JPH035301A - Method for operating and stopping fuel reformer - Google Patents

Method for operating and stopping fuel reformer

Info

Publication number
JPH035301A
JPH035301A JP1137158A JP13715889A JPH035301A JP H035301 A JPH035301 A JP H035301A JP 1137158 A JP1137158 A JP 1137158A JP 13715889 A JP13715889 A JP 13715889A JP H035301 A JPH035301 A JP H035301A
Authority
JP
Japan
Prior art keywords
gas
reforming
reformer
selector
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1137158A
Other languages
Japanese (ja)
Inventor
Isamu Osawa
勇 大澤
Toshihide Nogi
俊秀 野木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP1137158A priority Critical patent/JPH035301A/en
Publication of JPH035301A publication Critical patent/JPH035301A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To reduce the time required for the reducing reaction of an oxidation catalyst by introducing an inert gas into a reformer tube isolated from the raw material in the backward direction to purge a combustible gas contg. steam. CONSTITUTION:Selectors 32, 35 and 36 are closed, and selectors 13, 33 and 24 are opened to operate the fuel reformer. Meanwhile, when the operation is stopped, the selector 13 is closed to stop the supply of the raw gas such as hydrocarbons and alcohols, a burner 3 is extinguished, a feed valve 24 is closed to stop the supply of the reformed gas 21 to a fuel cell. The selectors 35 and 36 are then opened, the selector 33 is closed, the selector 32 is opened to introduce the inert gas 31 from the lower outlet of the reformer 2 through the selector 32, the remaining reformed gas and steam are discharged to the outside of the system from the selector 36 through an inert gas passage 34, a water condenser 22 and a steam separator 23 as a vent gas 37, and condensed water is recovered in the separator 23.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、燃料電池に水素リッチな改質ガスを供給す
る燃料改質装置の改質運転を停止する際、低純度の不活
性ガスを用いて改質装置内に残存する改質ガスおよび水
蒸気をパージする方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the use of low-purity inert gas when stopping the reforming operation of a fuel reformer that supplies hydrogen-rich reformed gas to a fuel cell. This invention relates to a method for purging reformed gas and water vapor remaining in a reformer using the present invention.

〔従来の技術〕[Conventional technology]

第2図は従来装置を示すシステムフロー図である0図に
おいて、■は燃料改質器であり、その炉体4の上部には
バーナ3が設けられ、炉体内には改質反応管2が設けら
れる。原料11はメタン等の炭化水素類またはメタノー
ル等のアルコール類を原燃料とし、これに水蒸気改質反
応に必要な水蒸気または水を所定の水添比で加えた混合
物であり、原料供給系10に設けられた加熱器12で所
定温度の原料ガスとなり、切換弁13を介して改質反応
管2の上部入口側に供給される。改質反応管2には水蒸
気改質触媒2Cとして銅系、亜鉛系、モリブデン系等の
改質触媒層が充填され、原料ガスを水蒸気改質反応によ
って水素リッチな改質ガスに改質する。この水蒸気改質
反応は吸熱反応であり、必要な熱量はバーナ3で燃料3
Fを燃焼させることによって供給され、改質反応管2を
反応に好適な温度に保持して改質が行われるとともに、
燃焼排ガス5は例えば加熱器12で熱交換した後系外に
排出される。生成した改質ガス21Fは改質反応管2の
底ンサ22で改質ガス中に多量に含まれる水分を凝縮さ
せ、気水分離器23で水を回収し、乾燥した改質ガス2
1が切換弁24を介して図示しない燃料電池発電装置に
供給される。
FIG. 2 is a system flow diagram showing a conventional device. In FIG. provided. The raw material 11 is a mixture in which hydrocarbons such as methane or alcohols such as methanol are used as raw fuel, and steam or water necessary for a steam reforming reaction is added thereto at a predetermined hydrogenation ratio. The raw material gas is heated to a predetermined temperature by the provided heater 12, and is supplied to the upper inlet side of the reforming reaction tube 2 via the switching valve 13. The reforming reaction tube 2 is filled with a layer of a copper-based, zinc-based, molybdenum-based, etc. reforming catalyst as a steam reforming catalyst 2C, and the raw material gas is reformed into a hydrogen-rich reformed gas by a steam reforming reaction. This steam reforming reaction is an endothermic reaction, and the amount of heat required is
It is supplied by burning F, and reforming is carried out by keeping the reforming reaction tube 2 at a temperature suitable for the reaction.
The combustion exhaust gas 5 undergoes heat exchange with a heater 12, for example, and then is discharged to the outside of the system. The generated reformed gas 21F condenses water contained in a large amount in the reformed gas in the bottom analyzer 22 of the reforming reaction tube 2, recovers water in the steam-water separator 23, and converts the reformed gas 21F into a dried reformed gas 2.
1 is supplied to a fuel cell power generation device (not shown) via a switching valve 24.

