JPH0353090A - Production of fluorine - Google Patents

Production of fluorine

Info

Publication number
JPH0353090A
JPH0353090A JP1183703A JP18370389A JPH0353090A JP H0353090 A JPH0353090 A JP H0353090A JP 1183703 A JP1183703 A JP 1183703A JP 18370389 A JP18370389 A JP 18370389A JP H0353090 A JPH0353090 A JP H0353090A
Authority
JP
Japan
Prior art keywords
anode
fluorine
carbon
anode material
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1183703A
Other languages
Japanese (ja)
Inventor
Takeshi Morimoto
剛 森本
Mikio Sasabe
笹部 幹雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1183703A priority Critical patent/JPH0353090A/en
Publication of JPH0353090A publication Critical patent/JPH0353090A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/245Fluorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To stably and continuously produce fluorine with a high anode current density at the time of electrolyzing a fluorine-contg. salt by using porous carbon with its electric-resistance anisotropic ratio specified as the anode material. CONSTITUTION:Porous carbon having <=1.3 electric-resistance anisotropic ratio is used as the anode material, when a molten salt contg. hydrogen fluoride is electrolyzed to produce fluorine. The average pore diameter is preferably controlled to about 1-50mum, the porosity to about 30-50% and the bulk density to about 1.0-1.3 g/cm<3>. The ordinary materials such as iron, Monel, steel and nickel are used as the material for a cathode. A common KF-HF-based mixed salt is used as the electrolytic bath composition. Since the carbon of the anode material is porous and isotropic, the anode effect is controlled, and an effect in the production of gaseous fluorine is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、フッ素の製造方法、特にフッ化水素を含む溶
融塩を電解してフッ素を製造する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing fluorine, particularly a method for producing fluorine by electrolyzing a molten salt containing hydrogen fluoride.

[従来の技術] 従来、フッ素の製造方法として、HFとKFの混合溶融
塩を炭素あるいはニッケルを陽極とし、鉄またはモネル
(商品名;ニッケル合金)等を陰極として電解する方法
が知られている。
[Prior Art] Conventionally, as a method for producing fluorine, a method is known in which a mixed molten salt of HF and KF is electrolyzed using carbon or nickel as an anode and iron or Monel (trade name: nickel alloy) as a cathode. .

この場合、フッ素は気体として陽極から発生する。In this case, fluorine is generated from the anode as a gas.

陽極材にニッケルを用いた場合、過電圧が小さく、かつ
水分を若干含む電解浴でも使用できる利点があるが、腐
食が激しいため、工業的には陽極材として炭素が用いら
れている。(電気化学便覧、第4版, p328,19
85)しかしながら、陽極材に炭素を用いてフッ素の電
解製造を行なう場合、陽極表面に電気絶縁性の被膜が生
成して、電流が急に流れなくなる現象、いわゆる陽極効
果が生じやすく、この点が工業的なフッ素製造上の大き
な問題点となっている。
When nickel is used as an anode material, it has the advantage of having a small overvoltage and being able to be used in an electrolytic bath that contains some moisture, but because of its severe corrosion, carbon is industrially used as the anode material. (Electrochemistry Handbook, 4th edition, p328, 19
85) However, when electrolytically producing fluorine using carbon as the anode material, an electrically insulating film is formed on the anode surface, which tends to cause a phenomenon in which current suddenly stops flowing, the so-called anode effect. This is a major problem in industrial fluorine production.

陽極効果を抑制するために、フッ化リチウムやフッ化ア
ルミニウム等のフッ化物を電解浴中に分散させることは
知られているが、抑制の効果は不充分で、工業的に満足
し得る方法とはいい難い。
It is known that fluorides such as lithium fluoride and aluminum fluoride are dispersed in the electrolytic bath in order to suppress the anode effect, but the suppression effect is insufficient and there is no method that is industrially satisfactory. Yes, it's difficult.

