JPH0353034A - Method for recovering samarium from samarium-cobalt alloy scrap - Google Patents

Method for recovering samarium from samarium-cobalt alloy scrap

Info

Publication number
JPH0353034A
JPH0353034A JP1185932A JP18593289A JPH0353034A JP H0353034 A JPH0353034 A JP H0353034A JP 1185932 A JP1185932 A JP 1185932A JP 18593289 A JP18593289 A JP 18593289A JP H0353034 A JPH0353034 A JP H0353034A
Authority
JP
Japan
Prior art keywords
samarium
alloy scrap
carbonate
soln
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1185932A
Other languages
Japanese (ja)
Inventor
Hidekazu Nemoto
根本 英一
Hisashi Fujita
藤田 寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP1185932A priority Critical patent/JPH0353034A/en
Publication of JPH0353034A publication Critical patent/JPH0353034A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To separate and recover Sm at a high yield with a simple treatment by precipitating and separating Sm as oxalate from the aq. mineral acid soln. of Sm-Co alloy scrap, taking out the remaining Sm and Co of the filtrate as a carbonate precipitate and recycling the same. CONSTITUTION:The Sm-Co alloy scrap is dissolved into hydrochloric acid and/or nitric acid to prepare the aq. mineral acid soln. and oxalic acid of approximately the equiv. to the Sm or below is added into this aq. soln. to precipitate the samarium oxalate in the state while leaving a small amt. of the Sm ions in the aq. soln. An alkali (NaOH, etc.) is added to this filtrate to adjust the pH to 3 to 5 and thereafter, the carbonic acid compd. (Na2CO3, etc.) of 0.1 to 0.6 equiv. to the Co ions is added to the soln. The soln. is treated for about 30 minutes to 3 hours at about <=25 deg.C to precipitate the carbonate of the Sm and Co which are then filtered and separated. This carbonate precipitate of the Sm and Co is returned to the next Sm-Co alloy scrap and the above- mentioned stage is repeatedly executed. The Sm is obtd. from the Sm-Co alloy scrap at the high recovery rate in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はサマリウム(Sse)一コバルト(Co)Ve
.結合金磁石の製造時に発生するSs − Co合金ス
クラップからのSsの分離回収方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to samarium (Sse)-cobalt (Co)Ve.
.. The present invention relates to a method for separating and recovering Ss from Ss-Co alloy scrap generated during the production of bonded gold magnets.

[従来の技術] Ss 一Co合金焼結磁石の製造工程から切削屑や不良
品等のスクラソプが発生するが、これらのSrs −C
o合金スクラップからS―とCoをそれぞれ分離して回
収する方法として、S■一Co合金スクラソプを塩酸、
硝酸、硫酸等の鉱酸に溶解し、蓚酸を添加してSllを
蓚酸サマリウム沈殿として口過分離したのち、口液に炭
酸塩を添加してCoを炭酸コバルトとして回収していた
。しかしこの方法ではSsとCoを完全に分離すること
が困難であった。すなわち、SII+を完全に分離する
ためには蓚酸を多量に添加しなければならず、この際C
oもまた蓚酸塩を形威してSL1の蓚酸塩と共沈してし
まうため純度の高いSn+を回収できないのである。
[Prior art] Scraps such as cutting chips and defective products are generated in the manufacturing process of Ss-Co alloy sintered magnets, but these Srs-C
As a method to separate and recover S- and Co from o-alloy scrap, S-Co alloy scraps are treated with hydrochloric acid,
Co is dissolved in a mineral acid such as nitric acid or sulfuric acid, oxalic acid is added, Sll is separated by oral filtration as samarium oxalate precipitate, and carbonate is added to the oral fluid to recover Co as cobalt carbonate. However, with this method, it was difficult to completely separate Ss and Co. That is, in order to completely separate SII+, it is necessary to add a large amount of oxalic acid, and in this case, C
o also forms oxalate and co-precipitates with the oxalate of SL1, making it impossible to recover highly pure Sn+.