このようにして改質運転中の装置を停止する際、弁13
.24を閉じ、ベント側の弁36を開くと、大気圧より
高い圧力分の改質ガス21はヘントガス37として系外
に放出されるが、改質反応管2および改質ガス供給系2
0内には常圧の改質ガス21Fと水蒸気が多量に残存す
る。この状態でバーナ3を消火し、炉体4の温度が低下
してくると、系内のガス圧が下がるためにベント側から
空気を吸入し、水素リンチな改質ガスと空気が混合して
爆鳴気を生ずる危険性を生ずる。また、系内の水蒸気が
冷えた改質触媒層20表面に結露する。このようにぬれ
た状態の改質触媒層をそのままにして再起動し、また停
止する操作を繰り返し行うと、改質触媒が粉化して触媒
性能が低下する。
In this way, when stopping the equipment during reforming operation, the valve 13
.. 24 is closed and the valve 36 on the vent side is opened, the reformed gas 21 with a pressure higher than atmospheric pressure is released outside the system as Ghent gas 37.
A large amount of normal-pressure reformed gas 21F and water vapor remain in the chamber. In this state, when the burner 3 is extinguished and the temperature of the furnace body 4 decreases, air is sucked in from the vent side because the gas pressure in the system decreases, and the hydrogen-rich reformed gas and air are mixed. There is a risk of explosion. Moreover, the water vapor in the system condenses on the cooled surface of the reforming catalyst layer 20. If the reforming catalyst layer in such a wet state is left as it is and the operation of restarting and stopping is repeated, the reforming catalyst will be powdered and the catalyst performance will deteriorate.

このような状態を防止するために、切換弁13および2
4を閉じ、弁36を開くとともに、不活性ガス供給系3
0の切換弁32を開いて窒素ガス等の不活性ガス31を
原料供給系10の一部分を経由して改質反応管2にその
上部入口側から供給し、改質反応管2や改質ガス供給系
20等に残存した改質ガス21Fや水蒸気をベント側に
追い出し (この操作をパージという)た後、不活性ガ
スが系内に充満した状態で休止状態とする停止方法が知
られている。また、ゼオライトを用いた窒素分離装置や
透過膜を用いた窒素分離装置によって空気から分離した
窒素を不活性ガス31として使用することにより、窒素
ボンへや液化窒素タンク等の設置や純窒素の補充を不要
とする方法が知られている。
In order to prevent this situation, the switching valves 13 and 2
4, open the valve 36, and open the inert gas supply system 3.
0 switching valve 32 is opened and an inert gas 31 such as nitrogen gas is supplied to the reforming reaction tube 2 from the upper inlet side of the reforming reaction tube 2 via a part of the raw material supply system 10, and the reforming reaction tube 2 and the reformed gas are There is a known shutdown method in which the reformed gas 21F and water vapor remaining in the supply system 20, etc. are expelled to the vent side (this operation is called purge), and then the system is brought to a resting state with the system filled with inert gas. . In addition, by using nitrogen separated from the air by a nitrogen separation device using zeolite or a nitrogen separation device using a permeable membrane as the inert gas 31, it is possible to install a nitrogen tank or a liquefied nitrogen tank or replenish pure nitrogen. A method is known to eliminate the need for