また、特開昭57− 200585号公報には、孔径が
50〜150μmの開口気孔を有する炭素板を陽極とし
て用いることにより、陽極効果の発生を抑制する方法が
提案されている。しかしながら、この方法でも陽極効果
発生の抑制は充分ではない。
Further, Japanese Patent Application Laid-Open No. 57-200585 proposes a method of suppressing the occurrence of the anode effect by using a carbon plate having open pores with a pore diameter of 50 to 150 μm as an anode. However, even with this method, the occurrence of the anodic effect is not sufficiently suppressed.

また、特公昭61− 12994号公報には、固有抵抗
の異方比が1.2以下の、緻密な炭素を陽極材として用
いることが提案されている。この方法でも、陽極の臨界
電流密度はやや向上するものの、30〜55A/dm”
程度で陽極効果が発生してしまう。
Further, Japanese Patent Publication No. 12994/1983 proposes the use of dense carbon having an anisotropic ratio of resistivity of 1.2 or less as an anode material. Even with this method, although the critical current density of the anode is slightly improved, it is still 30 to 55 A/d”
An anodic effect occurs at a certain level.

[発明が解決しようとする課題] 本発明の目的は、溶融塩を電解してフッ素を製造する方
法において、従来の陽極材を用いた場合に比べて陽極効
果が極めて起こりにくく、効率的かつ安定的に長期間継
続できるフッ素の電解製造方法を提供することである。
[Problems to be Solved by the Invention] The purpose of the present invention is to provide an efficient and stable method for producing fluorine by electrolyzing molten salt, in which the anode effect is extremely unlikely to occur compared to when conventional anode materials are used. An object of the present invention is to provide a method for electrolytically producing fluorine that can be continued for a long period of time.

[課題を解決するための手段] 本発明は、フッ化水素を含む溶融塩を電解してフッ素を
製造する方法において、電気抵抗異方比が1.3以下で
、かつ多孔質である炭素を陽極材としてすることを特徴
とするフッ素の製造方法を提供するものである。
[Means for Solving the Problems] The present invention provides a method for producing fluorine by electrolyzing a molten salt containing hydrogen fluoride, in which carbon having an electrical resistance anisotropy ratio of 1.3 or less and being porous is used. The present invention provides a method for producing fluorine, characterized in that it is used as an anode material.

本発明に用いる陽極材としての炭素は電気抵抗異方比が
1.3以下で、かつ多孔質であることが必要である。電
気抵抗異方比は、固有抵抗の異方性を示すもので、これ
が小さいものは等方性炭素と称せられる。電気抵抗異方
比が1.2以下のものは、さらに陽極効果の抑制効果が
大きくなるので好ましい。
Carbon as an anode material used in the present invention needs to have an electrical resistance anisotropy ratio of 1.3 or less and be porous. The electrical resistance anisotropy ratio indicates the anisotropy of specific resistance, and carbon with a small electrical resistance anisotropy ratio is called isotropic carbon. A material having an electrical resistance anisotropy ratio of 1.2 or less is preferable because it further increases the effect of suppressing the anode effect.

この炭素としては、細孔の平均孔径がi〜200μm程
度のものが使用し得るが、平均孔径が50μmを超える
と機械的強度が低くなるおそれがあるので、平均孔径は
1〜50μmであることがさらに好ましい。また、陽極
材の炭素の気孔率は30〜60%が好ましい。気孔率が
30%未満の場合は陽極効果の抑制が不充分になるおそ
れがあり、気孔率が60%を超える場合は、陽極の機械
的強度が低下するおそれがあるのでそれぞれ好ましくな
い。気孔率が40〜50%である場合はさらに好ましい
。また、陽極材の炭素のかさ比重は1.0〜1.3g/
cm”が好ましい。かさ比重が1.0g/Cm3未満の
場合は、陽極の機械的強度が低くなるおそれがあり、か
さ比重が1.3g/cm”を超える場合は陽極効果の抑
制が不充分になるおそれがあるので、それぞれ好ましく
ない。
As this carbon, one with an average pore diameter of about i to 200 μm can be used, but if the average pore diameter exceeds 50 μm, the mechanical strength may decrease, so the average pore diameter should be 1 to 50 μm. is even more preferable. Moreover, the porosity of carbon of the anode material is preferably 30 to 60%. If the porosity is less than 30%, the anode effect may not be sufficiently suppressed, and if the porosity exceeds 60%, the mechanical strength of the anode may decrease, which is not preferable. It is more preferable that the porosity is 40 to 50%. In addition, the bulk specific gravity of carbon in the anode material is 1.0 to 1.3 g/
cm" is preferable. If the bulk specific gravity is less than 1.0 g/cm3, the mechanical strength of the anode may decrease, and if the bulk specific gravity exceeds 1.3 g/cm", the anode effect is not sufficiently suppressed. Each of these is undesirable because there is a risk of

本発明において、陰極としては、鉄、モネル、スチール
、ニッケル等通常のフッ素発生電解に用いる材料が特に
限定されず使用できる。
In the present invention, as the cathode, materials used in ordinary fluorine generating electrolysis, such as iron, monel, steel, and nickel, can be used without particular limitation.

電解浴組戊としては、通常のKF−HF系の混合塩、例
えばKF・2HF溶融塩(90℃)等のHFを含む塩組
成を使用できる。また、浴中にLiFやAIFa等の金
属フッ化物が存在していても差し支えない。
As the electrolytic bath composition, a salt composition containing HF such as a usual KF-HF mixed salt, for example, a KF.2HF molten salt (90 DEG C.) can be used. Further, metal fluorides such as LiF and AIFa may be present in the bath.

本発明においては、陽極材の炭素が多孔質でかつ等方性
であるため陽極効果が著しく抑制され、フッ素ガス製造
の効率が大きく改善される。例えば、孔径25μm、電
気抵抗異方比1.25、気孔率45%、かさ比重1. 
08g/crn3の炭素を陽極とし、鉄を陰極としてK
F・28F塩を90℃で電解すると、驚くべきことに2
0OA/dm”の高電流密度下においても陽極効果がみ
られない。多孔質でも電気抵抗異方比が1.3を超える
炭素、あるいは電気抵抗異方比が1.3以下でち緻密な
炭素を陽極材として用いた場合は、高々50〜60A7
4m”で直ちに陽極効果が発生することと比較すれば、
本発明は、まさに予期せぬ効果を有しているといえる。
In the present invention, since the carbon of the anode material is porous and isotropic, the anode effect is significantly suppressed, and the efficiency of fluorine gas production is greatly improved. For example, the pore diameter is 25 μm, the electrical resistance anisotropy ratio is 1.25, the porosity is 45%, and the bulk specific gravity is 1.
K with 08g/crn3 carbon as an anode and iron as a cathode.
When F.28F salt is electrolyzed at 90℃, surprisingly 2
No anode effect is observed even under a high current density of 0OA/dm. Porous carbon with an electrical resistance anisotropy ratio exceeding 1.3, or dense carbon with an electrical resistance anisotropy ratio of 1.3 or less. When used as an anode material, at most 50-60A7
Compared to the fact that the anode effect occurs immediately at 4 m”,
It can be said that the present invention has truly unexpected effects.

本発明においては、上述したような陽極材を用いている
ため、従来の方法に比べて、高い陽極電流密度で長期間
安定してフッ素を製造することが可能である。
In the present invention, since the above-described anode material is used, it is possible to stably produce fluorine for a long period of time at a higher anode current density than in conventional methods.

本発明の陽極材に用いる炭素の製造方法は特に限定され
るものでなく、種々の方法で製造したものを用いること
ができる。
The method for producing carbon used in the anode material of the present invention is not particularly limited, and carbon produced by various methods can be used.

以下、実施例により本発明を更に詳細に説明するが、本
発明の範囲は実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the scope of the present invention is not limited to the Examples.

[実施例] 実施例1 平均粒子径約400μmの炭素質骨材100重量部にピ
ッチ20重量部を加え、充分混練したのち、150kg
/cm”の均等圧下に成形し、1000℃で焼成して直
径20mm,高さ120mmの円柱状の等方性多孔質炭
素を得た。この炭素は平均孔径25μm、電気抵抗異方
比l.25、気孔率45%、かさ比重1.08g/cm
3であった。
[Example] Example 1 20 parts by weight of pitch was added to 100 parts by weight of carbonaceous aggregate with an average particle diameter of about 400 μm, and after thorough kneading, 150 kg
/cm" and fired at 1000°C to obtain cylindrical isotropic porous carbon with a diameter of 20 mm and a height of 120 mm. This carbon had an average pore diameter of 25 μm and an electrical resistance anisotropy ratio of l. 25, porosity 45%, bulk specific gravity 1.08g/cm
It was 3.

この炭素を陽極として、図1に示す電解槽にて電解を行
った。この電解槽は、容量約900+nQの鉄製槽体が
陰極となり、モネル製スカート、pt照合電極を備えて
いる。鉄製槽体には低部からの水素の発生を防止するた
めPTFE製の下敷が設けてある。また、発生するF2
ガスとH2ガスは、それぞれN2で希釈して取り出すよ
うになっている。
Using this carbon as an anode, electrolysis was performed in an electrolytic cell shown in FIG. This electrolytic cell has an iron tank body with a capacity of about 900+nQ serving as a cathode, and is equipped with a Monel skirt and a PT reference electrode. The iron tank body is equipped with a PTFE underlay to prevent hydrogen from being generated from the bottom. Also, F2 generated
Gas and H2 gas are each diluted with N2 and taken out.

この電解槽に、KF − HF塩を入れ、HFを加えて
KF・2HFの組成にし90℃に保温して溶融塩とした
。この溶融塩について、まず表面積0. 4dm”の炭
素棒陽極を用い、0. 5A/dm”の低電流密度で2
4時間以上電解し、浴中に含まれる微量の水分を電解脱
水する処理を行った。
KF-HF salt was put into this electrolytic cell, and HF was added to make the composition KF.2HF, and the temperature was kept at 90° C. to form a molten salt. First, regarding this molten salt, the surface area is 0. 2 at a low current density of 0.5 A/dm using a 4 dm" carbon rod anode.
Electrolysis was carried out for 4 hours or more to electrolytically dehydrate trace amounts of water contained in the bath.

次に、前記電解脱水用炭素棒陽極を、表面を0. 5c
m”だけ露出させPTFE製テープで絶縁したところの
上述の等方性多孔質炭素に取りかえた。そして、白金電
極を照合電極とし、O■から走査速度30mV/sec
で電位走査を行った。電位7.6■で陽極の電流密度は
 200A/dm2を示した。電位幅O〜7V、走査速
度30mV/secで、電位走査を繰り返したときの電
位と陽極の電流密度の関係を図2に示す。全く、陽極効
果は発生せず、4.5V付近から電流が流れ始め7■で
約13OA/dm”の電流密度を示した。この電位走査
を4サイクル繰り返しても、電位と電流密度の関係は一
定であった。このことは、この等方性多孔質炭素がフッ
素製造用の陽極材として非常に優れていることを示して
いる 比較例1 実施例1の等方性多孔質炭素に替えて市販の炭素質角材
を直径20+nm、高さ120mmの円柱状に切削した
ものを用いた以外は、実施例1と同様にして電位走査試
験を行った。この炭素は緻密な表面を有し、電気抵抗異
方比は1.55であり、かさ比重は1. 60g/cm
’であった。
Next, the surface of the carbon rod anode for electrolytic dehydration was set to 0. 5c
It was replaced with the above-mentioned isotropic porous carbon, which was exposed by only m" and insulated with PTFE tape.Then, a platinum electrode was used as a reference electrode, and the scanning speed was 30 mV/sec from O.
potential scanning was performed. The current density at the anode was 200 A/dm2 at a potential of 7.6 ■. FIG. 2 shows the relationship between the potential and the current density of the anode when potential scanning was repeated at a potential width of 0 to 7 V and a scanning speed of 30 mV/sec. No anode effect occurred at all, and the current started flowing from around 4.5 V, showing a current density of about 13 OA/dm at 7. Even after repeating this potential scan for 4 cycles, the relationship between potential and current density remained unchanged. This shows that this isotropic porous carbon is very excellent as an anode material for fluorine production. Comparative Example 1 In place of the isotropic porous carbon of Example 1, A potential scanning test was conducted in the same manner as in Example 1, except that a commercially available carbonaceous square material was cut into a cylindrical shape with a diameter of 20+ nm and a height of 120 mm.This carbon has a dense surface and is electrically conductive. The resistance anisotropy ratio is 1.55, and the bulk specific gravity is 1.60g/cm
'Met.

電位走査の電位幅をO〜IOVとして、2回繰り返して
電位走査を行ったときの、電位と陽極の電流密度の関係
を図3に示す。1回目の走査では664vで、瞬間的に
62A/dm”で電流が流れたが、陽極効果が起こり、
以後、急速に電流が減少した.2回目の走査では、電流
密度は最高でも18A/da+”であった。試みに、も
う一度走査したところ最高でも電流密度はIOA/dm
”以下であった。
FIG. 3 shows the relationship between the potential and the current density of the anode when the potential width of the potential scan is O to IOV and the potential scan is repeated twice. In the first scan, the current was 664V and 62A/dm" momentarily flowed, but an anode effect occurred,
After that, the current decreased rapidly. In the second scan, the maximum current density was 18 A/dm. When I scanned it again, the maximum current density was 18 A/dm.
“It was less than that.

比較例2 平均粒子径約500μmの炭素質骨材100重量部にピ
ッチ20重量部を加え、充分混練した後、100 kg
/cod”の圧力で押し出し成形し、1000℃で焼成
して直径20mm、高さ120mmの円柱状の炭素材を
得た。この炭素は、平均孔径50μm、電気抵抗異方比
l.50、気孔率45%、かさ比重l.10g/cm”
であった。
Comparative Example 2 20 parts by weight of pitch was added to 100 parts by weight of carbonaceous aggregate with an average particle diameter of about 500 μm, and after thorough kneading, 100 kg
/cod'' pressure and sintered at 1000°C to obtain a cylindrical carbon material with a diameter of 20 mm and a height of 120 mm. ratio 45%, bulk specific gravity 1.10g/cm”
Met.

この炭素を用いて、比較例1と同様にして、電位走査試
験を電解を行った。結果を図4に示す。1回目の走査で
58A/dm”から陽極効果が発生し、2回目の走査で
は、最高電流密度が24A/dm”以下であった。
Using this carbon, electrolysis was performed in a potential scanning test in the same manner as in Comparative Example 1. The results are shown in Figure 4. In the first scan, an anodic effect occurred from 58 A/dm'', and in the second scan, the maximum current density was 24 A/dm'' or less.

比較例3 平均粒子径約20μmの炭素質骨材100重量部にピッ
チ20重量部を加え、充分混練した後、1000kg/
cm”の均等圧下に成形し、1000℃で焼成して直径
20mm、高さ120mmの円柱状の炭素材を得た。こ
の炭素の表面は緻密で、電気抵抗異方比は1.15であ
り、かさ比重1. 75g/cm3であった。
Comparative Example 3 20 parts by weight of pitch was added to 100 parts by weight of carbonaceous aggregate with an average particle diameter of about 20 μm, and after thorough kneading, 1000 kg/
cm" and fired at 1000°C to obtain a cylindrical carbon material with a diameter of 20 mm and a height of 120 mm. The surface of this carbon was dense and the electrical resistance anisotropy ratio was 1.15. , and the bulk specific gravity was 1.75 g/cm3.

この炭素を用いて、比較例1と同様にして電位走査試験
を行った結果を第5図に示す。1回目の走査で、57A
/dm”から陽極効果が発生し、2回目の走査では最高
電流密度が41A/dm2であった。
Using this carbon, a potential scanning test was conducted in the same manner as in Comparative Example 1, and the results are shown in FIG. In the first scan, 57A
/dm'', the anodic effect occurred, and the highest current density was 41 A/dm2 in the second scan.

実施例2 実施例1の陽極を用い、同じ電解槽で5OA/dll1
”の陽極電流密度5.4X 10’クーロン/dm”で
フッ素発生電解を行ったところ、電圧等の変動を起こす
ことなく、安定かつ効率的にフッ素が製造できた。その
後、実施例1と同様な電位走査を行ったところ、図2と
全く同様な電位と電流密度の関係が得られた。すなわち
、上記のフッ素発生電解によっても、陽極の劣化が認め
られなかった。
Example 2 Using the anode of Example 1, 5OA/dll1 in the same electrolytic cell
When fluorine generation electrolysis was performed at an anode current density of 5.4 x 10' coulombs/dm, fluorine could be produced stably and efficiently without fluctuations in voltage or the like. Thereafter, a potential scan similar to that in Example 1 was performed, and a relationship between potential and current density that was exactly the same as that in FIG. 2 was obtained. That is, no deterioration of the anode was observed even by the above fluorine generating electrolysis.

[発明の効果] 本発明によれば、高い陽極電流密度で安定かつ連続的に
フッ素を電解製造することが可能である。現在、工業的
規模においては、高々10A/dm”でフッ素が電解製
造されているが、本発明においては電流密度をこれの数
倍にすることも可能である。
[Effects of the Invention] According to the present invention, it is possible to electrolytically produce fluorine stably and continuously at a high anode current density. Currently, on an industrial scale, fluorine is electrolytically produced at a rate of at most 10 A/dm, but in the present invention it is also possible to increase the current density several times this.

【図面の簡単な説明】[Brief explanation of drawings]

図工は、実施例に用いた電解槽を示す説明図である。図
2〜5は、それぞれ実施例1、比較例l〜3における電
位と電流密度の関係を示す図である。 弟 ! 図 電   イl    (v;  vδ.Pe冫)豹 2
 閣 ( V; V3− Pt,) 賞 値 乗 う 回 覧 イt (v;  vs.p6ノ 千 4 図
The drawing is an explanatory diagram showing an electrolytic cell used in an example. 2 to 5 are diagrams showing the relationship between potential and current density in Example 1 and Comparative Examples 1 to 3, respectively. younger brother! Diagram Il (v; vδ.Pe冫) Leopard 2
Cabinet (V; V3-Pt,) Award value circular it (v; vs. p6 no 104 fig.

Claims (4)

【特許請求の範囲】[Claims] (1)フッ化水素を含む溶融塩を電解してフッ素を製造
する方法において、電気抵抗異方比が1.3以下で、か
つ多孔質である炭素を陽極材とすることを特徴とするフ
ッ素の製造方法。
(1) A method for producing fluorine by electrolyzing a molten salt containing hydrogen fluoride, characterized in that the anode material is porous carbon having an electrical resistance anisotropy ratio of 1.3 or less. manufacturing method.
(2)陽極材の平均孔径が1〜50μmである請求項1
の製造方法。
(2) Claim 1, wherein the anode material has an average pore diameter of 1 to 50 μm.
manufacturing method.
(3)陽極材の気孔率が30〜60%である請求項1の
製造方法。
(3) The manufacturing method according to claim 1, wherein the anode material has a porosity of 30 to 60%.
(4)陽極材のかさ比重が1.0〜1.3g/cm^3
である請求項1の製造方法。
(4) The bulk specific gravity of the anode material is 1.0 to 1.3 g/cm^3
The manufacturing method according to claim 1.
JP1183703A 1989-07-18 1989-07-18 Production of fluorine Pending JPH0353090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1183703A JPH0353090A (en) 1989-07-18 1989-07-18 Production of fluorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1183703A JPH0353090A (en) 1989-07-18 1989-07-18 Production of fluorine

Publications (1)

Publication Number Publication Date
JPH0353090A true JPH0353090A (en) 1991-03-07

Family

ID=16140474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1183703A Pending JPH0353090A (en) 1989-07-18 1989-07-18 Production of fluorine

Country Status (1)

Country Link
JP (1) JPH0353090A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999022045A1 (en) * 1997-10-28 1999-05-06 Toyo Tanso Co., Ltd. Electrode of an electrolytic bath for generating fluorine and isotropic carbonaceous block used therefor
WO2001077412A1 (en) 2000-04-07 2001-10-18 Toyo Tanso Co., Ltd. Apparatus for generating fluorine gas
JP2004043885A (en) * 2002-07-11 2004-02-12 L'air Liquide Sa Pour L'etude & L'exploitation Des Procedes Georges Claude Fluorine gas-generating apparatus
EP1422319A3 (en) * 2002-11-20 2011-08-10 Toyo Tanso Kabushiki Kaisya Fluorine gas generator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999022045A1 (en) * 1997-10-28 1999-05-06 Toyo Tanso Co., Ltd. Electrode of an electrolytic bath for generating fluorine and isotropic carbonaceous block used therefor
WO2001077412A1 (en) 2000-04-07 2001-10-18 Toyo Tanso Co., Ltd. Apparatus for generating fluorine gas
US6818105B2 (en) 2000-04-07 2004-11-16 Toyo Tanso Co., Ltd. Apparatus for generating fluorine gas
CN1307325C (en) * 2000-04-07 2007-03-28 东洋炭素株式会社 Apparatus for generating fluorine gas
JP2004043885A (en) * 2002-07-11 2004-02-12 L'air Liquide Sa Pour L'etude & L'exploitation Des Procedes Georges Claude Fluorine gas-generating apparatus
EP1422319A3 (en) * 2002-11-20 2011-08-10 Toyo Tanso Kabushiki Kaisya Fluorine gas generator

Similar Documents

Publication Publication Date Title
EP0147896B1 (en) Electrochemical etching of high voltage aluminium anode foil
US4927800A (en) Electrode catalyst and method for production thereof
Legrand et al. Electrodeposition Studies of Aluminum on Tungsten Electrode from DMSO 2 Electrolytes: Determination of AlIII Species Diffusion Coefficients
JPS6112994B2 (en)
JPS58171589A (en) Electrode for electrolysis and its manufacture
US5069764A (en) Carbon electrode having low polarizability
US3282808A (en) Nickel impregnated porous cathode and method of making same
Chamelot et al. Studies of niobium electrocrystallization phenomena in molten fluorides
US4935110A (en) Electrode structure and process for fabricating the same
JPH0353090A (en) Production of fluorine
US3708416A (en) Multiporosity electrode for electrochemical conversion
Boruciński et al. Raney nickel activated H 2-cathodes Part II: Correlation of morphology and effective catalytic activity of Raney-nickel coated cathodes
JP3364500B2 (en) Ceramic anode for oxygen generation and its production and use
Cachet et al. Influence of perfluorinated and hydrogenated surfactants upon hydrogen evolution on gold electrodes
Vuković Electrochemical investigation of an electrodeposited rhodium electrode in acid solutions
Juchniewicz The influence of alternating current on the anodic behaviour of platinum
US3000801A (en) Process for the electrolytic production of fluorine
US4154662A (en) Process and apparatus for the electrolytic production of hydrogen
RU2760027C1 (en) Method for electrolytic production of silicon from molten salts
JPH0336910B2 (en)
JPH0665754B2 (en) Method for producing electrolytic manganese dioxide
Vijh et al. Electrochemical behaviour of (nominally) iron disilicide electrodes in sulphuric acid
SU1257120A1 (en) Method of production of nickel powder by electrolysis from aqueous solution of sulfate-chloride electrolyte
Gao et al. Electrolyte wetting effects in the comparative polarization behaviour of the hydrogen evolution reaction at Ni-Mo-Cd electrodes in KF· 2HF and KOH· 2H 2 O melts
JP2764623B2 (en) Electrolytic cell