[発明が解決しようとする課題] そこで、本発明の目的は、上記問題点を解消し、簡便な
処理により高い回収率を達戒することのできるSs −
 Co合金スクラップからのSL1回収方法を提供する
ことである. [課題を解決するための手段] 上記目的を達或するために、本発明方法は、サマリウム
−コバルト合金スクラップを塩酸および/または硝酸に
溶解して鉱酸水溶液とし、該鉱酸水溶液中のサマリウム
に対して概略当量以下の蓚酸を添加してサマリウムイオ
ンの少量を咳絋酸水溶液中に残すと共に析出した蓚酸サ
マリウムを口過分離回収した後、口過液にアルカリを添
加してpl13〜5とし、該口過液中のコバルトイオン
に対して0. 1〜0.6当量の炭酸化合物を添加して
析出したサマリウムおよびコバルト炭酸塩を口過分離し
、該サマリウムおよびコバルト炭酸塩析出物を次のサマ
リウム−コバルト合金ス、タラップへ戻し加え上記工程
を繰り返して行う点に特徴がある.[作 用] 本発明方法の手順を第1図に示す。
[Problems to be Solved by the Invention] Therefore, an object of the present invention is to solve the above-mentioned problems and to obtain Ss-- which can achieve a high recovery rate through simple processing.
The purpose of this invention is to provide a method for recovering SL1 from Co alloy scrap. [Means for Solving the Problems] In order to achieve the above object, the method of the present invention includes dissolving samarium-cobalt alloy scrap in hydrochloric acid and/or nitric acid to form a mineral acid aqueous solution, and dissolving samarium in the mineral acid aqueous solution. After adding approximately equivalent amount or less of oxalic acid to the oral filtrate to leave a small amount of samarium ions in the septic acid aqueous solution and separating and collecting the precipitated samarium oxalate, an alkali was added to the oral filtrate to prepare pl13 to 5. , 0.0 for the cobalt ions in the oral fluid. The samarium and cobalt carbonate precipitated by adding 1 to 0.6 equivalents of a carbonate compound are separated by mouth, and the samarium and cobalt carbonate precipitate is returned to the next samarium-cobalt alloy ramp and the above steps are carried out. It is distinctive in that it is repeated. [Function] The procedure of the method of the present invention is shown in FIG.