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述の窒素分jiI装置で得られる窒素ガスは、主とし
て装置の経済性の面から0.1%から2%程度の酸素を
含むのが一般的である。このように酸素を含む低純度の
窒素ガスを不活性ガス31として改質反応管に供給する
と、改質触媒2Cが酸化してその触媒としての機能が低
下する。従来装置では不活性ガス31を改質反応管2の
上部入口側(原料ガスの入口側)から送り込んで可燃性
ガスのパージ操作を行っているために、改質触媒層2C
の酸化劣化が入口側から始まって逐次出口側に向けて進
行する。酸化劣化した触媒は改質運転を再開することに
よって生成する水素によって還元されるが、酸化劣化部
分の主体が原料ガスの人口側に存在するために生成水素
による還元速度が遅く、負荷である燃料電池が起動、停
止の繰り返し頻度が高い発電装置である場合には、改質
触媒の酸化劣化が徐々に進行してしまうという欠点があ
る。この対策としては、改質反応管2に充填する改質触
媒量に酸化劣化を予測してあらかじめ余裕を持たせてお
くことが考えられるが、これによって改質反応管が大型
化するという問題を生ずる。
The nitrogen gas obtained by the above-mentioned nitrogen content jiI apparatus generally contains about 0.1% to 2% oxygen, mainly from the economical point of view of the apparatus. When low-purity nitrogen gas containing oxygen is supplied to the reforming reaction tube as the inert gas 31 in this way, the reforming catalyst 2C is oxidized and its function as a catalyst is degraded. In the conventional device, the inert gas 31 is sent from the upper inlet side of the reforming reaction tube 2 (the inlet side of the raw material gas) to purge the flammable gas, so the reforming catalyst layer 2C
The oxidative deterioration starts from the inlet side and progresses sequentially towards the outlet side. The oxidatively degraded catalyst is reduced by the hydrogen produced by restarting the reforming operation, but since the main part of the oxidatively degraded part exists on the feedstock side of the raw material gas, the rate of reduction by the produced hydrogen is slow, and the fuel, which is a load, is reduced. If the battery is a power generating device that frequently starts and stops repeatedly, there is a drawback that oxidative deterioration of the reforming catalyst progresses gradually. As a countermeasure to this problem, it is possible to predict the oxidative deterioration and to provide a margin in advance for the amount of reforming catalyst to be filled in the reforming reaction tube 2. However, this will avoid the problem of increasing the size of the reforming reaction tube. arise.

この発明の目的は、酸化した触媒の還元反応を活性化す
ることにより、起動、停止の繰り返しを低純度の窒素ガ
スを不活性ガスとして用いて行えるようにすることにあ
る。
An object of the present invention is to activate the reduction reaction of the oxidized catalyst so that repeated startup and shutdown can be performed using low-purity nitrogen gas as an inert gas.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、この発明によれば、炭化水
素類、アルコール類等の原料をその供給系を介して熱源
を有する水涼気改質器の改質反応管に送って水素リッチ
な改質ガスに改質し、改質ガス供給系を介して燃料電池
に供給する燃料改質装置において、その停止時に前記原
料の供給を遮断した後、前記改質反応管に不活性ガスを
前記原料の供給方向とは逆向きに導入して前記改質反応
管および改質ガス供給系内に残存する水蒸、気を含む可
燃性ガスをパージすることとする。
In order to solve the above-mentioned problems, according to the present invention, raw materials such as hydrocarbons and alcohols are sent to a reforming reaction tube of a water cool air reformer having a heat source through the supply system to produce a hydrogen-rich reformer. In a fuel reformer that reformes the raw material into a reformed gas and supplies the raw material to a fuel cell via a reformed gas supply system, after cutting off the supply of the raw material when the fuel reformer is stopped, inert gas is supplied to the reforming reaction tube. The reforming reaction tube and the reformed gas supply system are introduced in a direction opposite to the supply direction of the reformed gas to purge the combustible gas containing water vapor and gas remaining in the reforming reaction tube and the reformed gas supply system.

〔作用〕[Effect]

上記手段において、酸化した改質触媒の還元反応が水素
濃度の高い雰囲気中で活性化できることに着目し、改質
反応管への低純度窒素の供給を原料ガスの供給方向は逆
向きに反応管の出口側から供給するよう構成したことに
より、改質触媒層の酸化劣化は主に改質ガスの出口側部
分を主体にして発生することになり、したがって改質運
転を再開することによって上流側で生成した水素り・7
チな改質ガスが下流にある酸化した改質触媒部分に豊富
に供給されるので、酸化触媒の還元反応が活発化し、短
時間の改質運転によって改質触媒の性能を回復できる。
In the above method, we focused on the fact that the reduction reaction of the oxidized reforming catalyst can be activated in an atmosphere with a high hydrogen concentration. By supplying the reformed gas from the outlet side, oxidative deterioration of the reforming catalyst layer mainly occurs at the outlet side of the reformed gas. Therefore, by restarting the reforming operation, the upstream side Hydrogen produced by 7
Since the oxidized reforming gas is abundantly supplied to the downstream oxidized reforming catalyst portion, the reduction reaction of the oxidation catalyst becomes active, and the performance of the reforming catalyst can be restored in a short reforming operation.

したがって、改質運転の停止時に低純度の窒素ガスを用
いて可燃性ガスおよび水蒸気のパージ操作を行っても、
改質運転の再開によって短時間のうちに改質反応の低下
を回復できるので、燃料電池負荷に対応して燃料改質装
置の起動停止を繰り返し行うことができる。
Therefore, even if low-purity nitrogen gas is used to purge flammable gas and steam when reforming operation is stopped,
Since the reduction in the reforming reaction can be recovered in a short time by restarting the reforming operation, the fuel reformer can be repeatedly started and stopped in response to the fuel cell load.

〔実施例〕〔Example〕

以下この発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

第1図はこの発明の実施例方法を示す燃料改質装置のシ
ステムフロー図であり、従来装置と同じ部分には同一参
照符号を用いることにより詳細な説明を省略する0図に
おいて、原料供給系10と改質ガス供給系20の水コン
デンサ22の上流側との間に切換弁35を有する不活性
ガス通路34を設ける。
FIG. 1 is a system flow diagram of a fuel reformer showing an embodiment method of the present invention. In FIG. 10 and the upstream side of the water condenser 22 of the reformed gas supply system 20, an inert gas passage 34 having a switching valve 35 is provided.

また不活性ガス供給系30は改質反応管2の下部出口側
に連通ずるよう切換弁32を介して改質ガス供給系20
に連結される。また、この連結部分と不活性ガス通路3
4の連結部分との間の改質ガス供給系20の配管部分に
は切換弁33が設けられる。
Further, the inert gas supply system 30 is connected to the reformed gas supply system 20 via a switching valve 32 so as to communicate with the lower outlet side of the reforming reaction tube 2.
connected to. In addition, this connecting part and the inert gas passage 3
A switching valve 33 is provided in the piping portion of the reformed gas supply system 20 between the connecting portion of the reformed gas supply system 20 and the connecting portion of the reformed gas supply system 20 .

このように構成された改質装置の改質運転は切換弁32
.35および36を閉じ、切換弁13.33.24を開
いた状態で従来方法におけると同様に行われる。
The reforming operation of the reformer configured in this way is carried out by the switching valve 32.
.. 35 and 36 are closed and the switching valves 13, 33, 24 are open as in the conventional method.

一方、改質運転の停止時には、切換弁13を閉じて原料
の供給を遮断し、バーナ3を消火し、供給弁24を閉じ
て図示しない燃料電池への改質ガス21の供給を停止す
る。ついで切換弁35および36を開き。
On the other hand, when the reforming operation is stopped, the switching valve 13 is closed to cut off the supply of the raw material, the burner 3 is extinguished, and the supply valve 24 is closed to stop the supply of the reformed gas 21 to the fuel cell (not shown). Then, the switching valves 35 and 36 are opened.

切換弁33を閉じ、ついで切換弁32を開くと不活性ガ
スとしての酸素を含む窒素ガス31が切換弁32を介し
て改質反応管2の下部出口から流入し、残留する改質ガ
スおよび水蒸気は改質反応管2の上部入 出口から不活性ガス通路34.水コンデンサ22.気水
分離器23を経由して弁36からペントガス37として
系外にパージされる。また、水蒸気は水コンデンサ22
でaI#IL、気水分離器23に回収される。窒素ガス
の供給は系内の水素濃度が十分低くなった時点で切換弁
32によって遮断され、弁36を閉じることにより系内
に窒素ガス31が封入された状態で装置が冷却され、休
止状態に至る。
When the switching valve 33 is closed and then the switching valve 32 is opened, nitrogen gas 31 containing oxygen as an inert gas flows from the lower outlet of the reforming reaction tube 2 through the switching valve 32, and the remaining reformed gas and water vapor are is an inert gas passage 34 from the upper inlet/outlet of the reforming reaction tube 2. Water condenser 22. It is purged out of the system as pent gas 37 from a valve 36 via a steam/water separator 23. In addition, the water vapor is transferred to the water condenser 22.
aI#IL is collected in the steam separator 23. The supply of nitrogen gas is cut off by the switching valve 32 when the hydrogen concentration in the system becomes sufficiently low, and by closing the valve 36, the system is cooled with nitrogen gas 31 sealed in the system, and the system is put into a rest state. reach.

上述の停止操作において改質反応管2の出口側から流入
した窒素ガス中の酸素0冨は改質触媒と反応して触媒が
例えば銅系であれば触媒表面に亜酸化1qcuoが生成
し、改質触媒12cの下部出口部分から入口部分に向け
て触媒の酸化が進行する。しかしながら、改t装置の改
質運転を再開すると、改質触媒層2Cの上流側で生成し
た水素リンチな改質ガス21Fが下流側に位置する酸化
した触媒に豊富に供給されて次式に示す還元反応が盛ん
に行われ、酸化された触媒が速やかに還元されて改質触
媒としての活性を取り戻すことができる。
During the above-mentioned stop operation, the oxygen content in the nitrogen gas flowing from the outlet side of the reforming reaction tube 2 reacts with the reforming catalyst, and if the catalyst is copper-based, for example, 1 qcuo of suboxide is generated on the catalyst surface, and the reforming Oxidation of the catalyst progresses from the lower outlet portion to the inlet portion of the quality catalyst 12c. However, when the reforming operation of the reformer is restarted, the hydrogen-rich reformed gas 21F generated on the upstream side of the reforming catalyst layer 2C is abundantly supplied to the oxidized catalyst located on the downstream side, as shown in the following equation. The reduction reaction is actively carried out, and the oxidized catalyst is quickly reduced and can regain its activity as a reforming catalyst.

CuO+H1→Cu+H1O−・−111このように実
施例方法では、燃料改質装置の改質反応管に不活性ガス
を原料ガスとは逆向きに流す不活性ガス通路を付加する
だけで、吸着剤方式や透過膜方式など簡便な空気中窒素
分離装置で得られる酸素を0.1%から2%程度含む低
純度の窒素を残存改質ガスのパージ用不活性ガスに使用
して改質運転の起動停止を操り返し行っても、改質触媒
層の酸化による水蒸気改質反応の低下をもたらすことな
く、改質反応を効率よく行うことができる。また、系内
の可燃性ガスを完全にパージし、水分を回収できるので
、改質触媒層がぬれることによる性能低下や空気と可燃
性ガスの混触の危険性などを回避できることはいうまで
もないことである。
CuO+H1→Cu+H1O-・-111 In this way, in the example method, the adsorbent method can be achieved by simply adding an inert gas passage through which the inert gas flows in the opposite direction to the raw material gas in the reforming reaction tube of the fuel reformer. Starting reforming operation by using low-purity nitrogen containing about 0.1% to 2% oxygen, obtained with a simple air nitrogen separation device such as a permeation membrane method, as an inert gas for purging the remaining reformed gas. Even if the stop is repeatedly performed, the reforming reaction can be carried out efficiently without deteriorating the steam reforming reaction due to oxidation of the reforming catalyst layer. In addition, since flammable gas in the system can be completely purged and water can be recovered, it goes without saying that performance degradation due to wet reforming catalyst layers and the risk of mixture of air and flammable gas can be avoided. That's true.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように、燃料改質装置の改質運転を停
止する際、改質反応管に原料ガスの供給方向とは逆向き
に酸素を含む低純度の窒素ガスを送って系内に残存した
水蒸気を含む可燃性ガスのパージを行うよう構成した。
As mentioned above, when stopping the reforming operation of the fuel reformer, this invention sends low-purity nitrogen gas containing oxygen into the reforming reaction tube in the opposite direction to the supply direction of the raw material gas. It was configured to purge flammable gas including residual water vapor.

その結果、窒素ガス中の酸素によって改質反応管の出口
側部分で酸化した改質触媒が、改質運転の再開によって
酸化した触媒にその上流で生成した水素ガスが豊富に供
給され、酸化触媒の還元反応が盛んに起こるので、不活
性ガスを原料ガスと同し方向に流す従来方法に比べて還
元反応に要する時間を大幅に短縮することが可能になり
、したがって起動、停止の頻度の高い燃料電池負荷に対
応して改質性能の低下をもたらすことなく起動停止を繰
り返し行える燃料改質装置を闇易な空気中窒素の分離装
置から供給される低純度の窒素ガスを用いて得ることが
できる。また、改質触媒量を酸化劣化を配IQシて増量
する必要がなく、高純度窒素を必要とせず5かつ不活性
ガスの逆流通路も容易に形成できるので、改質装置を小
型化かつ簡素化できるとともに、純窒素の補給などの保
守作業をも省力化できる利点が得られる。
As a result, the reforming catalyst is oxidized by the oxygen in the nitrogen gas at the outlet side of the reforming reaction tube, and when the reforming operation is resumed, the oxidized catalyst is abundantly supplied with the hydrogen gas generated upstream, and the oxidation catalyst Because the reduction reaction occurs actively, the time required for the reduction reaction can be significantly shortened compared to the conventional method of flowing inert gas in the same direction as the raw material gas. It is possible to obtain a fuel reformer that can repeatedly start and stop in response to the fuel cell load without causing a drop in reforming performance by using low-purity nitrogen gas supplied from a fraudulent air nitrogen separation device. can. In addition, there is no need to increase the amount of reforming catalyst due to oxidative deterioration, high purity nitrogen is not required, and a backflow passage for inert gas can be easily formed, making the reformer smaller and simpler. This has the advantage of saving labor in maintenance work such as replenishing pure nitrogen.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例方法を示す燃料改質装置のシ
ステムフロー図、第2図は従来方法を示す燃料改質装置
のシステムフロー図である。 1:燃料改質器、2:改質反応管、3:ハーナ、4;炉
体、10:原料供給系、11;水添原料、12:加熱器
、20:改質ガス供給系、21.21F :改質ガス、
22;水コンデンサ、23:気水分離器、30:不:舌
性ガス供給系、31:不活性ガス (低純度の窒素ガス
)、13.24,32.33.35,36  :切換弁
、34:不活性ガス通路、37:ベント系 (被パージ
ガス)。
FIG. 1 is a system flow diagram of a fuel reformer showing an embodiment of the present invention, and FIG. 2 is a system flow diagram of a fuel reformer showing a conventional method. 1: Fuel reformer, 2: Reforming reaction tube, 3: Harna, 4: Furnace body, 10: Raw material supply system, 11: Hydrogenation raw material, 12: Heater, 20: Reformed gas supply system, 21. 21F: Reformed gas,
22: Water condenser, 23: Steam/water separator, 30: Inert gas supply system, 31: Inert gas (low purity nitrogen gas), 13.24, 32.33.35, 36: Switching valve, 34: Inert gas passage, 37: Vent system (gas to be purged).

Claims (1)

【特許請求の範囲】[Claims] 1)炭化水素類、アルコール類等の原料をその供給系を
介して熱源を有する水蒸気改質器の改質反応管に送って
水素リッチな改質ガスに改質し、改質ガス供給系を介し
て燃料電池に供給する燃料改質装置において、その停止
時に前記原料の供給を遮断した後、前記改質反応管に不
活性ガスを前記原料の供給方向とは逆向きに導入して前
記改質反応管および改質ガス供給系内に残存する水蒸気
を含む可燃性ガスをパージすることを特徴とする燃料改
質装置の運転停止方法。
1) Raw materials such as hydrocarbons and alcohols are sent through the supply system to the reforming reaction tube of a steam reformer that has a heat source, reformed into hydrogen-rich reformed gas, and the reformed gas supply system is In a fuel reformer that supplies fuel to a fuel cell through a fuel reformer, after cutting off the supply of the raw material when the fuel reformer is stopped, an inert gas is introduced into the reforming reaction tube in the opposite direction to the supply direction of the raw material to 1. A method for stopping operation of a fuel reformer, comprising purging flammable gas containing water vapor remaining in a reformed reaction tube and a reformed gas supply system.
JP1137158A 1989-05-30 1989-05-30 Method for operating and stopping fuel reformer Pending JPH035301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1137158A JPH035301A (en) 1989-05-30 1989-05-30 Method for operating and stopping fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1137158A JPH035301A (en) 1989-05-30 1989-05-30 Method for operating and stopping fuel reformer

Publications (1)

Publication Number Publication Date
JPH035301A true JPH035301A (en) 1991-01-11

Family

ID=15192177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1137158A Pending JPH035301A (en) 1989-05-30 1989-05-30 Method for operating and stopping fuel reformer

Country Status (1)

Country Link
JP (1) JPH035301A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110207A (en) * 2000-10-03 2002-04-12 Nippon Mitsubishi Oil Corp Fuel cell system and operation method therefor
WO2003003495A3 (en) * 2001-06-28 2003-07-17 Ballard Power Systems Self-inerting fuel processing system
US6743537B2 (en) 2000-12-11 2004-06-01 Toyota Jidosha Kabushiki Kaisha Hydrogen gas generating systems, fuel cell systems and methods for stopping operation of fuel cell system
WO2006080512A1 (en) * 2005-01-31 2006-08-03 Matsushita Electric Industrial Co., Ltd. Fuel cell power generation system, and method for operating fuel cell power generation system
JP2009078969A (en) * 2002-02-18 2009-04-16 Osaka Gas Co Ltd Method for operating hydrogen-containing gas-producing apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110207A (en) * 2000-10-03 2002-04-12 Nippon Mitsubishi Oil Corp Fuel cell system and operation method therefor
US6743537B2 (en) 2000-12-11 2004-06-01 Toyota Jidosha Kabushiki Kaisha Hydrogen gas generating systems, fuel cell systems and methods for stopping operation of fuel cell system
DE10160556B4 (en) * 2000-12-11 2010-09-30 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Hydrogen gas generating systems and methods for stopping the operation of a hydrogen gas generating system
WO2003003495A3 (en) * 2001-06-28 2003-07-17 Ballard Power Systems Self-inerting fuel processing system
JP2009078969A (en) * 2002-02-18 2009-04-16 Osaka Gas Co Ltd Method for operating hydrogen-containing gas-producing apparatus
WO2006080512A1 (en) * 2005-01-31 2006-08-03 Matsushita Electric Industrial Co., Ltd. Fuel cell power generation system, and method for operating fuel cell power generation system
US8257873B2 (en) 2005-01-31 2012-09-04 Panasonic Corporation Fuel cell power generation system with valve on raw material gas supply passage and valve downstream of carbon monoxide decreasing unit, and method for operating fuel cell power generation system
US8475965B2 (en) 2005-01-31 2013-07-02 Panasonic Corporation Fuel cell power generation system with valve on raw material gas supply passage and valve downstream of carbon monoxide decreasing unit, and method for operating fuel cell power generation system

Similar Documents

Publication Publication Date Title
JP5011673B2 (en) Fuel cell power generation system
US9112201B2 (en) Hydrogen production apparatus, fuel cell system and operation method thereof
JP2005509261A (en) Stopping method for a fuel cell fuel processing system
JP3686062B2 (en) Fuel cell power generation system and fuel cell power generation stop method
JPH0869808A (en) Reformer and fuel cell system
WO2007111124A1 (en) Method of shutdown of reforming apparatus
JP2002093436A (en) Fuel cell device
WO2006049299A1 (en) Fuel cell system
JP4596745B2 (en) Method for improving efficiency and reducing exhaust gas in a fuel cell system
KR101310174B1 (en) Method for treatment of drain in hydrogen production and hydrogen production system
JPH035301A (en) Method for operating and stopping fuel reformer
JPS62190660A (en) Suspending method for fuel cell power generating plant
JP2004152540A (en) Method of stopping fuel cell system operation, and fuel cell system provided with same
JPH05114414A (en) Fuel cell power generation system
JPH0624129B2 (en) Fuel cell power plant
JPH07226221A (en) Purging device of liquid fuel type fuel cell
JP4949619B2 (en) Fuel cell system and operation method thereof
JP4041085B2 (en) Fuel gas production system and method for stopping the same
JP2005285626A (en) Fuel gas manufacturing power generation system
US7427304B2 (en) Fuel gas manufacturing apparatus
JP4180534B2 (en) Fuel gas production apparatus and operation method thereof
JP2003128401A (en) Apparatus for generating hydrogen and it's operating method
WO2010134317A1 (en) Hydrogen generation device and fuel cell system
JPH05205759A (en) Fuel cell power plant
JP7355710B2 (en) Solid oxide fuel cell system