JPH035318A - Production of auric cyanide - Google Patents

Production of auric cyanide

Info

Publication number
JPH035318A
JPH035318A JP13554089A JP13554089A JPH035318A JP H035318 A JPH035318 A JP H035318A JP 13554089 A JP13554089 A JP 13554089A JP 13554089 A JP13554089 A JP 13554089A JP H035318 A JPH035318 A JP H035318A
Authority
JP
Japan
Prior art keywords
cyanide
gold
soln
aqueous phase
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13554089A
Other languages
Japanese (ja)
Other versions
JP2698429B2 (en
Inventor
Isao Watanabe
勲 渡辺
Mamoru Hirako
平子 衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP13554089A priority Critical patent/JP2698429B2/en
Publication of JPH035318A publication Critical patent/JPH035318A/en
Application granted granted Critical
Publication of JP2698429B2 publication Critical patent/JP2698429B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To inhibit the generation of poisonous gaseous HCN and aurous cyanide and to obtain high quality auric cyanide useful as a reagent for plating by extracting a gold from an acidic aq. soln. contg. the gold salt with an org. solvent and bringing the resulting soln. into contact with a carbonate-contg. aq. alkali cyanide soln. CONSTITUTION:Gold chloride is extracted from an acidic soln. contg. the gold chloride with an org. solvent such as methyl isobutyl ketone. The acidic soln. may be an HAuCl4 soln. prepd. by dissolving gold in a mixture of nitric acid with hydrochloric acid and carrying out concentration by heating and denitration. The resulting soln. of the extracted gold chloride in the org. solvent is brought into contact with a carbonate-contg. aq. alkali cyanide soln. of pH5-10 and a reaction is allowed to proceed under back extraction into the aq. phase to obtain auric cyanide.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金或いは金合金メツキ用シアン化金塩の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing cyanide gold salt for plating gold or gold alloys.

(従来技術とその問題点) 従来、金或いは金合金メツキにおいて、メツキ浴として
、酸性、中性、およびアルカリ性の浴がその目的、用途
に応じて適宜用いられており、そのいずれにおいてもメ
ツキ用試薬として、シアン化第−金塩が広く使用されて
いる。
(Prior art and its problems) Conventionally, acidic, neutral, and alkaline baths have been used as plating baths depending on the purpose and application in plating gold or gold alloys. As a reagent, gold cyanide salts are widely used.

しかし、シアン化第−金塩は、酸性域において不安定な
ため、メツキ操作上程々の工夫を要し、浴の管理も容易
ではない、という問題があった。
However, since the gold cyanide salt is unstable in an acidic region, there are problems in that the plating operation requires some ingenuity and bath management is not easy.

最近、金或いは金合金メツキにおいて、シアン化第二金
塩が酸性域においても安定的に挙動し、メツキ用試薬と
して好適であるとのことで利用度が高まっている。
Recently, in gold or gold alloy plating, gold cyanide salts have been increasingly used because they behave stably even in acidic regions and are suitable as plating reagents.

このシアン化第二金塩は、金塩化物をシアン化アルカリ
で錯化して得ることができる。シアン化金(III)を
シアン化アルカリで錯化する方法もあるが、シアン化金
(II[)は金塩化物を出発物質とするので、前述の製
造方法に帰結する。
This ferric cyanide salt can be obtained by complexing gold chloride with an alkali cyanide. There is also a method of complexing gold (III) cyanide with an alkali cyanide, but since gold (II) cyanide uses gold chloride as a starting material, the production method is the same as described above.

金塩化物をシアン化アルカリで錯化してシアン化第二金
塩を得るプロセスについては、ザ・メタラジイ・オブ・
ゴールド 第7版 1937年 第74頁CTHB M
8TALLURGY OF GOLD 7th Edi
tion、 1937゜P74 (Charles G
riffin & Company Ltd、)]に例
示があり、塩化金(IIII)や塩化金酸の水溶液にシ
アン化アルカリを作用させてシアン化第二金塩の母液と
し、ついで冷却・晶析・乾燥してシアン化第二金塩結晶
を得る方法が公知である。
The process of complexing gold chloride with alkali cyanide to obtain ferric cyanide salts is described in The Metallurgy of
Gold 7th edition 1937 page 74 CTHB M
8TALLURGY OF GOLD 7th Edi
tion, 1937゜P74 (Charles G.
Riffin & Company Ltd, )], an aqueous solution of gold(III) chloride or chloroauric acid is treated with an alkali cyanide to form a mother liquor of a ferric cyanide salt, which is then cooled, crystallized, and dried. Methods for obtaining ferric cyanide salt crystals are known.

改良プロセスとしては、特公昭61−38127に公知
の塩化金(II[)水溶液にシアン化カリウムを加えて
反応させ、反応生成物を晶出し、次いでシアン化第二金
塩は溶解し塩化カリウムを溶解しない有機系溶剤により
一旦溶解したのち再度濃縮・晶析を行い、乾燥の後シア
ン化第二金塩結晶を得る方法がある。
As an improved process, potassium cyanide is added to an aqueous solution of gold(II) chloride and reacted, as known in Japanese Patent Publication No. 61-38127, the reaction product is crystallized, and then the ferric cyanide salt dissolves and the potassium chloride does not dissolve. There is a method of once dissolving with an organic solvent, then concentrating and crystallizing again, and then drying to obtain ferric cyanide salt crystals.

前者の方法は、シアン化第二金塩結晶の基本的な製法に
ついて示したものであるが、塩化金(I[I)や塩化金
酸の水溶液にシアン化アルカリを加えて錯化させる際に
有毒なシアン化水素ガスが発生すること。錯化する際の
条件によっては、シアン化第二金塩のほかにシアン化第
−金塩が生成すること。シアン化第二金塩結晶中に反応
副成物である塩化カリウムなどの塩化物が混入すること
などの問題点を有する。
The former method describes the basic production method of ferric cyanide salt crystals, but when adding an alkali cyanide to an aqueous solution of gold chloride (I[I) or chloroauric acid to complex it, Emission of toxic hydrogen cyanide gas. Depending on the conditions during complexation, gold cyanide salts may be produced in addition to gold cyanide salts. There are problems such as chlorides such as potassium chloride, which are reaction by-products, being mixed into the auric cyanide salt crystals.

後者の方法は、シアン化第二金塩結晶中に反応副成物で
ある塩化カリウムなどの塩化物が混入することについて
の改良について示しているが、シアン化水素ガスの発生
やシアン化第−金塩の生成について何ら解決策を提示し
ていない。
The latter method shows an improvement in preventing chlorides such as potassium chloride, which is a reaction byproduct, from being mixed into the auric cyanide salt crystals, but it also prevents the generation of hydrogen cyanide gas and the auric cyanide salt does not present any solutions for the generation of .