本発明方法に適用しうるSs − Co合金スクラップ
はSea − Co合金焼結磁石を製造する際に発生す
る切削屑や割れた不良品等を挙げることができ、特に限
定されるものではないが、ランタン(La)、セリウム
(Ce)、プラセオジウム(Pr)等の希土類元素およ
び鉄(Fe)やニッケル(Ni)を不純物として含んで
も差し支えない.該Ss − Co合金スクラップを塩
酸および/または硝酸に溶解するに当り、該Ss − 
Co合金スクラップを溶解することができればよく、該
塩酸および/または硝酸の濃度は特に限定されず、該鉱
酸は任意の割合で混合して使用すればよい。必要があれ
ば、不溶解残渣は口過分離することができる. 該鉱酸水溶液中のS−に対して概略当量以下の蓚酸を添
加することが必要であるが、該鉱酸水溶液中にS一をイ
オンの状態で少量残すことが重要である。もしも該鉱酸
水溶液中のS■に対して当量を越える蓚酸を添加すると
、該SI1の全量を蓚酸サマリウムとして析出させるだ
けでな<、coも蓚酸コバルトとして共析させることと
なり蓚酸サマリウムの純度を低下させることとなり不都
合である。析出した蓚酸サマリウムを口過分離した後、
ロ過液にアルカリを添加してpHを3〜5とする必要が
ある。該p}Iが3未満では該ロ過液が中和されず、5
を越えると、該口過液中のS一が水酸化サマリウムとな
りよくない。該アルカリとしては水酸化ナトリウム、水
酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム等
を用いればよく、粉末でも水溶液でも差し支えない。次
に該口過液中のCoイオンに対して0. 1〜0.6当
量、より望ましくは0.2〜0. 4当量の炭酸化合物
を添加するのであるが、0. 1当量未満ではSII1
を十分に炭酸塩として析出させることができなく、一方
0.6当量を越えると、Coの炭酸塩が析出し過ぎるた
め析出物中のS一炭酸塩の含有率が低下するのでよくな
い。該炭酸化合物としては炭酸ナトリウム、炭酸水素ナ
トリウム、炭酸カリウム、炭酸水素カリウム、炭酸アン
モニウム等挙げることができる。
Examples of Ss-Co alloy scrap that can be applied to the method of the present invention include cutting waste generated during the production of Sea-Co alloy sintered magnets, cracked defective products, etc., and are not particularly limited. It may contain rare earth elements such as lanthanum (La), cerium (Ce), and praseodymium (Pr), as well as iron (Fe) and nickel (Ni) as impurities. When dissolving the Ss-Co alloy scrap in hydrochloric acid and/or nitric acid, the Ss-Co alloy scrap
The concentration of the hydrochloric acid and/or nitric acid is not particularly limited as long as it can dissolve Co alloy scrap, and the mineral acids may be used by mixing them in any ratio. If necessary, undissolved residue can be separated by filtration. Although it is necessary to add approximately an equivalent amount or less of oxalic acid to S- in the mineral acid aqueous solution, it is important to leave a small amount of S- in the ionized state in the mineral acid aqueous solution. If oxalic acid is added in an amount exceeding the equivalent amount to S in the mineral acid aqueous solution, not only will the entire amount of SI1 be precipitated as samarium oxalate, but also co will be co-precipitated as cobalt oxalate, which will reduce the purity of samarium oxalate. This is inconvenient. After separating the precipitated samarium oxalate by mouth,
It is necessary to add an alkali to the filtrate to adjust the pH to 3-5. If the p}I is less than 3, the filtrate will not be neutralized;
If it exceeds this amount, S1 in the oral fluid becomes samarium hydroxide, which is not good. As the alkali, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, etc. may be used, and either powder or aqueous solution may be used. Next, 0.0% for Co ions in the oral fluid. 1 to 0.6 equivalent, more preferably 0.2 to 0. 4 equivalents of carbonate compound are added, but 0. SII1 if less than 1 equivalent
On the other hand, if the amount exceeds 0.6 equivalent, too much Co carbonate will precipitate and the content of S monocarbonate in the precipitate will decrease, which is not good. Examples of the carbonate compound include sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, and ammonium carbonate.

上記S−とCoの炭酸塩を形成させ析出させる反応にお
いて、反応温度が高くかつ反応時間が長いと、一旦析出
したCo炭酸塩は水酸化物に変化し再び水溶液中へ溶解
しやすくなるので、反応温度と反応時間はそれぞれ25
℃以下、30分〜3時間とすることが望ましい.該炭酸
塩析出物を口過分離する方法は常法に従って行えばよく
、フィルタープレス、遠心分離器等で差し支えない。該
炭酸塩析出物はSsとCoを含むので、次のSse −
 Co合金スクラップに戻し加え、上記工程を繰り返す
ことにより、損失なくS−を蓚酸塩として回収できる。
In the reaction to form and precipitate carbonate of S- and Co, if the reaction temperature is high and the reaction time is long, the precipitated Co carbonate will change to hydroxide and will be easily dissolved in the aqueous solution again. The reaction temperature and reaction time are each 25
It is desirable to keep the temperature below ℃ for 30 minutes to 3 hours. The carbonate precipitate may be separated by a conventional method, and a filter press, centrifuge, etc. may be used. Since the carbonate precipitate contains Ss and Co, the following Sse −
By adding it back to the Co alloy scrap and repeating the above steps, S- can be recovered as oxalate without loss.

[実施例] 第1表に戒分の分析値を示すような湿式粉砕したSs 
− Co合金スクラップ80kgを110g/lの塩酸
1001を加えて蒸気を吹き込みつつ加温溶解をして7
60lの塩酸水溶液を得た。Sllの濃度は19.0g
/lであった.スクラフブ中に含まれるPr, Nd,
 CeはSI1と同じ希土類であり蓚酸に対し反応性が
高いので、これらを合計し、この合計に対して蓚酸反応
率90%とみなし、1.0当量の蓚酸を添加し、Sll
蓚酸塩を析出させ口過分離した。
[Example] Wet-pulverized Ss whose analytical values are shown in Table 1
- Add 110 g/l of hydrochloric acid 1001 to 80 kg of Co alloy scrap and melt by heating while blowing steam.
60 liters of aqueous hydrochloric acid solution was obtained. The concentration of Sll is 19.0g
/l. Pr, Nd, contained in the scrubber
Ce is a rare earth element like SI1 and has high reactivity with oxalic acid, so add these together, consider the oxalic acid reaction rate to be 90% with respect to this total, add 1.0 equivalent of oxalic acid, and
Oxalate was precipitated and separated by filtration.

口過液中のSLl:a度は1− 8 g / j! S
Cof74度は43g/lであった.次にカ性ソーダを
口過液のpHが4.0となるまで添加し、口過液中のC
oの0.4当量に相当する炭酸ソーダを添加して60分
攪拌後、析出物をフィルタープレスで口過した。この口
過液中のSIl?J1度は0.001g/j!で口過液
は810lであった。口過物はそのままS+y+ − 
Coスクラップへ戻し、上記処理を繰り返した。上記処
理によりSmの損失は0. 0 0 6重量%と極めて
低いものであった。
SLl in oral fluid: degree a is 1-8 g/j! S
Cof74 degree was 43g/l. Next, add caustic soda until the pH of the mouth filtrate becomes 4.0, and add C in the mouth filtrate.
After adding sodium carbonate equivalent to 0.4 equivalents of o and stirring for 60 minutes, the precipitate was passed through a filter press. SIl in this oral fluid? J1 degree is 0.001g/j! The oral fluid was 810 liters. Leave the mouthfuls as they are S+y+ −
It was returned to Co scrap and the above process was repeated. With the above treatment, the loss of Sm is 0. It was extremely low at 0.06% by weight.

第  1  表 (重量%) [発明の効果コ 本発明方法を実施することにより、簡便な処理で、かつ
高収率でSr* − Co合金スクラ・ノブからStm
を分離回収することができ、その効果は大である。
Table 1 (wt%) [Effects of the Invention] By carrying out the method of the present invention, Stm can be obtained from Sr*-Co alloy scrubber knob with simple processing and with high yield.
can be separated and recovered, and the effect is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の手順を示す図である。 FIG. 1 is a diagram showing the procedure of the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] サマリウム−コバルト合金スクラップを塩酸および/ま
たは硝酸に溶解して鉱酸水溶液とし、該鉱酸水溶液中の
サマリウムに対して概略当量以下の蓚酸を添加してサマ
リウムイオンの少量を該鉱酸水溶液中に残すと共に析出
した蓚酸サマリウムをロ過分離回収した後、ロ過液にア
ルカリを添加してpH3〜5とし、該ロ過液中のコバル
トイオンに対して0.1〜0.6当量の炭酸化合物を添
加して析出したサマリウムおよびコバルト炭酸塩をロ過
分離し、該サマリウムおよびコバルト炭酸塩析出物を次
のサマリウム−コバルト合金スクラップへ戻し加え上記
工程を繰り返して行うことを特徴とするサマリウム−コ
バルト合金スクラップからのサマリウム回収方法。
Samarium-cobalt alloy scrap is dissolved in hydrochloric acid and/or nitric acid to make a mineral acid aqueous solution, and oxalic acid is added in an amount less than approximately equivalent to the samarium in the mineral acid aqueous solution to add a small amount of samarium ions to the mineral acid aqueous solution. After separating and recovering samarium oxalate that remained and precipitated by filtration, an alkali was added to the filtrate to adjust the pH to 3 to 5, and a carbonate compound of 0.1 to 0.6 equivalent to the cobalt ion in the filtrate was added. samarium-cobalt, characterized in that the samarium and cobalt carbonate precipitated by the addition of samarium and cobalt carbonate are separated by filtration, and the samarium and cobalt carbonate precipitate is returned to the next samarium-cobalt alloy scrap and the above steps are repeated. Method for recovering samarium from alloy scrap.
JP1185932A 1989-07-20 1989-07-20 Method for recovering samarium from samarium-cobalt alloy scrap Pending JPH0353034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1185932A JPH0353034A (en) 1989-07-20 1989-07-20 Method for recovering samarium from samarium-cobalt alloy scrap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1185932A JPH0353034A (en) 1989-07-20 1989-07-20 Method for recovering samarium from samarium-cobalt alloy scrap

Publications (1)

Publication Number Publication Date
JPH0353034A true JPH0353034A (en) 1991-03-07

Family

ID=16179404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1185932A Pending JPH0353034A (en) 1989-07-20 1989-07-20 Method for recovering samarium from samarium-cobalt alloy scrap

Country Status (1)

Country Link
JP (1) JPH0353034A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469489A (en) * 1990-07-10 1992-03-04 Mitsubishi Kasei Corp Device for joining transport pipe
US5649563A (en) * 1995-04-27 1997-07-22 Surpass Industry Co., Ltd. Fluid coupling
CN104388711A (en) * 2014-12-11 2015-03-04 内蒙古科技大学 Method for recovering rare earth by leaching rare earth oxide molten slag

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469489A (en) * 1990-07-10 1992-03-04 Mitsubishi Kasei Corp Device for joining transport pipe
US5649563A (en) * 1995-04-27 1997-07-22 Surpass Industry Co., Ltd. Fluid coupling
CN104388711A (en) * 2014-12-11 2015-03-04 内蒙古科技大学 Method for recovering rare earth by leaching rare earth oxide molten slag

Similar Documents

Publication Publication Date Title
US5129945A (en) Scrap treatment method for rare earth transition metal alloys
EP3495518A1 (en) Production of a scandium-containing concentrate and subsequent extraction of high-purity scandium oxide therefrom
JP3415844B2 (en) Recovery of cerium from fluoride containing ores
JP2019153562A (en) Lithium carbonate production method and lithium carbonate
TW202343870A (en) Method for producing secondary battery material from black mass
CN105274352B (en) A kind of method that copper cobalt manganese is separated in the manganese cobalt calcium zinc mixture from copper carbonate
JP4215547B2 (en) Cobalt recovery method
US4214896A (en) Process for producing cobalt metal powder
JPH0353034A (en) Method for recovering samarium from samarium-cobalt alloy scrap
KR101143566B1 (en) Recovery of tungsten and cobalt from hardmetal alloy sludge by the hydrometallurgical process using aqua regia
JPS63182216A (en) Method for separation and recovery of rare earth element
US4495158A (en) Process for the recovery of tantalum values
JPH04198017A (en) Purification of scandium oxide
US4452633A (en) Method for producing cobalt metal powder
KR20230145567A (en) Li recovery method and recovery device
JP2004182533A (en) Method of recovering cobalt
JPH0353033A (en) Method for recovering samarium from samarium-cobalt alloy scrap
US6780384B2 (en) Method and system for recovering zirconium values from a hard rock ore containing uranium
JPH0233777B2 (en)
KR100377651B1 (en) A collection method a cobalt oxide in waste cobalt sludge
JPH0353032A (en) Method for recovering samarium and cobalt from samarium-cobalt alloy scrap
JPH0623048B2 (en) Method for recovering tungsten from ammoniacal tungsten solution
JP2008208438A (en) Method for separating indium and tin
CN116732361A (en) Method for recycling scandium from scandium-containing iron-aluminum slag
JP2005060832A (en) Method of recovering silver, and high purity metal silver