B2/en
Publication of JPH0353434A publication Critical patent/JPH0353434A/en
Application granted granted Critical
Publication of JP3050386B2 publication Critical patent/JP3050386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain high resolution in the whole phosphor screen from low to high electric current by using quadrupole lens as prefocusing lens. CONSTITUTION:In the title electron gun, an electron beam passing hole is formed in an accelerating electrode 20, a slit hole which is long in electron beam arrangement direction in a focusing electrode side is formed, and a first focusing electrode 30, a second focusing electrode 40, and a third focusing electrode 50 are installed. A plurality of parallel plate electrodes (vertical plates) are implanted in the third focusing electrode 50 direction in the way of sandwiching the electron beam passing hole of the second focusing electrode 40 and a rim electrode 48 surrounding these parallel plate electrodes and a pair of parallel electrodes (horizontal plates) implanted in the second focusing electrode 40 direction in the way of sandwiching from rectangular direction (vertical direction) to the electron beam arrangement of the third focusing electrode 50 are installed. As a result, quadrupole lens function of a main lens owing to the current amount of an electron beam can be collected by a prefocusing quadrupole lens. In this way, high resolution in the whole phosphor screen is obtained from low to high electric currents.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、スクリーン面全域において低輝度から高輝度
まで高い解像度を得ることのできる電極構造を備えたカ
ラー受像管用電子銃に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electron gun for a color picture tube equipped with an electrode structure capable of obtaining high resolution from low brightness to high brightness over the entire screen surface.

〔従来の技術〕[Conventional technology]

この種の受像管の解像度は、電子ビームのスポツI・径
およびその形状に大きく依存する。すなわち、電子ビー
ムの射突によって螢光面体スクリーン面上に生成される
輝点てある電子ビームスポットが径小でかつ真円に近い
ものでなければ高い解像度はえられない。
The resolution of this type of picture tube largely depends on the spot I diameter of the electron beam and its shape. That is, high resolution cannot be achieved unless the electron beam spot, which is a bright spot generated on the screen surface of the phosphor surface by the impact of the electron beam, has a small diameter and is close to a perfect circle.

しかし、電子銃から螢光体スクリーン面に至る電子ビー
ム軌道は電子ビームの偏向角度の増大に伴って長大とな
るので、螢光体スクリーン面の中央部において径小でか
つ真円の電子ビームスポットが得られる最適フォーカス
電圧に保つと、螢光体スクリーン面の周辺部ではオーバ
フオーカスの状態となり、周辺部において良好な電子ビ
ームスポットおよび高い解像度を得ることができなくな
る。そこで、電子ビームの偏向角の増大に伴ってフォー
カス電圧を高めて主レンズ電界を弱める,所謂ダイナξ
ツクフォーカス方式が採用されているのであるが、この
方式は、以下に説明するように、インライン型カラー受
像管の駆動には適しない。
However, the electron beam trajectory from the electron gun to the phosphor screen surface becomes longer as the deflection angle of the electron beam increases, so the electron beam spot has a small diameter and a perfect circle at the center of the phosphor screen surface. If the focusing voltage is maintained at the optimum focus voltage that yields the phosphor screen surface, the periphery of the phosphor screen will be in an overfocus state, making it impossible to obtain a good electron beam spot and high resolution in the periphery. Therefore, as the deflection angle of the electron beam increases, the focus voltage is increased to weaken the main lens electric field.
However, as will be explained below, this method is not suitable for driving an in-line color picture tube.

すなわち、3つの電子ビーム出射部を水平走査方向一直
線上に配列してなるインライン型カラ・一受像管では、
セルフコンバーゼンス効果を得るために水平偏向磁界を
ピンクッション状に、垂直偏向磁界をバレル状に、それ
ぞれ歪ませているので、ここをiffi遇した電子ビー
ムの断面形状は歪を持ったものとなる。
In other words, in an in-line color picture tube in which three electron beam emitting sections are arranged in a straight line in the horizontal scanning direction,
In order to obtain a self-convergence effect, the horizontal deflection magnetic field is distorted into a pincushion shape, and the vertical deflection magnetic field is distorted into a barrel shape, so that the cross-sectional shape of the electron beam created by this distortion becomes distorted.

螢光体スクリーン面は、通常横長すなわち電子ビーム配
列方向(水平方向)の辺が長い矩形状であるので、水平
方向周辺部での歪が特に大きくなる。
Since the phosphor screen surface is usually rectangular in shape, that is, the sides are long in the electron beam arrangement direction (horizontal direction), distortion is particularly large in the horizontal peripheral area.

第6図は4極レンズ磁界と電子ビームとの関係の説明図
であって、1,2.3は電子ビーム、4は水平偏向磁界
、5は偏向作用によるビーム移動方向である。
FIG. 6 is an explanatory diagram of the relationship between the quadrupole lens magnetic field and the electron beam, where 1, 2.3 are the electron beams, 4 is the horizontal deflection magnetic field, and 5 is the direction of beam movement due to the deflection action.

第7図はビンクッション分布の水平偏向磁界と電子ビー
ムとの関係の説明図であって、6は2極磁界成分、7は
4極磁界成分、8は偏向作用によるビーム移動方向、9
は電子ビームである。
FIG. 7 is an explanatory diagram of the relationship between the horizontal deflection magnetic field of the Bin cushion distribution and the electron beam, where 6 is a dipole magnetic field component, 7 is a quadrupole magnetic field component, 8 is a beam movement direction due to deflection action, and 9
is an electron beam.

第8図はビームスポットの形状歪の説明図であって、9
Hは電子ビームの高輝度部(コア一部)、9Lは同しく
低輝度部(ヘイズ部)である。
FIG. 8 is an explanatory diagram of shape distortion of the beam spot, 9
H is a high brightness part (a part of the core) of the electron beam, and 9L is a low brightness part (haze part).

以下、第6図から第8図について説明する。Hereinafter, FIGS. 6 to 8 will be explained.

第6図において、同図図面の紙面裏側から進行してきた
3本の電子ビーム1.2.3は、ピンクッション状分布
の水平偏向磁界4に入射することにより、矢印5で示す
方向への偏向作用を受ける.すなわち、ビンクッション
状分布の水平偏向磁界4は、第7図(a)に示すような
2極磁界成分6と、同図(b)に示すような4極磁界成
分とから威ると考えることができ、2極磁界或分6が電
子ビーム9に対して矢印8で示す方向への偏向作用を与
える。
In FIG. 6, three electron beams 1, 2, and 3, which have been traveling from the back side of the drawing, are deflected in the direction shown by the arrow 5 by being incident on a horizontal deflection magnetic field 4 with a pincushion distribution. Receives action. In other words, it can be considered that the horizontal deflection magnetic field 4 with the bottle cushion-like distribution is composed of a dipole magnetic field component 6 as shown in FIG. 7(a) and a quadrupole magnetic field component as shown in FIG. 7(b). , and the dipolar magnetic field 6 exerts a deflection effect on the electron beam 9 in the direction shown by the arrow 8.

4極磁界成分7は3本の電子ビー1、にセルフコンハー
ゼンス作用を与えるものであるが、1本の電子ビーム9
についてみると、水平方向に発散作用を、垂直方向に集
束作用を、それぞれ与えるために、横長偏平の断面形状
となる。
The quadrupole magnetic field component 7 gives a self-conherence effect to three electron beams 1, but one electron beam 9
In order to provide a diverging effect in the horizontal direction and a converging effect in the vertical direction, the cross-sectional shape is horizontally long and flat.

ところで、上記発散作用は、電子ビーム偏向角度の増大
に伴い電子ビーム軌道が長大となることによる電子ビー
ムスポットのオーバフオーカスを打ち消す向きに作用す
るので、インライン型カラー受像管では、電子ビームス
ポットの水平方向に関しては、偏向期間中、最適フォー
カス状態に保たれる。しかし、垂直方向に関しては、上
記の集束作用が加わることによって、オーバフォーカス
の度合が著しく増す。
By the way, the above-mentioned divergence effect acts in the direction of canceling the overfocus of the electron beam spot due to the elongation of the electron beam trajectory as the electron beam deflection angle increases, so in an in-line color picture tube, the electron beam spot In the horizontal direction, optimum focus is maintained during the deflection period. However, in the vertical direction, the degree of overfocus increases significantly due to the addition of the above-mentioned focusing effect.