(発明の目的) 本発明は、有毒なシアン化水素ガスの発生を抑止すると
ともに、シアン化第−金塩の生成を抑える目的でなされ
たものであり、簡単な操作でしかも高品質のシアン化第
二金塩の製造方法を提供するものである。
(Purpose of the Invention) The present invention was made for the purpose of suppressing the generation of toxic hydrogen cyanide gas and suppressing the production of gold cyanide salts. A method for producing gold salt is provided.

(問題点を解決するための手段) 本発明は、金塩化物を含む酸性溶液より有機溶媒で金を
抽出した後、該金抽出有機溶媒に炭酸塩を含むシアン化
アルカリ溶液を接触させ水相に逆抽出しつつ反応させる
ことにより、シアン化第二金塩溶液を得ることを特徴と
するシアン化第二金塩の製造方法であり、また逆抽出反
応において、水相の水素イオン濃度を5〜10の間に調
製しかつ、反応で消費されるシアン化アルカリを水相に
補充しつつ逆抽出反応を行うことを特徴とするものであ
る。
(Means for Solving the Problems) The present invention involves extracting gold from an acidic solution containing gold chloride with an organic solvent, and then contacting the gold extraction organic solvent with an alkali cyanide solution containing a carbonate to form an aqueous phase. This is a method for producing ferric cyanide salt, which is characterized in that a solution of ferric cyanide salt is obtained by reacting while back-extracting the hydrogen ion concentration of the aqueous phase to 5. The method is characterized in that the aqueous phase is prepared between 10 and 10 minutes, and the back extraction reaction is carried out while replenishing the aqueous phase with the alkali cyanide consumed in the reaction.

すなわち従来の製造方法では、シアン化水素の発生は、
強酸性である金の塩化物溶液に対してシアン化アルカリ
溶液を直接加える為に起こっていた。しかし本発明では
、金塩化物を含む酸性溶液から有機溶媒で金を塩化物と
して一旦抽出し、該金抽出有機溶媒に炭酸塩を含むシア
ン化アルカリ溶液を作用させて、逆抽出しつつ錯化させ
るようにしているので従来の方法にくらベシアン化水素
の発生が起こり難い。
In other words, in conventional production methods, hydrogen cyanide is generated by
This happened because an alkali cyanide solution was added directly to a strongly acidic gold chloride solution. However, in the present invention, gold is once extracted as chloride from an acidic solution containing gold chloride using an organic solvent, and an alkali cyanide solution containing carbonate is applied to the gold extraction organic solvent to perform back extraction and complexation. Therefore, generation of hydrogen cyanide is less likely to occur than in conventional methods.

また炭酸塩は、シアン化アルカリ溶液が強酸性となるの
を防止する緩衝剤として働き、炭酸ガスの発生により酸
性度が上がらなくなるとともにシアン化水素ガスの発生
を防止する。
The carbonate also acts as a buffer to prevent the alkaline cyanide solution from becoming strongly acidic, preventing the acidity from increasing due to the generation of carbon dioxide gas and preventing the generation of hydrogen cyanide gas.

シアン化第二金は、強アルカリ性とすると還元してシア
ン化第−金となる性質を有しており、加熱などにより助
長される。従来の製造方法では、錯化の際に強アルカリ
性であるシアン化アルカリを加えるので、攪拌が不十分
であったり、錯化の際の反応熱で温度が上がり過ぎたり
するような条件の違いによりシアン化第−金塩が生成し
たりする傾向がある。
Gold cyanide has the property of being reduced to gold cyanide when made strongly alkaline, and this is promoted by heating or the like. In the conventional manufacturing method, alkali cyanide, which is strongly alkaline, is added during complexation, so there may be differences in conditions such as insufficient stirring or the temperature rising too high due to the heat of reaction during complexation. There is a tendency for gold cyanide salts to be formed.

前述の炭酸塩は、ここにおいても、溶液が強アルカリ性
とならない様に緩衝作用を及ぼし、シアン化第−金塩の
生成を防止する。
The aforementioned carbonate also has a buffering effect here so that the solution does not become strongly alkaline and prevents the formation of gold cyanide salts.

本発明により得たシアン化第二金塩の溶液は、溶液のま
ま使用したり、濃縮や晶析などの工程を経て結晶として
取り出して使用する。さらに従来より知られている再結
晶化や特公昭61−38127に示される工程を経れば
、容易に高純度化が可能である。
The solution of the auric cyanide salt obtained according to the present invention can be used as a solution, or can be taken out as crystals through processes such as concentration and crystallization. Furthermore, high purity can be easily achieved through the conventionally known recrystallization process or the process shown in Japanese Patent Publication No. 61-38127.

本発明方法では、塩化カリウムなどの副成する不純物に
ついて言及しないのは、本発明方法の主目的がシアン化
第二金塩を製造する際の錯化工程に関するものであり、
塩化カリウムなどの副成する不純物については従来より
知られている再結晶化や特公昭61−38127に示さ
れる有機溶剤浸出などの工程を利用するからである。
The reason why the method of the present invention does not mention by-forming impurities such as potassium chloride is because the main purpose of the method of the present invention is related to the complexing step when producing the ferric cyanide salt.
This is because impurities such as potassium chloride are treated by conventionally known processes such as recrystallization and organic solvent leaching as disclosed in Japanese Patent Publication No. 38127/1983.

本発明における金塩化物とは、塩化金(III)、塩化
金酸などの三価の金塩化物である。酸性溶液とするには
、塩酸酸性が好ましいが、塩化金も塩化金酸も水溶液中
では、強酸性を示すので特に酸で調製しなくとも良い。
The gold chloride in the present invention is trivalent gold chloride such as gold(III) chloride and chloroauric acid. In order to obtain an acidic solution, hydrochloric acid acidity is preferable, but since both gold chloride and chloroauric acid exhibit strong acidity in aqueous solution, it is not necessary to prepare the solution with an acid.

金塩化物の酸性溶液としては、金を硝酸と塩酸の混酸に
溶解し、次式により塩化金(III)酸溶液を生成し、
加熱濃縮して脱硝したものなどがある。
As an acidic solution of gold chloride, gold is dissolved in a mixed acid of nitric acid and hydrochloric acid, and an acid solution of chloroauric (III) is generated according to the following formula,
There are also those that have been heated and concentrated to remove nitrogen.

A u + HN O3+ 4 HC1−HAuCj!
*+2H*O+NO 有機溶媒としては、全抽出試薬を含んだ非水性の有機溶
媒を用いる。全抽出試薬を含んだ非水性の有機溶媒とし
ては、メチルイソブチルケトン、エチルエーテル、メチ
ルエチルエーテルナト有機溶媒自身が全抽出試薬として
作用するもの、ジブチルカルピトール、トリブチルリン
酸、TOPOなどのように適当な有機溶剤を希釈して作
用させた方がよいものなどがある。−船釣で入手し易い
点で、メチルイソブチルケトン(以下rMIBKJとよ
ぶ。)やエーテル類が好ましい。
A u + HN O3+ 4 HC1-HAuCj!
*+2H*O+NO As the organic solvent, a non-aqueous organic solvent containing all the extraction reagents is used. Non-aqueous organic solvents containing total extraction reagents include methyl isobutyl ketone, ethyl ether, methyl ethyl ether, organic solvents that themselves act as total extraction reagents, dibutyl calpitol, tributyl phosphate, TOPO, etc. There are some substances that are best treated by diluting an appropriate organic solvent. - Methyl isobutyl ketone (hereinafter referred to as rMIBKJ) and ethers are preferred because they are easily available by boat fishing.

また全抽出試薬を含んだ非水性の有機溶媒は、金以外の
金属を抽出する特性を有するものがある。
Furthermore, some non-aqueous organic solvents containing all extraction reagents have the property of extracting metals other than gold.

金塩化物の酸性溶液中に不純物として金以外の金属を含
んでいる場合には、酸性度を変えたり、抽出後の有機溶
媒をスクラビングする等の操作が必要になる。
If the acidic solution of gold chloride contains metals other than gold as impurities, operations such as changing the acidity or scrubbing the organic solvent after extraction are required.

金を抽出有機溶媒に炭酸塩を含むシアン化アルカリ溶液
を接触させると、有機溶媒中の金塩化物と水相中のシア
ン化アルカリとが反応してシアン化第二金塩が生成する
。シアン化第二金塩は、有機溶媒に対して分配比が小さ
いので、生成したシアン化第二金塩が有機相側へ移るこ
とはほとんどない。
Extraction of Gold When an organic solvent is brought into contact with an alkali cyanide solution containing a carbonate, the gold chloride in the organic solvent and the alkali cyanide in the aqueous phase react to produce a ferric cyanide salt. Since the distribution ratio of the ferric cyanide salt to the organic solvent is small, the generated ferric cyanide salt hardly moves to the organic phase side.

有機溶媒を用いた金塩化物の抽出系では、塩化金はHA
 u CI! y OH、塩化金酸はHAuCβ、のよ
うに酸の形でイオン対抽出される。従って前述の有機相
から水相への逆抽出反応において水相のpHが低下する
傾向にある。反応の進行に伴い、炭酸イオンが消費され
るので、いずれは緩衝性を有しなくなってしまう。この
傾向は、塩化金(HA u C130H)よりも塩化金
酸(HA u C124)のほうがより顕著である。
In the extraction system of gold chloride using an organic solvent, gold chloride is
u CI! y OH, chloroauric acid is ion-pair extracted in acid form, such as HAuCβ. Therefore, in the above-mentioned back extraction reaction from the organic phase to the aqueous phase, the pH of the aqueous phase tends to decrease. As the reaction progresses, carbonate ions are consumed, and eventually they no longer have buffering properties. This tendency is more pronounced for chloroauric acid (HA u C124) than for gold chloride (HA u C130H).

こうした反応は、シアン化水素の発生の点で好ましくな
いので、水相の反応はpH=4より高い範囲にする必要
がある。工業的に好ましい操作条件は、水相溶液中に過
剰の炭酸イオンを残すことによりpHの急激な変動を抑
え、シアン化水素の発生を防止するような条件である。
Since such a reaction is unfavorable in terms of generation of hydrogen cyanide, the reaction in the aqueous phase must be carried out at a pH higher than 4. Industrially preferred operating conditions are those that suppress rapid fluctuations in pH and prevent the generation of hydrogen cyanide by leaving excess carbonate ions in the aqueous phase solution.

その際のpHは5以上にすると過剰炭酸イオン分が安全
率となりより好ましく実用的である。
When the pH at that time is set to 5 or more, the excess carbonate ion content becomes a safety factor, which is more preferable and practical.

さらに、アルカリ側にあまり高くすると前述のシアン化
第二金塩のほかにシアン化第−金塩が生成する問題がお
こるので、水相のpHは、10以下とするのが良い。
Furthermore, if the pH is too high on the alkaline side, a problem arises in that gold cyanide salts are produced in addition to the aforementioned ferric cyanide salts, so the pH of the aqueous phase is preferably 10 or less.

本発明の特許請求の範囲第2項において、水相のpHを
5から10の間に調製するようにしているのはこの理由
によるもので、水酸化アルカリや炭酸塩などでおこなう
。また炭酸塩には、製造するシアン化第二金塩がカリウ
ム塩の場合はカリウム塩を、ナトリウム塩の場合はす)
 IJウム塩を使用するなどアルカリ金属を同一のもの
とするのが良く、シアン化アルカリや水酸化アルカリに
ついても同様のことが言える。
This is the reason why, in claim 2 of the present invention, the pH of the aqueous phase is adjusted between 5 and 10, and this is done using alkali hydroxide, carbonate, or the like. In addition, for the carbonate, if the ferric cyanide salt to be produced is a potassium salt, add the potassium salt, or if it is a sodium salt, add the potassium salt.)
It is preferable to use the same alkali metal, such as using IJium salt, and the same can be said of alkali cyanide and alkali hydroxide.

シアン化第二金カリウムを製造する場合には、炭酸水素
カリウムや炭酸カリウムなどを単体でもしくは混合して
使用する。さらにまた炭酸塩の水相中の濃度は、0.2
モル/β以上になるように添加しておくと良い。
When producing potassium cyanide, potassium bicarbonate, potassium carbonate, etc. are used alone or in combination. Furthermore, the concentration of carbonate in the aqueous phase is 0.2
It is preferable to add it so that it is equal to or higher than mol/β.

シアン化アルカリを水相に補充しつつ反応させるのは、
つぎのような理由による。
The reaction is carried out while supplementing the aqueous phase with alkali cyanide.
This is due to the following reasons.

シアン化アルカリは、強アルカリ性を示し水相中に多量
に添加すると緩衝塩の存在下であっても前述の水相のp
H条件である10を超えてしまう。
Alkali cyanide exhibits strong alkalinity, and when added in large amounts to the aqueous phase, the pH of the aqueous phase described above will increase even in the presence of buffer salts.
This exceeds the H condition of 10.

また、より高濃度のシアン化第二金カリウムの溶液とす
るためには、より多くのシアン化アルカリを必要とする
ので、前述のpHを維持するのに困難がともなうからで
ある。
Further, in order to obtain a solution of potassium cyanide with higher concentration, a larger amount of alkali cyanide is required, which makes it difficult to maintain the above-mentioned pH.

従って、炭酸塩を含んだ溶液と金を含んだ溶液とを接触
させつつ、前述のpH条件の範囲内でシアン化アルカリ
を補充しながら逆抽出反応をさせた方が反応の制御が容
易である。
Therefore, it is easier to control the reaction by bringing the carbonate-containing solution into contact with the gold-containing solution and performing the back extraction reaction while replenishing alkali cyanide within the above pH conditions. .

以下、本発明に係わる実施例について説明するが、該実
施例は本発明を限定するものではない。
Examples related to the present invention will be described below, but the examples do not limit the present invention.

実施例・1 金濃度500g/j2の塩化金(I)溶液500m1l
!にメチルイソブチルケトン(MIBK>  700m
j7を加えて1βの分液ロート中で約15分間混合攪拌
した後、静置して、有機相と水相を分離させた。金を抽
出した結果、有機相と水相の比重が逆転し、下層が金を
抽出した有機相となった。
Example 1 500ml of gold(I) chloride solution with gold concentration of 500g/j2
! Methyl isobutyl ketone (MIBK>700m
After adding j7 and stirring for about 15 minutes in a 1β separatory funnel, the mixture was allowed to stand to separate the organic phase and the aqueous phase. As a result of the gold extraction, the specific gravity of the organic and aqueous phases was reversed, and the bottom layer became the organic phase from which the gold was extracted.

下層の金を抽出した有機相を、次の分液ロート(5j2
)にあけ、当該有機相に1βあたり炭酸水素カリウム5
0gとシアン化カリウム100gを含むpH9,2とし
た溶液を、反応当量の1.05倍にあたる3.450m
1を約500−毎、7回に分けて添加・混合した。
The organic phase from which the gold in the lower layer was extracted was transferred to the next separatory funnel (5j2
) and added 5 potassium bicarbonate per 1β to the organic phase.
A solution containing 0 g and 100 g of potassium cyanide at pH 9.2 was heated to 3.450 m which is 1.05 times the reaction equivalent.
1 was added and mixed in 7 portions, approximately every 500 g.

炭酸水素カリウム50gとシアン化カリウム100gの
混合溶液を加える度に、有機相の黄色の着色が薄くなり
、3.450m12目では、有機相の着色が無くなり透
明になった。また混合溶液側である水相は、僅かに褐色
澄明を示した。さらに有機相と水相が再び逆転し、上層
が有機相、下層が水相となった。
Each time a mixed solution of 50 g of potassium hydrogen carbonate and 100 g of potassium cyanide was added, the yellow coloring of the organic phase became lighter, and at the 12th point of 3.450 m, the coloring of the organic phase disappeared and became transparent. Further, the aqueous phase on the side of the mixed solution showed a slightly clear brown color. Furthermore, the organic and aqueous phases were reversed again, with the upper layer becoming the organic phase and the lower layer becoming the aqueous phase.

水相を、次の分液ロート(51)にあけ、さらにn−ヘ
キサン100m1を加えてスクラビングし、水相に微量
に溶存するMIBKを除いた。
The aqueous phase was poured into the next separatory funnel (51) and scrubbed with 100 ml of n-hexane to remove a trace amount of MIBK dissolved in the aqueous phase.

n−へキサン処理した水相を取り出し、イオンクロマト
グラフィーでシアン化第二金カリウムとシアン化第−金
カリウムの分離定量分析をおこなったところ、シアン化
第−金カリウムは全く認められなかった。
When the aqueous phase treated with n-hexane was taken out and subjected to separation and quantitative analysis of potassium cyanide and potassium cyanide using ion chromatography, no potassium potassium cyanide was detected.

また、7回の操作中の分液ロート内のシアン化水素ガス
をガス検知管分析法で測定したところ、6回目までは、
10ppm以下で、7回目は35ppmであった。さら
に操作終了後の、水相のpHは、8.5であった。
In addition, when we measured hydrogen cyanide gas in the separating funnel during seven operations using gas detector tube analysis, we found that up to the sixth operation,
It was 10 ppm or less, and the seventh time was 35 ppm. Furthermore, after the completion of the operation, the pH of the aqueous phase was 8.5.

以上のように、本発明方法によるシアン化第二金塩の製
造方法は、シアン化第−金カリウムの生成が無く、シア
ン化水素ガスの発生も少ない。
As described above, the method for producing a cyanauric salt according to the method of the present invention does not generate potassium cyanide and generates little hydrogen cyanide gas.

比較例 1 実施例1に対応する比較例として、炭酸塩である炭酸水
素カリウムを添加しない場合について例示する。
Comparative Example 1 As a comparative example corresponding to Example 1, a case where potassium hydrogen carbonate, which is a carbonate, is not added will be exemplified.

実施例1と同様にして、金濃度500g/fの塩化金(
I[I)溶液500−にメチルイソブチルケトン(MI
BK)  700mjl!を加えてIIlの分液ロート
中で約15分間混合攪拌した後、静置して、有機相と水
相を分離させた。
Gold chloride (with a gold concentration of 500 g/f) was prepared in the same manner as in Example 1.
Methyl isobutyl ketone (MI
BK) 700 mjl! The mixture was mixed and stirred in a IIl separating funnel for about 15 minutes, and then left to stand to separate the organic phase and the aqueous phase.

ついで下層の金を抽出した有機相を、次の分液ロー) 
(5β)にあけ、当該有機相に1βあたりシアン化カリ
ウム100gを含むp H12,6の溶液を、反応当量
の1.05倍にあたる3.450mfを約500m1毎
、7回に分けて添加・混合した。
Then, the organic phase from which the lower layer of gold was extracted is subjected to the next separation row)
(5β), and a solution of pH 12.6 containing 100 g of potassium cyanide per 1β was added and mixed to the organic phase at a rate of 3.450 mf, which is 1.05 times the reaction equivalent, in 7 portions at approximately 500 ml intervals.

シアン化カリウムの溶液を加える度に、有機相の黄色の
着色が薄くなり、3.450−目では、有機相の着色が
無くなり透明になった。また混合溶液側である水相は、
僅かに褐色澄明を示した。さらに有機相と水相が再び逆
転し、上層が有機相、下層が水相となった。
Each time a solution of potassium cyanide was added, the yellow coloring of the organic phase became lighter, and at the 3.450th mark, the organic phase lost its color and became transparent. In addition, the aqueous phase on the mixed solution side is
It was slightly brown and clear. Furthermore, the organic and aqueous phases were reversed again, with the upper layer becoming the organic phase and the lower layer becoming the aqueous phase.

水相を、次の分液ロー)(5jlりにあけ、さらにn−
へキサン100m1を加えてスクラビングし、水相に微
量に溶存するMIBKを除いた。
Pour the aqueous phase into the following separation row) (5 l), and then add n-
100 ml of hexane was added and scrubbed to remove a trace amount of MIBK dissolved in the aqueous phase.

n−ヘキサン処理した水相を取り出し、イオンクロマト
グラフィーでシアン化第二金カリウムとシアン化第−金
カリウムの分離定量分析をおこなったところ、シアン化
第二金塩125g/βに対してシアン化第−金塩2.3
g/βが検出された。
The aqueous phase treated with n-hexane was taken out and separated and quantitatively analyzed for potassium cyanide and potassium cyanide using ion chromatography. No.-Gold Salt 2.3
g/β was detected.

また、7回の操作中の分液ロート内のシアン化水素ガス
をガス検知管分析法で測定したところ、1〜3回目まで
は、10ppm以下であったが、4回目が25ppm、
 5回目が18ppm、6回目が150ppm。
In addition, when the hydrogen cyanide gas in the separating funnel was measured using a gas detection tube analysis method during seven operations, it was below 10 ppm for the first to third operations, but 25 ppm for the fourth operation, and 25 ppm for the fourth operation.
The fifth time was 18ppm, and the sixth time was 150ppm.

7回目は650ppmであった。さらに操作終了後の、
水相のpHは、4.9であった。
The seventh time was 650 ppm. Furthermore, after the operation is completed,
The pH of the aqueous phase was 4.9.

本比較例に示すように、炭酸塩が添加されていないと、
シアン化第−金塩が生成したり、シアン化水素ガスの発
生量が多い。また水相のpH変動も大きい。
As shown in this comparative example, if no carbonate is added,
Gold cyanide salts are produced, and a large amount of hydrogen cyanide gas is produced. Moreover, the pH fluctuation of the aqueous phase is also large.

従来例 1 本従来例は、公知技術であるTHE !、18TALL
URGYOF GOLD 7th Bditionや特
公昭61−38127に示される金塩化物のシアノ錯体
化工程に基づくものである。
Conventional Example 1 This conventional example is based on THE! which is a known technology. , 18TALL
It is based on the cyano complexation process of gold chloride shown in URGYOF GOLD 7th Bdition and Japanese Patent Publication No. 61-38127.

全濃度500g/βの塩化金(I)溶液500−を2倍
に希釈し、次いで反応当量の1.05倍に相当するシア
ン化カリウム溶液(250g/f)  1.400mn
を攪拌下で徐々に添加した。
Dilute 500-fold of gold(I) chloride solution with a total concentration of 500 g/β, then add 1.400 mn of potassium cyanide solution (250 g/f) corresponding to 1.05 times the reaction equivalent.
was gradually added under stirring.

溶液の液色は、当初オレンジ色であったが、やがて濃茶
褐色になり、徐々に着色が薄くなり、1、400fn1
目では、着色が無くなり透明になった。
The color of the solution was initially orange, but eventually turned to dark brown, and the coloring gradually became lighter until 1,400fn1.
In the eyes, the coloring disappeared and became transparent.

得られた溶液を、3.500rdまで希釈し、イオンク
ロマトグラフィーでシアン化第二金カリウムとシアン化
第−金カリウムの分離定量分析をおこなったところ、シ
アン化第二金塩120g/Aに対してシアン化第−金塩
0.8g1l!が検出された。
The obtained solution was diluted to 3.500rd and separated and quantitatively analyzed for potassium cyanide and potassium cyanide using ion chromatography. 0.8g1l of cyanide gold salt! was detected.

またシアン化カリウム溶液を攪拌下で徐々に添加する際
には、シアン化水素ガスの発生があり、500mN目で
は、120ppm、  1.000m1目では、80p
pm。
Furthermore, when potassium cyanide solution is gradually added under stirring, hydrogen cyanide gas is generated; at 500 mN, the concentration is 120 ppm, and at 1.000 mN, it is 80 ppm.
p.m.

反応終了後は、150ppmであった 本従来例に示すように、従来の錯化工程では、シアン化
第−金塩が生成したり、シアン化水素ガスの発生量が多
いことを示している。
After the reaction was completed, the amount was 150 ppm, as shown in this prior art example, which shows that in the conventional complexing step, gold cyanide salt is produced and a large amount of hydrogen cyanide gas is produced.

実施例 2 本実施例は、工業的規模でのシアン化第二金カリウムの
製造について示す。
Example 2 This example demonstrates the production of potassium potassium cyanide on an industrial scale.

(原料) 金塩化物溶液は次の方法により得る。(material) A gold chloride solution is obtained by the following method.

純度99.99%以上の金属金粉末4.000gと12
.5βの王水(塩1110f :硝酸2.51をガラス
製の反応容器中で加熱しpつ反応させ、金を溶解し、約
51になるまで濃縮し、ついで塩酸を約0.51滴下し
つつ脱硝をおこない、塩酸滴下完了後に81まで希釈・
濾過の後、金濃度約500g/j2の金塩化物溶液とし
た。
4.000g of metal gold powder with purity of 99.99% or more and 12
.. 5β aqua regia (salt 1110f: nitric acid 2.51 is heated in a glass reaction vessel to cause a reaction, dissolve the gold, concentrate to about 51, and then add about 0.51 drops of hydrochloric acid. After denitration and completion of hydrochloric acid addition, dilute to 81.
After filtration, a gold chloride solution with a gold concentration of approximately 500 g/j2 was prepared.

この金塩化物溶液は、塩化金(III)と塩化金酸を含
む混合溶液で、塩化金(III)だけの溶液よりは、酸
性度が高い溶液である。この溶液を用いるのは、−旦塩
化金(I)や塩化金酸の試薬とするよりも工業的に製造
が容易であり、本発明の実施に何ら差し支えが無いから
である。
This gold chloride solution is a mixed solution containing gold (III) chloride and chloroauric acid, and is more acidic than a solution containing only gold (III) chloride. The reason for using this solution is that it is easier to manufacture industrially than gold(I) chloride or chloroauric acid reagents, and there is no problem in carrying out the present invention.

その他の薬品については市販の薬品を使用した。For other chemicals, commercially available chemicals were used.

(装置) 図は、本発明の実施に用いたシアン化第二金カリウムの
製造設備の模式図で、金塩化物を有機溶媒中に抽出する
操作と水相に逆抽出しつつシアン化アルカリと反応させ
る操作を行うための装置である。
(Apparatus) The figure is a schematic diagram of the production equipment for potassium cyanide used in the practice of the present invention, in which gold chloride is extracted into an organic solvent, back-extracted into an aqueous phase, and alkali cyanide is added. This is a device for performing reaction operations.

原料や薬品の投入用配管1が接続され、pH計2、攪拌
機3、反応熱を逃がすための冷却用ジャケット4、排気
ダクト5を備え、底部6には液抜き弁7を設けである。
It is connected to a pipe 1 for introducing raw materials and chemicals, and is equipped with a pH meter 2, a stirrer 3, a cooling jacket 4 for dissipating reaction heat, and an exhaust duct 5, and a liquid drain valve 7 is provided at the bottom 6.

(金塩化物の抽出操作) 図に示す装置内に、有機相としてMIBKを301をあ
らかじめ入れておく。次いで本実施例の(原料)の項で
述べた金塩化物溶液81を加え、約30分間攪拌機3を
廻して、強く混合攪拌を行った。
(Extraction operation of gold chloride) MIBK 301 is placed in advance as an organic phase in the apparatus shown in the figure. Next, the gold chloride solution 81 described in the section (raw materials) of this example was added, and the stirrer 3 was turned for about 30 minutes to mix and stir vigorously.

水相9中の金塩化物は、有機相8であるMIBKに抽出
され、反応開始前に橙色であった水相9は、僅かに黄色
味がかった色となり、一方有機相8は、橙色に着色する
The gold chloride in the aqueous phase 9 is extracted into the organic phase 8, MIBK, and the aqueous phase 9, which was orange before the start of the reaction, becomes slightly yellowish, while the organic phase 8 becomes orange. Color.

混合攪拌後、約30分間静置すると、上段が金を抽出し
た有機相8、下段が水相9となった。
After mixing and stirring, the mixture was left to stand for about 30 minutes, and the upper layer became an organic phase 8 from which gold was extracted, and the lower layer became an aqueous phase 9.

金の量が多かったり、MIBKの量が少ないと比重差が
無くなり分離が困難になり、場合によっては、下段が金
を抽出した有機相8、上段が水相9となるので注意が必
要である。
If the amount of gold is large or the amount of MIBK is small, there will be no difference in specific gravity, making separation difficult, and in some cases, the lower layer will be the organic phase 8 from which gold has been extracted, and the upper layer will be the aqueous phase 9, so care must be taken. .

実施例1と異なり、MIBK量を調整し下段に水相9が
なる様にしている理由は、水相9を装置外へ排出しやす
くするためである。
Unlike Example 1, the reason why the amount of MIBK is adjusted so that the aqueous phase 9 is in the lower stage is to make it easier to discharge the aqueous phase 9 out of the apparatus.

静置後は、装置の底部にある液抜き弁を開き、水相部分
のみを排出した。
After standing still, the liquid drain valve at the bottom of the apparatus was opened to discharge only the aqueous phase portion.

(逆抽出反応操作) 次いで、装置内の金を抽出した有機相8(MIBK相)
に10%の炭酸水素カリウム(KHCO3)溶液5βを
加え、さらに強攪拌しつつ20%のシアン化カリウム(
KCN)溶液を徐々に加えた。またシアン化カリウムを
徐々に加える際に、pH計2の指示値が6以下になった
ら、10%の水酸化カリウム(KOH)溶液をpH8に
なるまで加えるようにし、pH条件から外れない様に反
応させた。
(Reverse extraction reaction operation) Next, organic phase 8 (MIBK phase) from which gold was extracted in the apparatus.
Add 10% potassium hydrogen carbonate (KHCO3) solution 5β to the solution, and add 20% potassium cyanide (KHCO3) while stirring vigorously.
KCN) solution was added gradually. Also, when adding potassium cyanide gradually, if the reading on pH meter 2 becomes 6 or less, add 10% potassium hydroxide (KOH) solution until the pH reaches 8, making sure to keep the reaction within the pH conditions. Ta.

シアン化カリウムを加えてゆくにつれて、有機相8の橙
色の着色が薄くなり、MIBK層が無色透明になったと
ころを反応の終点とし、シアン化カリウム溶液を加える
のをやめ、さらに約30分間混合攪拌を続けた後、攪拌
を停止した。反応を停止させるまでに、シアン化カリウ
ム溶液は27.’R2を要し、また水酸化カリウム溶液
は1.51を要した。
As potassium cyanide was added, the orange coloring of organic phase 8 became lighter, and the end point of the reaction was when the MIBK layer became colorless and transparent, the addition of potassium cyanide solution was stopped, and mixing and stirring was continued for about 30 minutes. After that, stirring was stopped. By the time the reaction is stopped, the potassium cyanide solution is 27. 'R2 and the potassium hydroxide solution required 1.51.

また反応中は、反応熱が発生して温度が上昇するので、
冷却水を冷却用ジャケットに流し、80℃以上の温度に
ならない様にしながら反応をさせた。
Also, during the reaction, reaction heat is generated and the temperature rises, so
Cooling water was poured into the cooling jacket, and the reaction was carried out while keeping the temperature from exceeding 80°C.

混合攪拌後、約30分間静置すると、上段がMIBKに
よる有機相8、下段がシアン化第二金カリウムを含む水
相9となったので、装置の底部6にある液抜き弁7を開
き、シアン化第二金カリウムを含む水相9部分のみを排
出した。
After mixing and stirring, when left to stand for about 30 minutes, the upper layer became an organic phase 8 made of MIBK and the lower layer became an aqueous phase 9 containing potassium cyanide, so open the drain valve 7 at the bottom 6 of the device, Only 9 portions of the aqueous phase containing potassium potassium cyanide were discharged.

MIBKは、装置内に残しておき次の製造の際に再度使
用する。
The MIBK is left in the device and used again during the next manufacturing process.

(MrBK除去操作) 図と同様の装置を用い水相9中に僅かに残るMIBKを
除く目的で、揮発しゃすいn−ヘキサン中に移すことに
より洗浄する工程である。
(MrBK Removal Operation) This is a cleaning step in which the aqueous phase 9 is transferred to volatile n-hexane in order to remove a small amount of MIBK remaining in the aqueous phase 9 using the same apparatus as shown in the figure.

図に示す装置内に、有機相8としてn−へキサンを10
j2をあらかじめ入れておく。次いで本実施例のく逆抽
出反応操作)の項で得た、シアン化第二金カリウムを含
む水相9部分を加え、55℃で約10分間攪拌機を廻し
て、強く混合攪拌を行った。
In the apparatus shown in the figure, 10% of n-hexane was added as the organic phase 8.
Insert j2 in advance. Next, 9 portions of the aqueous phase containing potassium potassium cyanide obtained in the section (reverse extraction reaction operation) of this example were added, and a stirrer was turned for about 10 minutes at 55° C. to mix and stir vigorously.

この操作により、シアン化第二金カリウムを含む水相9
中に僅かにのこるMIBKは、n−へキサン側に移る。
By this operation, the aqueous phase 9 containing potassium potassium cyanide
A small amount of MIBK remaining inside moves to the n-hexane side.

混合攪拌後、約10分間静置すると、上段がn =ヘキ
サンの有機相8、下段がn−ヘキサン処理後のシアン化
第二金カリウムを含む水相9となったので、装置の底部
6にある液抜き弁7を開き、水相9部分のみを排出した
After mixing and stirring, leave it to stand for about 10 minutes, and the upper layer becomes an organic phase 8 of n-hexane, and the lower layer becomes an aqueous phase 9 containing potassium cyanide after n-hexane treatment. A certain drain valve 7 was opened, and only a portion of the water phase 9 was discharged.

(晶析工程) M I B K除去操作を行った後のシアン化第二金カ
リウムを含む水相9 (約30f)は、ステンレス製の
ビーカー(15J) 3ケにおのおの等量になるように
分け、冷媒を張り込んだ冷却桶中で0℃になるまで攪拌
しつつ晶析した。
(Crystallization step) After performing the M I B K removal operation, the aqueous phase 9 (approximately 30 f) containing potassium cyanide was placed in equal amounts into 3 stainless steel beakers (15 J). The mixture was separated and crystallized while stirring in a cooling tank filled with a refrigerant until the temperature reached 0°C.

ついで、285φのブフナー漏斗で濾過してシアン化第
二金カリウムの粗結晶(湿った状態で約10kg)を得
た。
The mixture was then filtered through a Buchner funnel of 285φ to obtain crude potassium cyanide crystals (approximately 10 kg in wet condition).

再結晶操作によって純度を上げるために、このシアン化
第二金カリウムの粗結晶を2分して、前述のステンレス
製のビーカー2ケに入れ、各々に85℃の熱純水を51
加えてとかした。
In order to increase the purity by recrystallization, the crude potassium cyanide crystals were divided into two parts, placed in the two stainless steel beakers mentioned above, and each was filled with 51 cm of hot pure water at 85°C.
I added it and combed it.

70℃で濾過を行って、溶液中に残るゴミなどを除き、
再びステンレス製のビーカー2ケに入れ、20℃まで冷
却桶中で冷却してシアン化第二金カリウムの再晶析結晶
とした。
Filter at 70°C to remove dust remaining in the solution.
The mixture was again placed in two stainless steel beakers and cooled to 20° C. in a cooling tub to obtain recrystallized crystals of potassium potassium cyanide.

(乾燥・分析) シアン化第二金カリウムの再晶析結晶は、角形のステン
レス皿にあけ、熱風式の乾燥機中で、70℃で12時間
乾燥を行い、シアン化第二金カリウム・無水塩の結晶5
.950gを得た。
(Drying/Analysis) The recrystallized crystals of potassium cyanide were poured into a rectangular stainless steel dish and dried at 70°C for 12 hours in a hot air dryer. salt crystal 5
.. 950g was obtained.

分析によりこの結晶を評価したところ、含金率57、8
8重量%、水分0.01重量%とほぼシアン化第二金カ
リウム・無水塩の理論値に相当し、また不純物としての
シアン化第−金カリウムは認められず、塩化カリウムの
含量も0.005重量%と極めて純度の高いものであり
、メツキ用や試薬と使用しても全く差し支えの無いもの
であった。
When this crystal was evaluated by analysis, the metal content was 57.8.
8% by weight and 0.01% by weight of moisture, which almost corresponds to the theoretical values of potassium cyanide anhydride, and no potassium potassium cyanide was observed as an impurity, and the content of potassium chloride was 0. It had an extremely high purity of 0.005% by weight, and could be used for plating or as a reagent without any problem.

実施例・3 全濃度500g/βの塩化金(I)酸溶液(6N塩酸酸
性)1βにMIBK300m1.を加えて分液ロートで
混合攪拌して静置したのち、塩酸層を分離し、分液ロー
ト内の金を抽出したM I B Kに炭酸ナトリウムと
炭酸水素ナトリウム各18g/lを含むシアン化ナトリ
ウム300g/lの濃度の溶液を攪拌下でゆっくりと加
え、MIBK層が無色透明になったところで水酸化ナト
リウムを含むシアン化ナトリウム溶液を加えるのをやめ
、1時間静置し金を逆抽出した。
Example 3 300ml of MIBK was added to 1β of a chloroauric (I) acid solution (acidic with 6N hydrochloric acid) with a total concentration of 500 g/β. After mixing and stirring in a separatory funnel and leaving it to stand, the hydrochloric acid layer was separated, and the gold in the separatory funnel was extracted with cyanide containing 18 g/l each of sodium carbonate and sodium hydrogen carbonate. A solution with a concentration of 300 g/l of sodium was slowly added under stirring, and when the MIBK layer became colorless and transparent, the addition of the sodium cyanide solution containing sodium hydroxide was stopped, and the mixture was allowed to stand for 1 hour to back-extract the gold. .

その後、5℃まで冷却してシアン化第二金ナトリウムを
晶析させ、この晶析物を濾過分離し5℃の脱イオン水で
洗浄後、乾燥機内80℃で12時間乾燥してシアン化第
二金す) IJウムの粉末結晶を得た。
Thereafter, it was cooled to 5°C to crystallize sodium cyanide, and the crystallized product was separated by filtration, washed with deionized water at 5°C, and dried at 80°C in a dryer for 12 hours to obtain sodium cyanide. A powder crystal of IJum was obtained.

この粉末を分析したところ、N a A u (CN)
4の純度99.85%、NaAu (CN)20.05
%以下、銀イオン1 ppm以下であった。
When this powder was analyzed, N a A u (CN)
Purity of 4 99.85%, NaAu (CN) 20.05
% or less, and silver ions were less than 1 ppm.

また、操作中のシアンガス測定をしたところ7ppmで
あった0 従来例・2 全濃度500g/j’の塩化金(III)水溶液に40
0g / Itシアン化カリウム特級試薬を溶解して調
整した溶液を加えて攪拌下で反応させ、溶液の色が淡黄
色から無色透明になるまで加え、上記反応が終わった溶
液を、液表面に皮膜が形成し始めるまで100℃で加熱
濃縮した後、5℃まで冷却し晶出物を得た。
In addition, when cyan gas was measured during operation, it was found to be 7 ppm.
Add a solution prepared by dissolving 0g/It potassium cyanide special grade reagent and react under stirring until the color of the solution changes from pale yellow to colorless and transparent. After the above reaction, a film is formed on the surface of the solution. The mixture was heated and concentrated at 100°C until it started to freeze, and then cooled to 5°C to obtain a crystallized product.

次いで、該晶出物をエチルアルコールで2段抽出を行い
、濾過して得られたエチルアルコール抽出液に純水を加
え攪拌後80℃で蒸留を行い、表面に結晶被膜ができる
まで濃縮した。
Next, the crystallized product was extracted in two stages with ethyl alcohol, and pure water was added to the ethyl alcohol extract obtained by filtration, stirred, and then distilled at 80° C. to concentrate until a crystal film was formed on the surface.

これを5℃まで冷却し、減圧濾過し得た晶出物を80℃
で12時間真空乾燥して粉末結晶を得た。
This was cooled to 5°C, and the crystallized product was filtered under reduced pressure at 80°C.
The powder was dried under vacuum for 12 hours to obtain powder crystals.

この粉末を分析したところ、KAu (CN)、の純度
99.36%、K A u (CN )20.50%、
KCj20.15%、銀イオン20ppmであった。
When this powder was analyzed, the purity of KAu (CN) was 99.36%, K Au (CN) was 20.50%,
KCj was 20.15%, and silver ion was 20 ppm.

また、操作中のシアンガスを測定したところ75ppm
であった。
Also, when cyan gas was measured during operation, it was 75 ppm.
Met.

(発明の効果) 本発明により、有毒なシアン化水素ガスの発生を抑止す
るとともに、シアン化第−金塩の生成を抑えることがで
きる。
(Effects of the Invention) According to the present invention, the generation of toxic hydrogen cyanide gas can be suppressed, and the generation of gold cyanide salt can be suppressed.

本発明方法により得られたシアン化第二金塩には従来法
と比ベシアン化第−金塩の含有率も少なく、溶媒抽出条
件の設定によっては銀イオンの含有率も少ない、高品質
のシアン化第二金塩を得ることができる。また、操作中
のシアンガスの発生も少ないため、従来の方法にくらべ
より安全に製造することができる。
The ferric cyanide salt obtained by the method of the present invention has a lower content of ferric cyanide than that of the conventional method, and depending on the setting of solvent extraction conditions, a low content of silver ions, resulting in high-quality cyanide. A ferric salt can be obtained. In addition, less cyan gas is generated during operation, making production safer than conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を示す模式図である。 The figure is a schematic diagram showing one embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)金塩化物を含む酸性溶液より有機溶媒で金を抽出
した後、該金抽出有機溶媒に炭酸塩を含むシアン化アル
カリ溶液を接触させ水相に逆抽出しつつ反応させること
により、シアン化第二金塩溶液を得ることを特徴とする
シアン化第二金塩の製造方法。
(1) After extracting gold from an acidic solution containing gold chloride with an organic solvent, the organic solvent for gold extraction is brought into contact with an alkaline cyanide solution containing carbonate, and the cyanide is reacted while being back extracted into the aqueous phase. A method for producing a ferric cyanide salt, the method comprising obtaining a ferric cyanide salt solution.
(2)逆抽出反応において、水相の水素イオン濃度を5
〜10の間に調製しかつ、反応で消費されるシアン化ア
ルカリを水相に補充しつつ逆抽出反応を行うことを特徴
とする請求項1に記載の方法。
(2) In the back extraction reaction, the hydrogen ion concentration of the aqueous phase was
The method according to claim 1, characterized in that the back-extraction reaction is carried out while replenishing the aqueous phase with the alkali cyanide prepared between 10 and 10 hours and consumed in the reaction.
JP13554089A 1989-05-29 1989-05-29 Method for producing secondary gold cyanide salt Expired - Fee Related JP2698429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13554089A JP2698429B2 (en) 1989-05-29 1989-05-29 Method for producing secondary gold cyanide salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13554089A JP2698429B2 (en) 1989-05-29 1989-05-29 Method for producing secondary gold cyanide salt

Publications (2)

Publication Number Publication Date
JPH035318A true JPH035318A (en) 1991-01-11
JP2698429B2 JP2698429B2 (en) 1998-01-19

Family

ID=15154173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13554089A Expired - Fee Related JP2698429B2 (en) 1989-05-29 1989-05-29 Method for producing secondary gold cyanide salt

Country Status (1)

Country Link
JP (1) JP2698429B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022162954A1 (en) * 2021-01-26 2022-08-04 松田産業株式会社 Potassium gold cyanide production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022162954A1 (en) * 2021-01-26 2022-08-04 松田産業株式会社 Potassium gold cyanide production method
JP2022114359A (en) * 2021-01-26 2022-08-05 松田産業株式会社 Potassium gold cyanide production method

Also Published As

Publication number Publication date
JP2698429B2 (en) 1998-01-19

Similar Documents

Publication Publication Date Title
US5492681A (en) Method for producing copper oxide
CN106244828A (en) A kind of impurity-removing method containing vanadium leachate
JP2016507637A (en) Method for producing scandium-containing solid material with high scandium content
JP4207959B2 (en) Method for separating and purifying high-purity silver chloride and method for producing high-purity silver using the same
WO1982000664A1 (en) Process for selective extraction of germanium
CN113337723A (en) Method for separating and extracting silver, palladium, copper and germanium from silver separating slag
CN108754189A (en) A kind of rare-earth original ore dissolving method
JPH035318A (en) Production of auric cyanide
JP2009209421A (en) Method for producing high purity silver
FR3008425A1 (en) PROCESS FOR PURIFYING NIOBIUM AND / OR TANTALE
JPS5916938A (en) Obtaining of noble metal from solution
JP3394981B2 (en) Method for producing free hydroxylamine aqueous solution
JP2000169116A (en) Selectively leaching recovery process of selenium
US4107266A (en) Production of pure alumina from iron contaminated sulfate liquors
RU2305066C2 (en) Method for preparing potassium iodate and potassium iodide
US3954952A (en) Continuous chemical process for the manufacture of sodium and potassium peroxydisulfate
JP3503116B2 (en) Manufacturing method of high concentration free hydroxylamine aqueous solution
JP4422835B2 (en) Ruthenium purification method
JPH0514013B2 (en)
JP3837879B2 (en) Method for reducing and precipitating metal ions
US3228765A (en) Copper recovery process from anhydrous copper ammonium sulfite
JPH0725613A (en) Production of cuprous chloride
JPH07224334A (en) Separating and recovering method of copper
JP4175034B2 (en) Method for producing ammonium cerium (IV) nitrate
JP3644245B2 (en) Separation of ruthenium and rhodium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees