JPH0353237A - Aerially photographed image processor - Google Patents

Aerially photographed image processor

Info

Publication number
JPH0353237A
JPH0353237A JP1187304A JP18730489A JPH0353237A JP H0353237 A JPH0353237 A JP H0353237A JP 1187304 A JP1187304 A JP 1187304A JP 18730489 A JP18730489 A JP 18730489A JP H0353237 A JPH0353237 A JP H0353237A
Authority
JP
Japan
Prior art keywords
image
images
eye
aerial
shutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1187304A
Other languages
Japanese (ja)
Inventor
Hitoshi Godai
五代 均
Tamotsu Kobayashi
保 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP1187304A priority Critical patent/JPH0353237A/en
Publication of JPH0353237A publication Critical patent/JPH0353237A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

PURPOSE:To stereoscopically view continuous still images by successively viewing the image of R with a right eye and the image of L with a left eye out of the continuous images obtained by combining R and L between which the position of a television camera is specified distance apart. CONSTITUTION:The combination of two aerially photographed images are taken as R and L. R and L having the same number, that means, R1 and L1, R2 and L2 ... are image-picked up so that respective image pickup areas may be overlapped to 60-70% and the image pickup distance between R1 and R2, R2 and R3 ... is set as the fixed one. They are successively stored in a memory every image in order of R and L to update the contents stored in the memory every specified time. Next, only the image where R and L are overlapped is displayed on an image display device 5 in order of R1, L1, R2, L2 ... at intervals of specified time. Then, an operator views a display screen through an eye shutter by the use of the eye shutter for alternately putting a shutter on the lift and right eyes in synchronism with the interval of the display time of each screen for R and L. Thus, the display screen is stereoscopically viewed.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、航空機に搭載したテレビカメラなとの撮像
装置(以下、これを総称してテレビカメラという)によ
り空中から地表を撮像して得た空撮画像の画像処理を行
い立体視化を可能とする空撮画像処理装置に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a method of capturing images of the ground surface from the air using an imaging device such as a television camera (hereinafter collectively referred to as a television camera) mounted on an aircraft. The present invention relates to an aerial image processing device that performs image processing on aerial images to enable stereoscopic visualization.

[従来の技術] 航空機にテレビカメラを搭載し、テレビカメラにより空
中から地表を撮像しながら空撮画像を得、得られた画像
により地表の調査,探査を行うことは、資源探査分野,
環境調査分野,砂防調査分野などで行われる。
[Prior Art] Mounting a television camera on an aircraft to obtain aerial images of the earth's surface from the air, and conducting surveys and explorations of the earth's surface using the images obtained is a field of resource exploration,
This is carried out in the environmental investigation field, erosion control investigation field, etc.

従来、このような空撮画像の立体視化を行う場合、航空
機にスチルカメラを搭載し、目標とする空撮範囲を、複
数回の航行によりオーバラップさせる方法で撮影してい
る。このため立体視化できる画像は、固定の静止画像に
限定される。
Conventionally, when performing stereoscopic visualization of such aerial images, a still camera is mounted on an aircraft, and the target aerial photography range is photographed by overlapping multiple navigations. Therefore, images that can be visualized stereoscopically are limited to fixed still images.

[発明が解決しようとする課題] 上記のような従来の方法では、連続した静止画像の立体
視化を行うことができず、また空撮画像を用いて測定対
象物の立体計測を行うことができないという問題点があ
った。
[Problems to be solved by the invention] With the conventional methods described above, continuous still images cannot be visualized in 3D, and it is not possible to perform 3D measurement of a measurement target using aerial images. The problem was that it couldn't be done.

この発明はかかる課題を解決するためになされたもので
、1台のテレビカメラから得られる空撮画像の画像処理
を行い、連続した静止画像の立体視化を可能とし、且つ
測定対象物の立体計測を可能とする空撮画像処理装置を
得ることを目的としている. [課題を解決するための手段コ この発明にかかる空撮画像処理装置は、1台のテレビカ
メラを搭載した航空機1機により、この航空機の進行方
向に沿って所定時間間隔で互いの空撮画像が60%〜7
0%程度の割合でオーバラップするようなRとLとの組
合せで、連続して空撮画像を撮像し、画像表示装置にこ
れらの空撮画像のRとLとを交互に、RとLとがオーバ
ラップする部分だけ順次表示すると共に、オペレータは
表示画像に同期したアイシャッタを通してこの表示画像
を目視するようにし、連続するRの画像は右目だけに、
連続するしの画像は左目だけに見えるようにしたもので
ある。
This invention was made in order to solve such problems, and it performs image processing on aerial images obtained from a single television camera, and enables continuous still images to be visualized in 3D. The aim is to obtain an aerial image processing device that enables measurement. [Means for Solving the Problems] The aerial image processing device according to the present invention uses a single aircraft equipped with a television camera to process images of each other at predetermined time intervals along the direction of travel of the aircraft. is 60%~7
Aerial images are taken continuously using combinations of R and L that overlap at a rate of about 0%, and R and L of these aerial images are displayed on the image display device alternately. In addition to sequentially displaying only the overlapping portions, the operator views this displayed image through an eye shutter synchronized with the displayed image, so that the continuous R image is visible only to the right eye.
The continuous streak image is visible only to the left eye.

[作用] この発明においては、航空機の移動により、テレビカメ
ラの位置が所定間隔離れたRとLの組合せによる連続し
た画像で、Rの画像を順次右目で、Lの画像を順次左目
で見ることにより、各組合せのRとLとを一体として立
体視化して見ることが可能となる。
[Function] In this invention, as the aircraft moves, the position of the television camera is a continuous set of R and L images separated by a predetermined distance, and the R image is viewed sequentially with the right eye and the L image is viewed sequentially with the left eye. This makes it possible to stereoscopically view each combination of R and L as one unit.

[実施例コ 以下、この発明の一実施例を図面について説明する.第
1図,第2図はこの発明における撮像方法を説明するた
めの図で、第1図はその斜視図、第2図は地表における
撮像エリアを示す図で、各図に示すように、この実施例
においては1機の航空機に1台のテレビカメラを搭載し
、航空機の進行方向に従ってR.,L.  R2,L2
 ・・・という順に撮像していく。このとき同一順番の
Rとし、すなわちR1とL,,R2とL2・・・とは、
それぞれ撮像エリアが60%〜70%オーバラップする
ように撮像し、またR1とR2,R2とR3 ・・・の
撮像間隔は一定の間隔(例えばΔt秒間隔)としておく
。そしてこのように撮像された空撮画像を1画像分ごと
にR,Lの順に順次メモリに記憶させ、このメモリの記
憶内容をΔt秒ごとに更新していく。
[Example 1] An example of the present invention will be described below with reference to the drawings. Figures 1 and 2 are diagrams for explaining the imaging method according to the present invention. Figure 1 is a perspective view thereof, and Figure 2 is a diagram showing the imaging area on the ground surface. In this embodiment, one television camera is mounted on one aircraft, and the R.O.C. ,L. R2, L2
The images are taken in this order. In this case, let R in the same order, that is, R1 and L,, R2 and L2...
Images are taken so that their respective imaging areas overlap by 60% to 70%, and the imaging intervals of R1 and R2, R2 and R3, . . . are set at constant intervals (for example, at intervals of Δt seconds). The aerial images taken in this manner are stored in a memory in the order of R and L one image at a time, and the stored contents of this memory are updated every Δt seconds.

次に、このようにメモリに記憶した空撮画像のうち、R
とLとがオーバラップする画像のみを所定の時間間隔(
例えば15画像/秒)で、R1+L l, R2 , 
L2  ・・・という順にモニタテレビ等の画像表示装
置へ表示する。これを第3図に示す。
Next, among the aerial images stored in the memory in this way, R
Only the images in which and L overlap are displayed at a predetermined time interval (
For example, 15 images/sec), R1+L l, R2,
L2... are displayed on an image display device such as a television monitor. This is shown in FIG.

従って、この表示をそのままオペレータが両眼で目視す
る場合には、RとLとの画像が単に二重に重なり合って
見えることになるが、RとLの各画面の表示時間間隔(
例えば15画像/秒)と同期して、左右の目に交互にシ
ャッタがかかるアイシャッタを用い、このアイシャッタ
を通して表示画面を見ることにすれば、表示画面を立体
視化して見ることができる。
Therefore, when an operator views this display with both eyes, the R and L images simply appear to overlap, but the display time interval between the R and L screens (
For example, by using an eye shutter that alternately shutters the left and right eyes in synchronization with the image speed (for example, 15 images/sec), and viewing the display screen through the eye shutter, the display screen can be viewed stereoscopically.

すなわち表示画面にRの画像が表示されている場合には
、オペレータの左目はシャッタが閉じて表示画與が見え
なくなり、表示画面にLの画像が表示されている場合に
は、オペレータの右目はシャッタが閉じて表示画面が見
えなくなる。すなわち右目では常にRの画像(Rl,R
2 ・・・〉を、左目では常にLの画像(Lr ,L2
 ・・・)を見ることとなり、このような制御が繰り返
されることによって、左右両方の目に交互に見える実像
と残像とが二重に重なり合うことなく、一休化して立体
視化することができ、連続した静止画像を立体視化して
見ることができる。
In other words, when the R image is displayed on the display screen, the shutter closes and the operator's left eye cannot see the display screen, and when the L image is displayed on the display screen, the operator's right eye The shutter closes and the display screen becomes invisible. In other words, in the right eye, the image of R (Rl, R
2...>, the left eye always sees the L image (Lr, L2
), and by repeating this kind of control, the real image and the afterimage, which are seen alternately by both the left and right eyes, do not overlap and can be visualized in 3D. You can view continuous still images in 3D.

次に、測定対象物の立体計測を行う方法について説明す
る。測定対象物の立体計測を行うためには、それぞれ航
空機の地上高,対地速度,移動方向に関するデータを利
用する。
Next, a method for performing three-dimensional measurement of a measurement target will be described. In order to perform three-dimensional measurement of the object to be measured, data regarding the aircraft's ground height, ground speed, and direction of movement are used.

測定対象物の平面方向の寸法を、航空機の平均移動速度
Vと、時間差(Δt2−Δtl)との関係から、表示画
面上の横軸の総画素数をDxとした場合、測定対象物の
平面方向の寸法に関するスケールファクタK.は、K1
=(Δt2−Δt1〉・V / D xとなり、測定対
象物の平面方向の平均寸法は、画素数XK1で求めるこ
とができる. そして測定対象物の高さ方向の寸法Hは、航空機の地上
高Haと表示画面の横軸との関係から、H=(測定対象
物の横軸方向の画素数> XKI /COS  θ Dtは、画面左端から対象物までの横軸方向の画素数で
ある。) 第4図はこの発明を実施するための装置の一楕成例を示
すブロック図で、図において(1)はテレビカメラ、(
2〉は受信装置、(3〉は画像処理装置、(4〉はVT
R、(5)はテレビモニタなとの画像表示装置、(6)
はキーボード、(7〉はプリンタ、(8〉は例えば液晶
電子シャッタなどで構成されたアイシャッタ、(9)は
オペレータを示す.第4図に示すように、この実施例で
は1機の航空撮に1台のテレビカメラ(1)で空撮画像
を得て、これを無線回線を通して受信装置(2)で受信
し、受信した空撮画像を画像処理装w(3)で画像処理
を行い、画像表示装置(5)に直接表示するか、あるい
はV T R (4)に収録しておきV T R (4
)で再生して、画像表示装置(5)で表示する.この表
示原理は上述したようにRとLとの各画面を所定の時間
間隔で交互に連続して表示していく。オペレータ(9)
はアイシャッタ(8)を頭にかけて画像表示装置(5〉
の表示画面を目視することにより、連続した静止画像を
立体視化して見ることができ、表示画面から得られる情
報量が飛躍的に増大し、目視による判断を正確に行うこ
とができるようになる. また必要に応じてキーボード(6)を操作して測定対象
物を選択し、選択した測定対象物の立体計測を、上述し
た計算方法により内蔵されているCPUで行い、その結
果をプリンタ(7〉に打ち出すことができる. このように測定対象物の立体計測を容易に行うことがで
きるため、防災面、特に災害対策の立案に有利な情報を
早急に提供することができるようになる。
From the relationship between the average moving speed V of the aircraft and the time difference (Δt2-Δtl), if the total number of pixels on the horizontal axis on the display screen is Dx, then the dimension of the measurement target in the plane direction is the plane of the measurement target. Scale factor K for directional dimensions. is K1
= (Δt2-Δt1〉・V/D x, and the average dimension of the object to be measured in the plane direction can be determined by the number of pixels XK1.The dimension H of the object to be measured in the height direction is the ground clearance of the aircraft. From the relationship between Ha and the horizontal axis of the display screen, H = (number of pixels in the horizontal axis direction of the object to be measured> XKI /COS θ Dt is the number of pixels in the horizontal axis direction from the left edge of the screen to the object.) FIG. 4 is a block diagram showing an example of an apparatus for carrying out the present invention, in which (1) is a television camera;
2> is the receiving device, (3> is the image processing device, (4> is the VT
R, (5) is an image display device such as a television monitor, (6)
(7> is a printer, (8> is an eye shutter composed of, for example, a liquid crystal electronic shutter, etc.), and (9) is an operator. As shown in Fig. 4, in this example, one aerial camera An aerial photographic image is obtained with one television camera (1), this is received by a receiving device (2) through a wireless line, and the received aerial photographic image is subjected to image processing by an image processing device w (3). Display it directly on the image display device (5) or record it on the VTR (4) and then display it on the VTR (4).
) and display it on the image display device (5). As described above, the display principle is to alternately and continuously display the R and L screens at predetermined time intervals. Operator (9)
Place the eye shutter (8) on your head and put the image display device (5) on your head.
By visually viewing the display screen, continuous still images can be viewed in 3D, dramatically increasing the amount of information obtained from the display screen, and making it possible to make accurate visual judgments. .. In addition, if necessary, select an object to be measured by operating the keyboard (6), perform three-dimensional measurement of the selected object by the built-in CPU using the calculation method described above, and send the results to the printer (7). Since 3D measurements of objects to be measured can be easily performed in this way, it becomes possible to quickly provide information that is advantageous in terms of disaster prevention, especially in planning disaster countermeasures.

[発明の効果] この発明は以上説明したように、航空機の移動により、
テレビカメラの位置が所定間隔離れたRとLの組合せに
よる連続した画像で、Rの画像を順次右目で、Lの画像
を順次左目で見ることにより、各組合せのRとLとを一
体として立体視化して見ることができ、連続した静止画
像の立体視化を可能とし、且つ空撮画像を用いて測定対
象物の立体計測を容易に行うことができる等の効果があ
る.
[Effect of the invention] As explained above, this invention provides
The TV camera position is a series of images of combinations of R and L separated by a predetermined distance, and by viewing the R images sequentially with the right eye and the L images sequentially with the left eye, each combination of R and L is integrated into a three-dimensional image. It has the advantage of being able to be visualized, making it possible to visualize continuous still images in 3D, and easily performing 3D measurement of the object to be measured using aerial images.

【図面の簡単な説明】 第1図,第2図はそれぞれこの発明における撮像方法を
説明するための図、第3図は画像表示装置における表示
内容を説明するための図、第4図はこの発明を実施する
ための装置の一例を示すブロック図。
[Brief Description of the Drawings] Figures 1 and 2 are diagrams for explaining the imaging method of the present invention, Figure 3 is a diagram for explaining display contents on an image display device, and Figure 4 is a diagram for explaining the image capturing method of the present invention. FIG. 1 is a block diagram showing an example of an apparatus for carrying out the invention.

Claims (1)

【特許請求の範囲】 1台の撮像装置を搭載した航空機1機により、この航空
機の進行方向に沿って互いの空撮画像が60%〜70%
程度の割合でオーバラップするように、2つの空撮画像
の組合せで(仮にこの組合せをRとLとする)連続して
撮像していく撮像手段、 画像表示装置により、上記撮像手段で撮像された空撮画
像を、RとLとのオーバラップする部分だけを、組合せ
順に連続してR、L交互に順次表示する表示手段、 上記画像表示装置を目視する者に連続するRの画像が右
目(あるいは左目)だけに、連続するLの画像が左目(
あるいは右目)だけに見えるような制御を行うアイシャ
ッタ、 を備えた空撮画像処理装置。
[Claims] A single aircraft equipped with a single imaging device captures 60% to 70% of each other's aerial images along the direction of travel of the aircraft.
An image capturing means that sequentially captures a combination of two aerial images (assuming this combination is R and L) so that the images overlap at a certain rate; display means for sequentially displaying an overlapping portion of R and L of an aerial photographed image, alternating between R and L in the order of combination; (or the left eye), the continuous L images appear only in the left eye (or the left eye).
An aerial image processing device equipped with an eye shutter that controls the view only to the right eye.
JP1187304A 1989-07-21 1989-07-21 Aerially photographed image processor Pending JPH0353237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1187304A JPH0353237A (en) 1989-07-21 1989-07-21 Aerially photographed image processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1187304A JPH0353237A (en) 1989-07-21 1989-07-21 Aerially photographed image processor

Publications (1)

Publication Number Publication Date
JPH0353237A true JPH0353237A (en) 1991-03-07

Family

ID=16203659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1187304A Pending JPH0353237A (en) 1989-07-21 1989-07-21 Aerially photographed image processor

Country Status (1)

Country Link
JP (1) JPH0353237A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08234336A (en) * 1995-02-24 1996-09-13 Nec Corp Three-dimensional image photographing device
JP2011133321A (en) * 2009-12-24 2011-07-07 Pasuko:Kk Heat dissipation diagnostic device for three-dimensional structure and heat dissipation diagnostic program
WO2012127601A1 (en) * 2011-03-22 2012-09-27 株式会社パスコ Standing structure heat dissipation diagnostic device, heat dissipation diagnostic program, and heat dissipation diagnostic method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08234336A (en) * 1995-02-24 1996-09-13 Nec Corp Three-dimensional image photographing device
JP2011133321A (en) * 2009-12-24 2011-07-07 Pasuko:Kk Heat dissipation diagnostic device for three-dimensional structure and heat dissipation diagnostic program
WO2012127601A1 (en) * 2011-03-22 2012-09-27 株式会社パスコ Standing structure heat dissipation diagnostic device, heat dissipation diagnostic program, and heat dissipation diagnostic method

Similar Documents

Publication Publication Date Title
US6570566B1 (en) Image processing apparatus, image processing method, and program providing medium
EP2261604B1 (en) Computer arrangement for and method of calculating motion vectors using range sensor data
US9182220B2 (en) Image photographing device and method for three-dimensional measurement
CA2490153A1 (en) Stereoscopic x-ray imaging apparatus for obtaining three-dimensional coordinates
JPH05282429A (en) Picture display device
US20090073259A1 (en) Imaging system and method
US20150187132A1 (en) System and method for three-dimensional visualization of geographical data
CN109936737B (en) Method and system for testing wearable equipment
US20180295335A1 (en) Stereographic Imaging System Employing A Wide Field, Low Resolution Camera And A Narrow Field, High Resolution Camera
US20220011193A1 (en) Method and apparatus for measuring optical characteristics of augmented reality device
JP4193342B2 (en) 3D data generator
US20070263923A1 (en) Method for Stereoscopic Measuring Image Points and Device for Carrying Out Said Method
KR101533475B1 (en) Device for helping the capture of images
JPH07240945A (en) Virtual space generating and presenting device
JPH0353237A (en) Aerially photographed image processor
JP4747296B2 (en) How to visualize occluded space
JPH10322724A (en) Stereoscopic vision inspection device and computer readable recording medium recording stereoscopic vision inspection program
JP4710081B2 (en) Image creating system and image creating method
JPS6256814A (en) Calibration system for three-dimensional position measuring camera
JPH0774725B2 (en) Measuring method on TV image
KR19990068430A (en) 3-dimensional particle imaging velocimeter; 3D-PIV, so-called Thinker's EYE
JP2018074463A (en) Image generation device, image display system and program
JP6768400B2 (en) Information processing equipment, information processing methods and programs
JPH08237687A (en) Pseudo stereoscopic image display device
Tharp et al. A helmet mounted display to adapt the telerobotic environment to human vision