その結果、螢光体スクリーン面の中央部に生成される電
子ビームスポットが第6図に「OO」で示すような円形
となるのに対し、水平方向周辺部に/l成される電子ビ
ームスポットは、高輝度のコア一部9 Hと低輝度のヘ
イズ部9Lとからなる非円形に歪み、特にヘイズ部9L
の垂直方向への大きな伸びがフォーカス特性に悪影響を
及ぼす。
As a result, the electron beam spot generated at the center of the phosphor screen surface is circular as shown by "OO" in Figure 6, while the electron beam spot formed at the horizontal periphery is circular. is distorted into a non-circular shape consisting of a high brightness core part 9H and a low brightness haze part 9L, especially the haze part 9L.
The large vertical elongation of the lens has a negative effect on focusing characteristics.

そして、このような場合、従来のダイナ宅ツタフォーカ
ス方式を適用すると、この方式が主レンズのレンズ作用
を水平.垂直方向に関係なく均等に弱めるので、垂直方
向についてはヘイズ部9Lを除去しても、すでに最適フ
ォーカスとなっている水平方向は更にアンダーフォーカ
ス状態となり、水平方向の径が増大してしまう。
In such a case, if you apply the conventional Dyna ivy focus method, this method will horizontally adjust the lens action of the main lens. Since it is weakened equally regardless of the vertical direction, even if the haze portion 9L is removed in the vertical direction, the horizontal direction, which is already in optimal focus, will be further underfocused, and the diameter in the horizontal direction will increase.

この結果、電子ビームスポットは著しく横長となり、水
平方向の解像度が低下する。
As a result, the electron beam spot becomes significantly horizontally long, and the resolution in the horizontal direction decreases.

このような問題を解決し、螢光体スクリーン面の全域に
おいて高い解像度を得ることができるよう乙こした受像
管装置が本願出願人の出願にかかる?[テ願昭63−2
30116号として提案されている。
The present applicant's application involves a picture tube device that solves these problems and can obtain high resolution over the entire area of the phosphor screen surface. [TE Gansho 63-2
No. 30116.

第9図は上記提案にかかる受像管装置の電子銃の説明図
であって、(a)は電子銃の構造を示す断面図、(b)
は第1集束電極を(a)の矢印八方向からみた正面図、
(C)は第2ffl東電極を(a)の矢印B方向からみ
た正面図である。
FIG. 9 is an explanatory diagram of the electron gun of the picture tube device according to the above proposal, in which (a) is a sectional view showing the structure of the electron gun, and (b) is a cross-sectional view showing the structure of the electron gun.
is a front view of the first focusing electrode viewed from the eight directions of arrows in (a),
(C) is a front view of the second ffl east electrode viewed from the direction of arrow B in (a).

同図において、K.,K2,K,は熱陰極(以下、単に
陰極)、IOは制御電極、20は加速電極、30は第1
集束電極、38はリム電極、40は第2集束電極、50
は陽極電8i(以下、単に陽極)、11.12,13,
2].,22,23,3la,32a,33a,3lb
.32b,33b41a,42a,43a.4lb,4
2b,43b,51,52.53は電子ビーム通過孔、
Cは電子銃軸、CBはセンタービーム、SBI,SB2
はサイドビームである。そして、水平方向一直線上に配
列された陰極K+ ,Kz ,Ksと、制御電極IO、
加速電極20、第I菓束電極30、第2集束電極40お
よび最柊加速電極である陽極50とでインライン型カラ
ー受像管用電子銃を構成している。
In the figure, K. , K2, K, are hot cathodes (hereinafter simply referred to as cathodes), IO is a control electrode, 20 is an acceleration electrode, and 30 is a first
A focusing electrode, 38 a rim electrode, 40 a second focusing electrode, 50
is anode electrode 8i (hereinafter simply referred to as anode), 11.12, 13,
2]. ,22,23,3la,32a,33a,3lb
.. 32b, 33b41a, 42a, 43a. 4lb, 4
2b, 43b, 51, 52.53 are electron beam passing holes,
C is the electron gun axis, CB is the center beam, SBI, SB2
is a side beam. Then, cathodes K+, Kz, Ks arranged in a straight line in the horizontal direction, control electrodes IO,
The accelerating electrode 20, the I-th confection electrode 30, the second focusing electrode 40, and the anode 50, which is a Saihiragi accelerating electrode, constitute an in-line color picture tube electron gun.

第1集束電極30は、第2集束電極40側の端面に3個
の円形の電子ビーム通過孔31a,32a,33aを有
し、第2集束電極40に対向して、この電子ビーム通過
孔を形戒する端面から上記電子ビーム通過孔を水平方向
から挟んで上記第2集束電極40方向に垂直に植立した
4個の平行平板34,35.36.37からなる第1の
平板電極(垂直板)を有している。そして、第1の平板
電極を構成する平行平坂34,35、36.37を包囲
し、かつこの平行平板の先端34a,35a36a,3
7aから第2集束電Pi40側に一定の距離まで延長し
たリム電極38を有している。
The first focusing electrode 30 has three circular electron beam passing holes 31a, 32a, and 33a on the end surface on the second focusing electrode 40 side, and the first focusing electrode 30 has three circular electron beam passing holes 31a, 32a, and 33a. A first flat plate electrode (vertically board). Then, it surrounds the parallel flat slopes 34, 35, 36, 37 constituting the first flat plate electrode, and the tips 34a, 35a, 36,
It has a rim electrode 38 extending a certain distance from 7a to the second focusing electrode Pi40 side.

上記リム電極38は、第1集束電極30に構造的に接続
したものとして図示しているが、第1集束霊極30と構
造的に独立させ、電気的に同電位となるように接続して
もよい。
Although the rim electrode 38 is shown as being structurally connected to the first focusing electrode 30, it is connected to the first focusing electrode 30 so that it is structurally independent and electrically at the same potential. Good too.

また、第2集束電極40は、第1集束電極30の端面に
3個の円形の電子ビーム通過孔41a42a.43aを
有し、この電子ビーム通過孔を垂直方向から挾んで上記
第1集束電極30方向に水平に直立した一対の平行乎+
ff45.46からなる第2の平板電極(水平板)を有
している。
Further, the second focusing electrode 40 has three circular electron beam passage holes 41a, 42a, . 43a, and a pair of parallel electrodes vertically stand vertically in the direction of the first focusing electrode 30, sandwiching the electron beam passage hole from the vertical direction.
It has a second flat plate electrode (horizontal plate) of ff45.46.

この水平板の対は、各電子ビームに対して各別にすなわ
ち3対設けてもよいものである。
Three pairs of horizontal plates may be provided for each electron beam.

そして、上記第2の平板電極を構或ずる平行平板の先端
部45a,46aは第1集束電極30のリム電極38内
まで延長されており、第1集束電極30の平行平板の先
端部34a.35a,36a,37aに対して電子銃軸
方向乙こ一定間隔eで設置されている。また、陽極50
側の端面には3個の円形の電子ビーム通過孔4lb,4
2b,43bを有している。そして、陽極50の第2集
収東電極40例の端面には3個の円形の電子ビーム通過
孔51,52.53が設けられており、サイ゜ド電子ビ
ーム通過孔の電子銃軸からの離軸距離S2は、前段電極
である陰極K.,K2,Kl、制御電極10、加速電極
20、第1集束電極30、第2集束電極40のサイド電
子ビーム′Jm過孔の離軸距Ms lに対して、S2 
>3,の関係となっており、第2集束電極40と陽極5
0との間で主レンズが形成され、サイド電子ビームSB
,,SB2を螢光体スクリーン面上に集中させるように
なっている。
The parallel plate tip portions 45a and 46a constituting the second plate electrode extend into the rim electrode 38 of the first focusing electrode 30, and the parallel plate tip portions 34a, 46a of the first focusing electrode 30 extend into the rim electrode 38 of the first focusing electrode 30. The electron guns 35a, 36a, and 37a are installed at a constant interval e in the axial direction of the electron gun. In addition, the anode 50
There are three circular electron beam passing holes 4lb, 4 on the side end face.
2b and 43b. Three circular electron beam passing holes 51, 52, and 53 are provided on the end face of the second collecting east electrode 40 of the anode 50, and the side electron beam passing holes are separated from the electron gun axis. The axial distance S2 is between the cathode K. , K2, Kl, the off-axis distance Ms l of the side electron beam 'Jm hole of the control electrode 10, acceleration electrode 20, first focusing electrode 30, second focusing electrode 40, S2
>3, and the second focusing electrode 40 and the anode 5
A main lens is formed between the side electron beam SB
,,SB2 is concentrated on the phosphor screen surface.

なお、制御電極10および加速電極20は、それぞれ3
個の円形の電子ビーム通過孔11,12,13.21.
22.,23を有し、第1集束電極30の加速電極20
側の端面には3個の円形の電子ビーム通過孔3lb,3
2b.33bが形成されている。
Note that the control electrode 10 and the acceleration electrode 20 each have 3
circular electron beam passing holes 11, 12, 13.21.
22. , 23, and the acceleration electrode 20 of the first focusing electrode 30
There are three circular electron beam passing holes 3lb, 3 on the side end face.
2b. 33b is formed.

動作時に各電極に与えられる印加電圧は、陰極に50〜
170V,制御電極にOv,加速電極に400〜800
■、第1集束電極30への印加電圧Vfとして5〜8k
V、陽極電圧Ebとして25kVであり、また第2集束
電極40には電子ビームに垂直,水平偏向に同期して変
化するダイナミック電圧DVfが印加される。このダイ
ナミック電圧DVfは、電子ビームの偏向量が0のとき
は第1集束電極30の電圧Vfと同等の5〜8kVであ
り、電子ビームの偏向量が増すに従って漸次上昇し、電
子ビームの偏向量が最大のとき第1集束電極30の電圧
Vfよりも0.4〜L k Vだけ高い電位となる。
The applied voltage applied to each electrode during operation is 50~
170V, Ov for control electrode, 400-800 for acceleration electrode
(2) 5 to 8 k as the voltage Vf applied to the first focusing electrode 30;
V, and the anode voltage Eb is 25 kV, and a dynamic voltage DVf that changes in synchronization with the vertical and horizontal deflection of the electron beam is applied to the second focusing electrode 40. This dynamic voltage DVf is 5 to 8 kV, which is equivalent to the voltage Vf of the first focusing electrode 30 when the amount of deflection of the electron beam is 0, and gradually increases as the amount of deflection of the electron beam increases. When is at its maximum, the potential is higher than the voltage Vf of the first focusing electrode 30 by 0.4 to L k V.

電子ビームの偏向量が0のときは、上記のように、第1
集束電極30と第2集束電極40との間に電位差がない
ため、第1集束電極30内部の平行平板(第1の平板電
極:垂直板)34,35,36と第2集束電極40に取
付られている平行平板(第2の平板電極:水平板)45
.46による電子ビームへの影響はなく、電子ビームは
第2集束電極40と陽極50との間の主レンズにより螢
光体スクリーン面の中央部で最適フォーカスで集中する
When the amount of deflection of the electron beam is 0, the first
Since there is no potential difference between the focusing electrode 30 and the second focusing electrode 40, it is attached to the parallel flat plates (first flat plate electrode: vertical plate) 34, 35, 36 inside the first focusing electrode 30 and the second focusing electrode 40. Parallel plate (second plate electrode: horizontal plate) 45
.. 46 has no influence on the electron beam, and the electron beam is focused with optimum focus at the center of the phosphor screen surface by the main lens between the second focusing electrode 40 and the anode 50.

電子ビームの偏向量が増すと、第2集束電極40の電位
が第1集束電極30の電位よりも高くなることから、第
1集束電極30内部の平行平板(垂直板)34,35,
36.37と第2集束電極40に取付られた平行平板(
水平板)45.46とによって4極レンズ電界が形成さ
れると共に、第2集束電極40と陽極50との電位差が
減少して主レンズによる集束作用が弱くなる。
As the amount of deflection of the electron beam increases, the potential of the second focusing electrode 40 becomes higher than the potential of the first focusing electrode 30. Therefore, the parallel plates (vertical plates) 34, 35,
36. 37 and a parallel plate attached to the second focusing electrode 40 (
A quadrupole lens electric field is formed by the horizontal plates 45 and 46, and the potential difference between the second focusing electrode 40 and the anode 50 decreases, weakening the focusing effect of the main lens.

第10図は、第9図に示した電子銃の第1集束電極と第
2集束電極とによる4極レンズ電界作用の説明図であっ
て、(a)は第1集束電極の部分正面図、(b)は第2
集束電極の部分断面図である。
FIG. 10 is an explanatory diagram of the quadrupole lens electric field action by the first focusing electrode and the second focusing electrode of the electron gun shown in FIG. 9, in which (a) is a partial front view of the first focusing electrode; (b) is the second
FIG. 3 is a partial cross-sectional view of a focusing electrode.

同図において、Fh,Fv,Fvvは電界による電子ビ
ームに作用する力を、また第9図と同一符号は同一部分
を示す。
In the figure, Fh, Fv, and Fvv represent forces acting on the electron beam due to the electric field, and the same symbols as in FIG. 9 indicate the same parts.

第1集束電極30内部の平行平{反(垂直板)34,3
5,36.37と第2集束電極40に取付られた平行平
板(水平板)45.46とにより形成される電界は、所
謂4極レンズ電界であり、同図(a)の第1集束電極3
0内部の垂直板34一35.35−36.36−37間
(同図には35−36のみ示す)では、垂直方向にゆる
やかな、水平方向ではきつい集束電界が形戒され、電子
ビームはFh−Fv (Fh>Fv)の力で水平方向に
大きく集束される。また、同図(b)の第2集束電極4
0に取付られた水平板45−46間では、垂直方向でき
つく、水平方向では殆ど影響のない発散レンズが形成さ
れ、FVVの力で垂直方向に大きく発散される。
Parallel planes (vertical plates) 34, 3 inside the first focusing electrode 30
5, 36, 37 and a parallel plate (horizontal plate) 45.46 attached to the second focusing electrode 40, the electric field is a so-called quadrupole lens electric field. 3
Between the vertical plates 34-35.35-36.36-37 (only 35-36 is shown in the figure), a focused electric field is formed that is gentle in the vertical direction and tight in the horizontal direction, and the electron beam is It is largely focused in the horizontal direction by a force of Fh-Fv (Fh>Fv). In addition, the second focusing electrode 4 in the same figure (b)
A diverging lens is formed between the horizontal plates 45 and 46 attached to the horizontal plate 45 and 46, which is tight in the vertical direction and has almost no effect in the horizontal direction, and is greatly diverged in the vertical direction by the force of FVV.

このため、第1集束電極30と第2集束電piA40と
の間で電子ビームは垂直方向に縦長断面となり、偏向磁
界を通過する電子ビームが、前記第4図で説明したよう
な4極磁界成分によって水平方向に横長の断面形状に歪
むのとは逆の作用となり、第1集束電極30と第2集束
電極40の両集束電極による作用の相殺によって電子ビ
ームスポットの横長偏平化が防止される。
Therefore, the electron beam has an elongated cross section in the vertical direction between the first focusing electrode 30 and the second focusing electrode piA 40, and the electron beam passing through the deflection magnetic field has a quadrupole magnetic field component as explained in FIG. This has an effect opposite to the distortion to a horizontally elongated cross-sectional shape, and the horizontally elongated flattening of the electron beam spot is prevented by canceling out the effects of the first focusing electrode 30 and the second focusing electrode 40.

また、電子ビームの偏向量が増すに従い、主レンズのレ
ンズ倍率が弱くなるので、偏向量が増加した電子ビーム
が螢光体スクリーン面上でオーハフォーカスとなる度合
も軽減され、螢光体スクリーン面の中央部のみならず、
その周辺部においても最適フォーカスで集中させること
ができ、かつ真円に近い電子ビームスポットを得ること
ができる。
In addition, as the amount of deflection of the electron beam increases, the lens magnification of the main lens becomes weaker, so the degree to which the electron beam with the increased amount of deflection becomes OHA focus on the phosphor screen surface is reduced, and the phosphor screen surface Not only the central part of
The electron beam can be focused with optimum focus even in the peripheral area, and a nearly perfect circular electron beam spot can be obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の技j/piにおいては、カソードから出射される
電子ビームの量により螢光体スクリーン面の周辺部の補
正量が異なり、大電流時(高輝度時)と小電流時(低輝
度時)とで解像度が異なってしまう。以下、上記従来技
術の問題点を図面により説明する。
In the technique J/PI mentioned above, the amount of correction for the peripheral part of the phosphor screen surface varies depending on the amount of electron beams emitted from the cathode, and there is a difference between large current (high brightness) and small current (low brightness). The resolution will be different. Hereinafter, the problems of the above-mentioned conventional technology will be explained with reference to the drawings.

第1■図は霊子ビームの電流晴の違いによる電子ビーム
スポット形状変化の説明図であり、また第12図は陰極
Kから螢光体スクリーンまでの間で電子ビー1、に作用
する力の説明図である。
Figure 1 is an explanatory diagram of changes in the shape of the electron beam spot due to differences in the current distribution of the spirit beam, and Figure 12 is an illustration of the force acting on the electron beam 1 between the cathode K and the phosphor screen. It is an explanatory diagram.

大電流時には前記第1集束電極30の垂直板34,35
,36.37と第2集束電極40の水平+Jli45.
46の最適化を行って螢光体スクリーン面の周辺部のビ
ームスポットを第8図(a)の(a − 1 )に示す
ように径小かつ真円に近いものにすると、小電流時では
第8図(a)の(a −2)に示したように水平方向オ
ーバフオーカスとなり、ハローが住して横長となる.ま
た、小電流時には同図(b)の(b−1)に示したよう
に径小かつ真円に近いスポット形状とすることができる
が、大電流では(b−2)のように水平方向がアンダー
フォーカスとなり、横長楕円のコアーとなる。これは、
電流量により電子ビーム相互間の反発作用の力が異なる
ためと考えられる。
At the time of large current, the vertical plates 34 and 35 of the first focusing electrode 30
, 36.37 and the horizontal of the second focusing electrode 40 +Jli45.
If the beam spot at the periphery of the phosphor screen is made small in diameter and close to a perfect circle as shown in (a-1) in Figure 8(a) by optimizing 46, at a small current As shown in (a-2) of Fig. 8(a), there is horizontal overfocus, and the halo becomes horizontally elongated. In addition, when the current is small, the spot shape can be small in diameter and close to a perfect circle as shown in (b-1) of the same figure (b), but when the current is large, the spot shape can be made horizontally as shown in (b-2). becomes the underfocus and becomes the core of the oblong ellipse. this is,
This is thought to be because the force of repulsion between the electron beams differs depending on the amount of current.

通常、第2集束電極40に印加されるダイナミックフォ
ーカス電圧DVfは螢光体スクリーン周辺部のヒームス
ポットの垂直方向のハローを消すことで最適フォーカス
となるように、大電流時では第1集束電極30の垂直板
34,35,36.37と第2集束電極40の水平板4
5.46を最適化し、螢光体スクリーン面周辺部の水平
方向ビームスポット径を最小としている。このときの電
子ビームへの水平方向の作用は、第1集束電極と第2集
束電極間の4極レンズ作用(Fh),偏向歪みの作用(
偏向磁界の作用:Fh+),電子ビーム間の反発作用(
空間電荷反発作用:Fh2)の3つが考えられ、螢光体
スクリーン周辺部で最適フォーカスを得るには、第12
図(a)のように4極レンズの作用Fhは偏向歪みFh
,  (発散作用)と電子ビーム間の反発作用Fh2 
(発散作用)とを合成したものの均衡がとれ、螢光体ス
クリーン面周辺部で断面が丸いビームスポットが得られ
る。一方、小電流では、同図(b)のように電子ビーム
間の反発作用Fh2か弱くなる分(同図ではFh2を零
としている)、4極レンズの集束作用Fhにより水平方
向がオーバフォーカスとなる。このため、前記先行技術
では電子ビームの電流量の変化による螢光体スクリーン
面周辺部でのビームスポット形状の最適化は困難である
という問題がある。
Normally, the dynamic focus voltage DVf applied to the second focusing electrode 40 is applied to the first focusing electrode 40 in order to achieve optimum focus by erasing the vertical halo of the heam spot at the periphery of the phosphor screen. 30 vertical plates 34, 35, 36, 37 and a horizontal plate 4 of the second focusing electrode 40.
5.46 is optimized to minimize the horizontal beam spot diameter around the phosphor screen surface. At this time, the horizontal action on the electron beam is the quadrupole lens action (Fh) between the first focusing electrode and the second focusing electrode, and the action of deflection distortion (
Effect of deflection magnetic field: Fh+), repulsion effect between electron beams (
There are three possible space charge repulsion effects: Fh2), and in order to obtain the optimum focus at the periphery of the phosphor screen, the 12th
As shown in figure (a), the action Fh of the quadrupole lens is the deflection distortion Fh
, (divergence effect) and repulsion effect between the electron beam Fh2
(divergence effect) is balanced, and a beam spot with a round cross section is obtained at the periphery of the phosphor screen surface. On the other hand, at a small current, the repulsion Fh2 between the electron beams weakens (Fh2 is set to zero in the figure), as shown in the same figure (b), and the horizontal direction becomes overfocused due to the focusing effect Fh of the quadrupole lens. . Therefore, in the prior art, there is a problem in that it is difficult to optimize the shape of the beam spot around the phosphor screen surface due to changes in the amount of current of the electron beam.

本発明の目的は、電子銃を構成する主レンズ以外のプリ
フォーカスレンズに4極レンズを採用しすることにより
、また、電子ビームの偏向角に応してフォーカス電圧が
変化する第3の集束電極を加速電極と第I集束電極との
間に設けることにより、螢光体スクリーン面の全域にわ
たって小電流から大電流まで高い解像度を得ることがで
きるカラー受像管用電子銃を提供することにある。
An object of the present invention is to adopt a quadrupole lens as a prefocus lens other than the main lens constituting an electron gun, and also to provide a third focusing electrode whose focus voltage changes according to the deflection angle of the electron beam. An object of the present invention is to provide an electron gun for a color picture tube that can obtain high resolution from small currents to large currents over the entire area of the phosphor screen surface by providing the electron gun between the accelerating electrode and the I-th focusing electrode.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、一方向に配列した複数本の電子ビームを発
射する陰極.制御電極,加速電極,集束電極,および陽
極とから威る電子銃において、加速電極に電子ビームの
個数に応した電子ビームi111過孔を備えると共に、
集束電極側に電子ビーム配列方向に長いスリット7′l
を設け、集束電極を電子ビームの個数に応した電子ビー
ム通過孔を持つ第1集束電極.第2集束電圏および第3
集束電極から構成し、第2集束電極の電子ビーム通過孔
を電子ビーム配列方向から挟むように第3集束電極方向
に{直立させた複数め平行平坂電極(垂直板〉およびこ
れらの平行平仮電極を包囲するリム電極と、第3集束電
極の電子ビーム配列方向と直角な方向(垂直方向)から
挟むように第2集束電極方向に植立させた一対の平行平
板電極(水平板)とを設けた構威としたことにより達威
される。
The above purpose is to create a cathode that emits multiple electron beams arranged in one direction. In an electron gun having a control electrode, an accelerating electrode, a focusing electrode, and an anode, the accelerating electrode is provided with an electron beam i111 hole corresponding to the number of electron beams, and
A slit 7'l long in the electron beam array direction on the focusing electrode side
A first focusing electrode having an electron beam passing hole corresponding to the number of electron beams is provided. The second focusing field and the third
A plurality of upright parallel flat slope electrodes (vertical plates) and these parallel flat temporary electrodes are arranged in the direction of the third focusing electrode so as to sandwich the electron beam passing hole of the second focusing electrode from the electron beam arrangement direction. A rim electrode surrounding the electron beam, and a pair of parallel plate electrodes (horizontal plates) placed in the direction of the second focusing electrode so as to be sandwiched therebetween from a direction perpendicular to the electron beam arrangement direction of the third focusing electrode (vertical direction) are provided. Achievement is achieved by having a strong structure.

〔作用〕[Effect]

第2集束電極の電子ビーム通過孔を挟む平行平板(垂直
板)と第3集束電極の電子ビーム通過孔を挾む平行平板
電極(水平板)とにより、4極レンズ電界が形成される
。また、第1集束電極と加速電極のスリッ1一孔との間
で4極レンズ電界が形成され、電子ビーム量が少ないと
きに大きく、電子ビーム量が増すに従って小さくなるよ
うに上記4極レンズ作用が変化する。
A quadrupole lens electric field is formed by parallel plate electrodes (vertical plates) sandwiching the electron beam passage hole of the second focusing electrode and parallel plate electrodes (horizontal plates) sandwiching the electron beam passage hole of the third focusing electrode. In addition, a quadrupole lens electric field is formed between the first focusing electrode and the slit 1 of the accelerating electrode, and the quadrupole lens effect is large when the electron beam amount is small and becomes smaller as the electron beam amount increases. changes.

また、第1集束電極と第3!J東電極の印加電圧を電子
ビームの偏向角の増大に従って高くなるように変化させ
ることにより、電子ビームの偏向角が大きくなるに伴っ
て4極レンズの作用が増す。
In addition, the first focusing electrode and the third! By changing the voltage applied to the J east electrode so as to increase as the deflection angle of the electron beam increases, the action of the quadrupole lens increases as the deflection angle of the electron beam increases.

以上により、電子ビームの電流量による主レンズの4極
レンズ作用をプリフォーカスレンズの4極レンズにより
補正でき、電子ビームの電流星変化に伴う解像度の低下
を招くことなく螢光体スクリーン全域にわたって高い解
像度が得られる。
As described above, the quadrupole lens effect of the main lens due to the current amount of the electron beam can be corrected by the quadrupole lens of the prefocus lens, and the resolution can be improved over the entire area of the phosphor screen without causing a decrease in resolution due to changes in the current star of the electron beam. resolution is obtained.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明によるカラー受像管用電子銃の第Iの実
施例の説明図であり、(a)は電子銃の構戒を示す断面
図、(b)は加速電極を(a)の矢印八方向からみた正
面図であって、K,,K2K,は熱陰極(以下、単に陰
極)、10は制御電極、20は加速電極、30は第1集
束電極、40は第2集束電極、48はリム電極、50は
第3集束電極、60は陽極電極(以下、単に陽極)、1
1,12,13,21,22,23,31.32  3
3.41a,42a,43a,4lb.42b,43b
、51a,52a,53a,51b52b,53b,6
1,62.63は電子ビーム通過孔を示し、44,45
,46.47は垂直板、48はリム電極、54(55)
は水平{反を示す。
FIG. 1 is an explanatory diagram of a first embodiment of an electron gun for a color picture tube according to the present invention. It is a front view seen from eight directions, K,, K2K, are hot cathodes (hereinafter simply cathodes), 10 is a control electrode, 20 is an acceleration electrode, 30 is a first focusing electrode, 40 is a second focusing electrode, 48 is a rim electrode, 50 is a third focusing electrode, 60 is an anode electrode (hereinafter simply referred to as an anode), 1
1, 12, 13, 21, 22, 23, 31.32 3
3.41a, 42a, 43a, 4lb. 42b, 43b
, 51a, 52a, 53a, 51b 52b, 53b, 6
1, 62, 63 indicates the electron beam passing hole, 44, 45
, 46.47 is a vertical plate, 48 is a rim electrode, 54 (55)
indicates horizontal {reverse.

また、Cは電子銃軸、CBはセンタービーム、SB.,
SB.はサイドビームである。そして、水平方向一直線
上に配列された陰極K,,K..K,、制御電極IO、
加速電極20、第I!束電極30、第2集束電極40、
第3集束電極50および最終加速電極である陽極60と
でインライン型カラー受像管用電子銃を構威している。
Also, C is the electron gun axis, CB is the center beam, SB. ,
S.B. is a side beam. The cathodes K, , K. are arranged in a straight line in the horizontal direction. .. K,, control electrode IO,
Accelerating electrode 20, No. I! a bundle electrode 30, a second focusing electrode 40,
The third focusing electrode 50 and the anode 60, which is the final accelerating electrode, constitute an in-line color picture tube electron gun.

加速電極20は3個の円形の電子ビーム通過孔21,2
2.23を有し、第1集束電極30側に電子ビーム配列
方向に長いスリット孔24.25.26が形成されてい
る。このスリット孔は3個独立して図示してあるが、こ
れに替えて第2図に例示したように3個の電子ビーム通
過孔を包囲する一個のスリットとしてもよく、加速電極
20と構造的に独立させ、電気的に同電位となるように
接続してもよい。
The accelerating electrode 20 has three circular electron beam passing holes 21 and 2.
2.23, and slit holes 24, 25, and 26 that are long in the electron beam arrangement direction are formed on the first focusing electrode 30 side. These slit holes are shown as three independent holes, but instead of this, as illustrated in FIG. They may be made independent and connected so that they have the same electrical potential.

第2図は第1図における加速電極に設けるスリッl・孔
の他の例の説明図であって、(a)〜(C)は各電子ビ
ーム毎にスリット孔を設けたもの、(d)〜<f)は全
電子ビームに共通のスリット孔を設けたものを示す。
FIG. 2 is an explanatory diagram of another example of slits and holes provided in the accelerating electrode in FIG. ~<f) indicates that a common slit hole is provided for all electron beams.

同図(a)は、加速電極20に電子ビーム通過孔21,
22.23より大きな矩形開孔241,242,243
を開設した電極200を一体化して実効的にスリット孔
を形成したものである。
The figure (a) shows an electron beam passing hole 21 in the accelerating electrode 20,
22. Rectangular openings 241, 242, 243 larger than 23
The electrode 200 with a slit formed therein is integrated to effectively form a slit hole.

同図(b)は各電子ビームを個別に包囲する横長枠状の
電極341,342,343を加速電極20に取り付け
てスリット孔の効果を付与したものである。
In FIG. 3B, electrodes 341, 342, and 343 in the shape of oblong frames that individually surround each electron beam are attached to the accelerating electrode 20 to give the effect of a slit hole.

同図(c)は、加速電極20に対して構造的に分離し、
各電子ビームに個別の横長開孔401,402,403
を形成した電極400を近接配置したものである。
The same figure (c) is structurally separated from the accelerating electrode 20,
Individual horizontal apertures 401, 402, 403 for each electron beam
In this example, electrodes 400 having a structure formed thereon are arranged in close proximity to each other.

同図(d)は、加速電極20の第1集束電極30側に全
電子ビームに共通の横長スリット500を形成したもの
である。
In FIG. 4(d), a horizontally long slit 500 common to all electron beams is formed on the first focusing electrode 30 side of the accelerating electrode 20.

同図(e)は、加速電極20に対して全雫子ビームに共
通の横長開孔601を有する電極600を近接配置した
ものである。
In FIG. 6(e), an electrode 600 having a horizontally long aperture 601 common to all the droplet beams is placed close to the accelerating electrode 20.

同図(f)は、加速電極20の形状を図示のように電子
ビーム通過孔21.22.23の配列方向に折曲した横
長溝状に形成して第1集束電極30側に伸びた壁700
でスリット孔の効果を付与したものである。
The figure (f) shows that the shape of the accelerating electrode 20 is formed into a horizontally long groove shape bent in the arrangement direction of the electron beam passing holes 21, 22, 23 as shown in the figure, and a wall extending toward the first focusing electrode 30 side is formed. 700
This gives the effect of a slit hole.

なお、この他に実質的スリット孔は上記各例に限るもの
でなく、また開孔形状も横長隋円.あるいは菱形等とし
てもよい。
In addition, the actual slit holes are not limited to the above-mentioned examples, and the opening shape is also an oblong Sui circle. Alternatively, it may be a diamond shape or the like.

第1集束電極30は円形の電子ビーム通過孔31,32
.33を有し、第3集束電極50と電気的に接続されて
フォーカス電圧Vfが印加されている。また、第1集束
電極30の電子ビーム通過孔は加速電極20例の電子ビ
ーム通過孔と第2集束電極40側の電子ビーム通過孔と
は必ずしも一致した孔径である必要はなく、加速電極2
0側の電子ビーム通過孔の孔径が第2集収束雷極40側
の孔径より小さくても,大きくてもよい。
The first focusing electrode 30 has circular electron beam passing holes 31 and 32.
.. 33, and is electrically connected to the third focusing electrode 50 to which a focusing voltage Vf is applied. Further, the electron beam passing hole of the first focusing electrode 30 does not necessarily have the same hole diameter as the electron beam passing hole of the 20 examples of accelerating electrodes and the electron beam passing hole of the second focusing electrode 40 side.
The hole diameter of the electron beam passage hole on the 0 side may be smaller or larger than the hole diameter on the second converging lightning pole 40 side.

第3図,第4図は本発明の第2実施例と第3実施例の説
明図であって、Eclは制御電極10に印加する電圧、
Ec2は加速電極20に印加する電圧、Vfはフォーカ
ス電圧、DVfはグイナミルクフォーカス電圧である。
3 and 4 are explanatory diagrams of the second and third embodiments of the present invention, where Ecl is the voltage applied to the control electrode 10;
Ec2 is the voltage applied to the accelerating electrode 20, Vf is the focus voltage, and DVf is the Guinamilk focus voltage.

同各図において、第1集束電極30と第2集束電極40
との間に3個の電子ビームiffl過孔を有する補助電
極70を設けると共に、第3図では加速電極20と補助
電極70とを電気的に接続し、第1集束電極30,第2
集束電極40に印加される電圧よりも低い電圧である加
速電極20に印加する加速電圧Ec2を補助電極70に
与えるように構成したものである。
In each figure, a first focusing electrode 30 and a second focusing electrode 40
An auxiliary electrode 70 having three electron beam IFFL holes is provided between the accelerating electrode 20 and the auxiliary electrode 70 in FIG.
The accelerating voltage Ec2 applied to the accelerating electrode 20, which is lower than the voltage applied to the focusing electrode 40, is applied to the auxiliary electrode 70.

また、第4図は補助電極70に第1集束電極30.第2
集束電極40に印加する電圧よりも高い電圧である陽極
電圧Ebを印加するようにしたものである。
FIG. 4 also shows that the auxiliary electrode 70 is connected to the first focusing electrode 30. Second
An anode voltage Eb that is higher than the voltage applied to the focusing electrode 40 is applied.

再度、第1図を参照して説明する。The explanation will be given again with reference to FIG.

第2集束電極40は、第3集束電極50側の端面に3個
の円形の電子ビーム通過孔4lb,42b,43bを有
し、第3集束電極50に対向して、この電子ビーム通過
孔を形或する端面から上記電子ビーム通過孔を水平方向
から挟んで上記第3集束電極50方向に垂直に植立した
4個の平行平板44,45,46.47からなる第1の
平板電極(垂直版)を有している。そして、第1の平板
電極を構成する平行平4Ii.44.45.46.47
を包囲し、かつこの平行平板の先端44a,45a46
a.47aから第3集束電極50側に一定の距離まで延
長したリム電極48を有している。このリム電極48は
、第2集束電極40に構造的に一体化したものとして図
示してあるが、これに替えて、第2集束電極40と構造
的に独立させた電極で構成し、電気的に第2集束電極4
0と接続した構或とすることもできる。
The second focusing electrode 40 has three circular electron beam passing holes 4lb, 42b, 43b on the end face on the third focusing electrode 50 side, and faces the third focusing electrode 50 and has the electron beam passing holes. A first flat plate electrode (vertical) consisting of four parallel flat plates 44, 45, 46, and 47 vertically planted in the direction of the third focusing electrode 50 with the electron beam passing hole horizontally sandwiched from the end face of the shape. version). Parallel flats 4Ii. constituting the first flat plate electrode. 44.45.46.47
, and the tips 44a, 45a46 of this parallel plate
a. It has a rim electrode 48 extending a certain distance from 47a to the third focusing electrode 50 side. Although the rim electrode 48 is shown as being structurally integrated with the second focusing electrode 40, it may alternatively be constructed as an electrode that is structurally independent from the second focusing electrode 40 and electrically connected to the second focusing electrode 40. to the second focusing electrode 4
It can also be configured to be connected to 0.

また、第3集束電極50は第2集束電極40の端面に3
個の円形の電子ビーム通過孔51a.52a,53aを
有し、この電子ビーム通過孔を乗直方向から挟んで上記
第1集束電極40方向に水平に植立した一対の平行平板
54.,55からなる第2の平板電極(水平Fi.)を
有している。なお、この水平板の対は各電子ビームに対
して各別に(すなわち3対)設けてもよいものである。
Further, the third focusing electrode 50 is provided on the end surface of the second focusing electrode 40.
circular electron beam passing holes 51a. 52a, 53a, a pair of parallel flat plates 54.54. , 55 (horizontal Fi.). Incidentally, a separate pair of horizontal plates (that is, three pairs) may be provided for each electron beam.

そして、上記第2の平板電極(水平板)を構成する平行
平板の先端部54a,55aは第2集束電極40のリム
電極48内まで延長されており、第2集束電極40の平
行平板の先端部44a.45a.46a,47aに対し
て電子銃軸方向に一定間隔lで設置されている。また、
陽極60例の端面には3個の円形の電子ビーム通過孔5
1b52b,53bを有している。そして、陽極60の
第3集束電極50例の端面には3個の円形の電子ビーム
通過孔61,62.63が設けられており、サイド電子
ビーム通過孔の電子銃軸からの離軸距離S2は、前段電
極である陰極K.,K2K3、制御電極10、加速電極
20、第1集束電極30、第2集束電極40、第3集束
電極50のサイド電子ビーム通過孔の離軸距離S,に対
して、S2 >S+ の関係となっており、第3集束電
極50と陽極60との間で主レンズが形成され、サイド
電子ビームSB,,SB2を螢光体スクリーン面上に集
中させるようになっている。
The tips 54a and 55a of the parallel plates constituting the second plate electrode (horizontal plate) extend into the rim electrode 48 of the second focusing electrode 40, and the tips of the parallel plates of the second focusing electrode 40 Section 44a. 45a. They are installed at a constant interval 1 in the axial direction of the electron gun with respect to 46a and 47a. Also,
Three circular electron beam passing holes 5 are provided on the end face of the 60 anodes.
1b52b and 53b. Three circular electron beam passing holes 61, 62, and 63 are provided on the end face of the third focusing electrode 50 of the anode 60, and the off-axis distance S2 of the side electron beam passing holes from the electron gun axis is is the cathode K. which is the front stage electrode. , K2K3, the off-axis distance S of the side electron beam passage holes of the control electrode 10, the acceleration electrode 20, the first focusing electrode 30, the second focusing electrode 40, and the third focusing electrode 50, the relationship S2 > S+. A main lens is formed between the third focusing electrode 50 and the anode 60 to concentrate the side electron beams SB, SB2 on the phosphor screen surface.

なお、制御電極10および加速電極20は、それぞれ3
個の円形の電子ビーム通過孔11,12.1.3,21
,22.23を有し、第1集束電極30の加速電極20
側の端面には3個の電子ビーム通過孔3lb,32b.
33bが形成されている。
Note that the control electrode 10 and the acceleration electrode 20 each have 3
circular electron beam passing holes 11, 12.1.3, 21
, 22.23, and the acceleration electrode 20 of the first focusing electrode 30
Three electron beam passing holes 3lb, 32b.
33b is formed.

動作時に各電極に与えられる印加電圧は、陰極に50〜
170V,制御電極にOV.加速電極に400〜800
V、第2集束電極40への印加電圧Vfとして5〜8k
V,陽極電圧Ebとして25kVであり、また第1集束
電極30と第3集束電極50には電子ビームに垂直,水
平偏向に同期して変化するダイナミック電圧DVfが印
加される。このダ・fナqツタ電圧DVfは、電了ビー
ムの偏向量がOのときは第2集束電極40の電圧■fと
同等の5〜8kVであり、電子ビームの偏向量が増すに
従って漸次上昇し、電子ビームの偏向量が最大のとき第
24J束電極40の電圧vrよりも0.4〜1kVだけ
高い電位となる。
The applied voltage applied to each electrode during operation is 50~
170V, OV to control electrode. 400-800 for accelerating electrode
V, 5 to 8 k as the voltage Vf applied to the second focusing electrode 40
V, and the anode voltage Eb is 25 kV, and a dynamic voltage DVf that changes in synchronization with the vertical and horizontal deflection of the electron beam is applied to the first focusing electrode 30 and the third focusing electrode 50. This da/f naq voltage DVf is 5 to 8 kV, which is equivalent to the voltage f of the second focusing electrode 40 when the electron beam deflection amount is O, and gradually increases as the electron beam deflection amount increases. However, when the amount of deflection of the electron beam is maximum, the potential becomes higher than the voltage vr of the 24th J flux electrode 40 by 0.4 to 1 kV.

電子ビームの偏向量がQのときは、上記のように、第1
集束電極30と第2集束電極40および第3集束電極5
0との間に電位差がないため、第2集束電極40内部の
平行平板(第1の平板電極:垂直板)44.4.5,4
6.47と第3集束電極50に取付られている平行平板
(第2の平板電極;水平板)54.55による電子ビー
ムへの影響はなく、電子ビームは第3集束電極50と陽
極60との間の主レンズにより螢光体スクリーン面の中
央部で最適フォーカスで集中する。
When the amount of deflection of the electron beam is Q, as described above, the first
Focusing electrode 30, second focusing electrode 40, and third focusing electrode 5
Since there is no potential difference between the parallel plate (first plate electrode: vertical plate) 44.4.5, 4 inside the second focusing electrode 40
6.47 and the parallel plate (second plate electrode; horizontal plate) 54.55 attached to the third focusing electrode 50 have no influence on the electron beam, and the electron beam is connected to the third focusing electrode 50 and the anode 60. The main lens in between focuses the phosphor at the center of the screen surface with optimal focus.

電子ビームの偏向量が増すと、第1集束電極30と第3
集束電極50の電位が第2集束電極40の電位よりも高
くなることから、第2集束電極40内部の平行乎{反(
垂直板)44,/15.4647と第3集束雷極50に
取付られた平行平板(水平仮)54.55とによって4
極レンズ電界が形成されると共に、第3集束電極50と
陽極60との電位差が減少して主レンズによる集束作用
が弱くなり、前記した4極作用によって螢光体スクリー
ン面周辺部の電子ビームの横長偏平化が防止される。
When the amount of deflection of the electron beam increases, the first focusing electrode 30 and the third focusing electrode 30
Since the potential of the focusing electrode 50 is higher than the potential of the second focusing electrode 40, the parallelism inside the second focusing electrode 40
4 by the vertical plate) 44,/15.4647 and the parallel plate (horizontal temporary) 54.55 attached to the third focusing pole 50.
As a polar lens electric field is formed, the potential difference between the third focusing electrode 50 and the anode 60 decreases, and the focusing effect of the main lens becomes weaker, and the above-mentioned quadrupole effect causes the electron beam in the peripheral area of the phosphor screen to be focused. Horizontal flattening is prevented.

また同時に、第1集束電極30の電位が高くなると加速
電極20と第1集束電極30との電位差が増大し、加速
電極20のスリット孔24,25.26の4極レンズ作
用が強くなる。
At the same time, when the potential of the first focusing electrode 30 increases, the potential difference between the accelerating electrode 20 and the first focusing electrode 30 increases, and the quadrupole lens action of the slit holes 24, 25, 26 of the accelerating electrode 20 becomes stronger.

第5図は第1図に示した電子銃の加速電極20と第1集
束電極30と6こよる4極レンズ作用の説明図であって
、(a)は電子ビームの偏向がOのときの管軸方向のカ
ソート,制御電極.加速電極第1集束電極の断面図、(
b)は電子ビームの偏向量を増加させた場合の上記と同
様の断面図である。
FIG. 5 is an explanatory diagram of the accelerating electrode 20, first focusing electrode 30, and quadrupole lens action of the electron gun shown in FIG. Cathode and control electrode in the tube axis direction. Cross-sectional view of the accelerating electrode and the first focusing electrode, (
b) is a cross-sectional view similar to the above when the amount of deflection of the electron beam is increased.

同図において、カソードK2から出射した電子ビームは
、制御電極IO,加速電極20第1集束電極30を通し
て加速,集束されて一旦クロスオーバを形成し、主レン
ズに入射する。このクロスオーバの位置は電子ビームの
電流量によって異なり、該電流量が少ないときはカソー
ト側のLの距離になり、電流量が多いときは第1集束電
極30側のL2の距離となるように変化する。
In the figure, the electron beam emitted from the cathode K2 is accelerated and focused through the control electrode IO, the acceleration electrode 20, and the first focusing electrode 30, once forms a crossover, and enters the main lens. The position of this crossover varies depending on the amount of current of the electron beam, and when the amount of current is small, it is at a distance of L on the cathode side, and when the amount of current is large, it is at a distance of L2 on the first focusing electrode 30 side. Change.

また、加速電極20のスリット孔25は管軸方向に垂直
方向で狭く、水平方向で広い開口であるため、電子ビー
ムは垂直方向で強く、水平方向で弱い集束作用を受けて
横長の断面形状となる。ただし、上記のように、電子ビ
ームの電流量によりクロスオーハの位置が変化して加速
電極のスリツ1・孔による4極作用が異なり、電子ビー
ムの電流量が少ないときはクロスオーバがカソード側に
あるため、スリット孔による4極レンズ作用を強く受け
て横長楕円断面のビーム形状に、また該電流巳が多いと
きはクロスオーハの位置が第1集束電極30側に寄るた
め、4極レンズ作用は弱くなって丸に近い横長楕円断面
のビーム形状となる。
In addition, since the slit hole 25 of the accelerating electrode 20 has a narrow opening in the vertical direction of the tube axis and a wide opening in the horizontal direction, the electron beam is focused vertically and weakly in the horizontal direction, resulting in a horizontally long cross-sectional shape. Become. However, as mentioned above, the position of the crossover changes depending on the amount of current of the electron beam, and the quadrupolar action due to the slits 1 and holes of the accelerating electrode differs, and when the amount of electron beam current is small, the crossover is on the cathode side. Therefore, the quadrupole lens effect due to the slit hole is strongly applied, resulting in a beam shape with a horizontally long elliptical cross section, and when the current beam is large, the position of the cross-over becomes closer to the first focusing electrode 30, so the quadrupole lens effect becomes weaker. This results in a beam shape with a horizontally oblong elliptical cross section that is close to a circle.

篭子ビームの偏向時は、第1集束電極30の電位が偏向
角度がOのときに比べて高くなるため、前記4極レンズ
作用が強くなり、電子ビームの横長楕円はさらに横長と
なる。このため、第2集束電極40と第3集束電極50
の垂直板,水平板を電子ビームのビーム電流量が多いと
きに最適化したときに生しる該ビーム量が少ないときの
螢光体スクリーン面周辺部の水平方向のオーハフオーカ
スを上記横長楕円断面形状のビームスポットを第2集束
電極40.第3集束電極50の4極レンズに入射させる
ことによりオーハフォーカスを袖正し71円に近いビー
ムスポットが得られ、電子ビーム量の変化によって生し
る第2集束電極40と第3集束電極50の間の4極レン
ズ作用を袖正することができる。
When the cage beam is deflected, the potential of the first focusing electrode 30 becomes higher than when the deflection angle is O, so the quadrupole lens effect becomes stronger, and the horizontally elongated ellipse of the electron beam becomes even more horizontally long. For this reason, the second focusing electrode 40 and the third focusing electrode 50
When the vertical plate and horizontal plate of the electron beam are optimized when the beam current amount of the electron beam is large, the horizontal OHA focus of the periphery of the phosphor screen surface when the beam current amount is small is expressed by the horizontally oblong elliptical cross-sectional shape shown above. The beam spot of the second focusing electrode 40. By making the beam incident on the quadrupole lens of the third focusing electrode 50, the Oha focus can be corrected and a beam spot close to 71 circles can be obtained. It is possible to correct the quadrupole lens effect between the two.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、螢光体スクリー
ン面の全域にわたって電子ビームの小電流域から大電流
域まで高い解像度を得ることができる優れた機能のカラ
ー受像管用電子銃を提伊ずることができる。
As explained above, according to the present invention, an electron gun for a color picture tube is proposed which has an excellent function and can obtain high resolution from a small current range to a large current range of the electron beam over the entire area of the phosphor screen surface. I can cheat.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるカラー受像管用電子銃の第1の実
施例の説明図、第2図は第1図における加速電極に設け
るスリット孔の他の例の説明図、第3図,第4図は本発
明の第2実施例と第3実施例の説明図、第5図は第1図
に示した電子銃の加速電罎と第1集束電極とによる4梅
レンズ作用の説191図、第6図は4極レンズ磁界と電
子ビームとの関係の説明図、第7図はピンクッション分
布の水平偏向磁界と電子ビームとの関係の説明図、第8
図はビームスポットの形状歪の説明図、第9図は従来技
術による受像管装置の電子銃の説明図、第10図は第9
図に示した電子銃の第1集束電極と第2集束電極とによ
る4極レンズ電界作用の説明図、第11図は電子ビーム
の電2A量の違いによる電子ビームスポット形状変化の
説明図、第12図は電子ビームに作用する力の説明図で
ある。 ■0・・・・制訓電極、20・・・ 30・・・・第1集束電極、40・・ 束霊極、48・・・・リム電極、50 3集束電極、60・・・・陽極電極、 ・補助霊極。 ・加速電極、 ・・第2集 ・・・・第 70・・ (b) 第 3 図 弔 4 図 第 5 図 (鳴m量I動n) 弔 6 図 4 第 8 図 第 9 図 (b) (C) 第10図 (a) 笛 (b)
FIG. 1 is an explanatory diagram of a first embodiment of the electron gun for a color picture tube according to the present invention, FIG. 2 is an explanatory diagram of another example of the slit hole provided in the accelerating electrode in FIG. 1, and FIGS. The figures are explanatory diagrams of the second and third embodiments of the present invention, and Fig. 5 is a diagram 191 of a theory of the four-plum lens action by the accelerating electric current of the electron gun shown in Fig. 1 and the first focusing electrode. Figure 6 is an explanatory diagram of the relationship between the quadrupole lens magnetic field and the electron beam, Figure 7 is an explanatory diagram of the relationship between the horizontal deflection magnetic field of pincushion distribution and the electron beam, and Figure 8 is an explanatory diagram of the relationship between the horizontal deflection magnetic field of the pincushion distribution and the electron beam.
9 is an explanatory diagram of the shape distortion of a beam spot, FIG. 9 is an explanatory diagram of an electron gun of a picture tube device according to the prior art, and FIG.
FIG. 11 is an explanatory diagram of the quadrupole lens electric field effect caused by the first and second focusing electrodes of the electron gun shown in the figure. FIG. 12 is an explanatory diagram of the force acting on the electron beam. ■0... Discipline electrode, 20... 30... First focusing electrode, 40... Focusing electrode, 48... Rim electrode, 50 3 Focusing electrode, 60... Anode Electrode, ・Auxiliary spiritual pole.・Acceleration electrode, ...Volume 2...No. 70... (b) Fig. 3 Condolence 4 Fig. 5 (Sound amount I movement n) Condolence 6 Fig. 4 Fig. 8 Fig. 9 Fig. 9 (b) (C) Figure 10 (a) Whistle (b)

Claims (1)

【特許請求の範囲】 1、一方向に配置された3個の電子ビームを出射するた
めの陰極と、この陰極に対して少なくも制御電極、加速
電極、集束電極、陽極電極とをこの順で管軸方向に配置
してなるカラー受像管用電子銃において、前記集束電極
は前記加速電極側から陽極電極にかけて第1集束電極、
第2集束電極、第3集束電極とからなり、上記第2集束
電極は第3集束電極に対向する端面にその電子ビーム通
過孔を水平方向から挟む垂直の平行平板を備え、上記第
3集束電極は第2集束電極に対向する端面に形成した電
子ビーム通過孔を垂直方向から挟む水平の平行平板を備
え、上記第1集束電極と対向する加速電極の電子ビーム
通過孔には電子ビーム通過孔に対し垂直方向で狭く水平
方向で広いスリット孔を備え、上記第2集束電極に一定
のフォーカス電圧を、上記第1集束電極と第3集束電極
に電子ビームの偏向角の増大に伴つて上記フォーカス電
圧より高い値に変化する電圧を印加する構成としたこと
を特徴とするカラー受像管用電子銃。 2、請求項1記載のカラー受像管用電子銃において、前
記スリット孔が前記加速電極とは別体の電極により構成
されていることを特徴とするカラー受像管用電子銃。 3、請求項1記載のカラー受像管用電子銃において、前
記第1集束電極と第2集束電極との間に、これら第1集
束電極と第2集束電極に印加するフォーカス電圧より低
い電圧が印加される補助電極を設けたことを特徴とする
カラー受像管用電子銃。 4、請求項1記載のカラー受像管用電子銃において、前
記第1集束電極と第2集束電極との間に、これら第1集
束電極と第2集束電極に印加するフォーカス電圧より高
い電圧が印加される補助電極を設けたことを特徴とする
カラー受像管用電子銃。
[Claims] 1. A cathode for emitting three electron beams arranged in one direction, and at least a control electrode, an acceleration electrode, a focusing electrode, and an anode electrode for this cathode in this order. In the electron gun for a color picture tube arranged in the tube axis direction, the focusing electrode extends from the accelerating electrode side to the anode electrode, and includes a first focusing electrode;
It consists of a second focusing electrode and a third focusing electrode, and the second focusing electrode has a vertical parallel plate on its end face facing the third focusing electrode, which horizontally sandwiches the electron beam passing hole, and the third focusing electrode is provided with a horizontal parallel plate vertically sandwiching an electron beam passing hole formed on the end face facing the second focusing electrode, and an electron beam passing hole is provided in the electron beam passing hole of the accelerating electrode facing the first focusing electrode. On the other hand, a slit hole is provided that is narrow in the vertical direction and wide in the horizontal direction, and a constant focus voltage is applied to the second focusing electrode, and the focus voltage is applied to the first focusing electrode and the third focusing electrode as the deflection angle of the electron beam increases. An electron gun for a color picture tube characterized by being configured to apply a voltage that changes to a higher value. 2. The electron gun for a color picture tube according to claim 1, wherein the slit hole is constituted by an electrode separate from the accelerating electrode. 3. In the electron gun for a color picture tube according to claim 1, a voltage lower than the focus voltage applied to the first focusing electrode and the second focusing electrode is applied between the first focusing electrode and the second focusing electrode. An electron gun for a color picture tube, characterized by being provided with an auxiliary electrode. 4. In the electron gun for a color picture tube according to claim 1, a voltage higher than a focus voltage applied to the first focusing electrode and the second focusing electrode is applied between the first focusing electrode and the second focusing electrode. An electron gun for a color picture tube, characterized by being provided with an auxiliary electrode.
JP1187326A 1989-07-21 1989-07-21 Electron gun for color picture tube Expired - Fee Related JP3050386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1187326A JP3050386B2 (en) 1989-07-21 1989-07-21 Electron gun for color picture tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1187326A JP3050386B2 (en) 1989-07-21 1989-07-21 Electron gun for color picture tube

Publications (2)

Publication Number Publication Date
JPH0353434A true JPH0353434A (en) 1991-03-07
JP3050386B2 JP3050386B2 (en) 2000-06-12

Family

ID=16204046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1187326A Expired - Fee Related JP3050386B2 (en) 1989-07-21 1989-07-21 Electron gun for color picture tube

Country Status (1)

Country Link
JP (1) JP3050386B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251013A (en) * 1991-10-21 1993-09-28 Thomson Tubes & Displays Sa Cathode-ray tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251013A (en) * 1991-10-21 1993-09-28 Thomson Tubes & Displays Sa Cathode-ray tube

Also Published As

Publication number Publication date
JP3050386B2 (en) 2000-06-12

Similar Documents

Publication Publication Date Title
JP3576217B2 (en) Picture tube device
US6353282B1 (en) Color cathode ray tube having a low dynamic focus
JP2616844B2 (en) Color cathode ray tube
JP2791047B2 (en) Electron gun for color picture tube
JP2000188068A (en) Color cathode ray tube
US5663609A (en) Electron gun assembly having a quadruple lens for a color cathode ray tube
US6927531B2 (en) Electron gun and color picture tube apparatus that attain a high degree of resolution over the entire screen
JPH0353434A (en) Electron gun for color television picture tube
JPH10106452A (en) Color cathode-ray tube electron gun
JPH08148095A (en) Electron gun and color cathode-ray tube provided with this electron gun
EP0716771B1 (en) Display device and cathode ray tube
JP3074176B2 (en) Electron gun for cathode ray tube
US6456018B1 (en) Electron gun for color cathode ray tube
JP2796107B2 (en) Electron gun for color picture tube
JP3050385B2 (en) Electron gun for color picture tube
JP2692837B2 (en) Color picture tube equipment
JPH03129643A (en) Electron gun for cathode-ray tube
JP2878731B2 (en) Color picture tube equipment
JP2796104B2 (en) Electron gun for color picture tube
JP2758231B2 (en) Color picture tube equipment
JPH0367442A (en) Color picture tube device
JPH04366533A (en) Electron gun for color cathode-ray tube
KR100546579B1 (en) Electron gun for color cathode ray tube
JP2001216916A (en) Cathode-ray tube
JPH0353432A (en) Electron gun for color television picture tube

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees