JPH0353013A - Method for controlling charge of blast furnace - Google Patents
Method for controlling charge of blast furnaceInfo
- Publication number
- JPH0353013A JPH0353013A JP18850789A JP18850789A JPH0353013A JP H0353013 A JPH0353013 A JP H0353013A JP 18850789 A JP18850789 A JP 18850789A JP 18850789 A JP18850789 A JP 18850789A JP H0353013 A JPH0353013 A JP H0353013A
- Authority
- JP
- Japan
- Prior art keywords
- sintered ore
- grain size
- armor
- average grain
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 13
- 238000012545 processing Methods 0.000 claims abstract description 9
- 239000002245 particle Substances 0.000 claims description 20
- 238000005245 sintering Methods 0.000 claims description 2
- 239000002994 raw material Substances 0.000 abstract description 4
- 230000004043 responsiveness Effects 0.000 abstract 1
- 238000007796 conventional method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000003245 coal Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Blast Furnaces (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、高炉の装入物制御方法に関する.[従来の
技術]
高炉の装入主原料中に占める焼結鉱の割合は80数%に
もなり、燗結鉱の性状の変化は、高炉の炉況に大きく影
響する.特に、粒径が大きく変化した場合(小径化した
場合、炉中心に燗結鉱の流れ込みが多くなり、ベル下温
度が下がり炉況が悪化する.)、高炉内のガス分布が大
きく変化することになり炉況不安定の要因とされている
.従来は、ベル下温度やガス温度分布等により、鉱石/
コークスの変更やムーバブルアーマにより装入物分布の
制御が実施されている.なお近年、高炉炉口部に設けた
テレビカメラによりストックラインを撮影し、その画像
から得られる情報を活用して高炉炉況の安定を図ろうと
する試みがなされているが、未だこれといった技術は公
開されていない.最近に至って、炉ロテレビカメラによ
るストックラインの装入物表面を撮影し、その画像を処
理して、装入物の粒度を測定する特開昭63−2909
43号公報が公開されている.[発明が解決しようとす
る課題]
従来のベル下温度やガス温度分布によりムーバブルアー
マを操作して装入物分布の制御を行う方法は、操業アク
ションを取る時期は、小径の焼結鉱が炉内を降下してい
るとき、すなわち、そのことにより炉況が悪化した後で
あるから、炉況回復に時間がかかる.また、炉口部に設
けたテレビカメラにより装入物の粒度を測定する方法に
しても、前記方法によるものよりはアクション時期が早
くなるが、炉況が悪化してしまうという問題がある.
[課題を解決するための手段]
この発明は、上記のような問題を解決しようとするもの
で、焼結槽下切出しフィーダ上の焼結鉱をテレビカメラ
で撮影し、画像処理装置で焼結鉱の平均粒度を演算し、
次いで、予め、焼結鉱の平均粒度とアーマ強度の関係デ
ータを入力した演算装置で平均粒度に対するアーマ強度
を求め、その結果によりムーバブルアーマーの操作を制
御する高炉の装入物制御方法である.
[作用]
焼結鉱槽下で撮影された映像信号を画像処理装置で処理
し、煩結鉱の平均粒度が測定、算出され、演算装置で、
前記画像処理装置で得られた平均粒度からアーマ強度が
照合演算される.求められたアーマ強度により炉頂のム
ーバブルアーマが操作され、変化後の粒度に合った原料
分布が得られる.従って、従来方法のように炉況を悪化
させ、その回復に時間を要することがなくなり、安定し
た炉況が維持できる.
[実施例]
本発明の実施例を以下に詳細に説明する.第1図は本発
明の方法を実施するブロック図である.1は燗結鉱槽、
2は燗結鉱槽下のベルトフィダ、3はコンベア、4は高
炉、5はストックライン、6はベルトフィーダ2上の焼
結鉱である.7はベルトフィーダ2上の焼結鉱を撮影す
るテレビカメラ、8は画像処理装置、9は演算装置、1
0はムーバブルアーマ駆動装置である.
以上の設備配置において、本発明方法は、テレビカメラ
7で撮影した画像信号を画像処理装置8に送り、画像処
理装置8で焼結鉱の平均粒度を算出し、平均粒度信号を
演算装置9に送る.演算装置って予めインプットされた
、燗結鉱平均粒度とムーバグルアーマのアーマ強度の関
係データと平均粒度とを照合し、アーマ強度を決定し炉
頂のムーバブルアーマ駆動装置10に信号を送る.ムー
バブルアーマ駆動装置10は決定アーマ強度だけアーマ
ヘッドを移動し、原料分布を修正するものである.
第3図は従来方法における焼結鉱の平均粒度の変化とそ
のときのベル下温度との関係を示すグラフである.なお
、焼結鉱の粒度測定試料のサンプリングは煩結鉱槽下の
ベルトフィーダ上で行った.また、ベル下温度は粒度変
化が、当該温度に影響を現す所定時間だけ補正した時間
で表している.第3図は、焼結鉱平均粒度が7時間の間
に131−から11關に小粒径方向に変化するにしたが
って,ベル下温度が600℃から500℃に降下したこ
とを示している.第2図は本発明の方法を使用したとき
の焼結鉱の平均粒度の変化とそのときのベル下温度との
関係を示すグラフである.ベル下温度の時間の補正は上
記と同様である。[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a method for controlling charges in a blast furnace. [Prior Art] Sintered ore accounts for over 80% of the main raw material charged in a blast furnace, and changes in the properties of sintered ore greatly affect the condition of the blast furnace. In particular, if the particle size changes significantly (if the particle size becomes smaller, more slag will flow into the center of the furnace, the temperature below the bell will drop and the furnace condition will worsen), the gas distribution inside the blast furnace will change significantly. This is considered to be a cause of unstable reactor conditions. Conventionally, ore/
Charge distribution is controlled by changing coke and movable armor. In recent years, attempts have been made to photograph the stock line with a television camera installed at the mouth of the blast furnace and use the information obtained from the images to stabilize the conditions in the blast furnace, but such technology has not yet been developed. Not published. Recently, Japanese Patent Application Laid-Open No. 63-2909 (1983-2909), which uses a furnace rotor television camera to photograph the surface of the charge on the stock line and processes the image to measure the particle size of the charge.
Publication No. 43 has been published. [Problem to be solved by the invention] The conventional method of controlling the burden distribution by operating the movable armor based on the temperature below the bell and the gas temperature distribution is difficult to control when small-diameter sintered ore is in the furnace. When the reactor is descending, that is, after the reactor condition has worsened, it takes time for the reactor condition to recover. Furthermore, the method of measuring the particle size of the charge using a television camera installed at the furnace mouth allows the action to be taken earlier than the method described above, but there is a problem in that the furnace condition deteriorates. [Means for Solving the Problems] This invention attempts to solve the above-mentioned problems, and the sintered ore on the bottom cutting feeder of the sintering tank is photographed with a television camera, and the sintered ore is sintered with an image processing device. Calculate the average grain size of the ore,
This is a blast furnace charge control method in which the armor strength for the average grain size is determined using a calculation device that has previously input the relationship data between the average grain size of the sintered ore and the armor strength, and the operation of the movable armor is controlled based on the results. [Operation] The video signal taken under the sintered ore tank is processed by the image processing device, the average particle size of the sintered ore is measured and calculated, and the arithmetic device calculates the
The armor strength is collated and calculated from the average particle size obtained by the image processing device. The movable armor at the top of the furnace is operated according to the determined armor strength, and a raw material distribution that matches the changed particle size is obtained. Therefore, unlike the conventional method, which deteriorates the furnace condition and takes time to recover, it is possible to maintain stable furnace condition. [Example] Examples of the present invention will be described in detail below. FIG. 1 is a block diagram implementing the method of the present invention. 1 is the hot coal tank,
2 is a belt feeder under the sintered ore tank, 3 is a conveyor, 4 is a blast furnace, 5 is a stock line, and 6 is sintered ore on the belt feeder 2. 7 is a television camera that photographs the sintered ore on the belt feeder 2; 8 is an image processing device; 9 is a calculation device; 1
0 is the movable armor drive device. In the above equipment arrangement, the method of the present invention sends an image signal taken by the television camera 7 to the image processing device 8, calculates the average particle size of the sintered ore in the image processing device 8, and sends the average particle size signal to the calculation device 9. send. The arithmetic unit compares the average grain size with the relationship data between the average grain size of the slag and the armor strength of the movable armor that has been input in advance, determines the armor strength, and sends a signal to the movable armor drive device 10 at the top of the furnace. The movable armor drive device 10 moves the armor head by the determined armor strength and corrects the raw material distribution. Figure 3 is a graph showing the relationship between the change in the average particle size of sintered ore and the temperature below the bell in the conventional method. Sampling of the sintered ore particle size measurement sample was carried out on a belt feeder below the sintered ore tank. In addition, the temperature below the bell is expressed as the time corrected by the predetermined time during which the particle size change affects the temperature. Figure 3 shows that as the average grain size of the sintered ore changed from 131 to 11 in the direction of smaller grains over a period of 7 hours, the temperature under the bell decreased from 600 to 500 °C. Figure 2 is a graph showing the relationship between the change in the average particle size of sintered ore and the temperature below the bell when the method of the present invention is used. The time correction for the temperature below the bell is the same as above.
試験開始4時間後に平均粒度が11.5smになったの
で、○↓O↓C↓C↓におけるアーマ強度B6B4 (
アーマヘッドは炉壁より500闘から1 0 0 0
mmの間を往復動し、この間を中心側から炉壁に向かっ
て50mmピッチで分割し、例えば4は炉壁より8 5
0 u+の位置、6は炉壁より750闘の位置という
ように名づけてある.なお、Bは炉壁より5 0 0
asの位置を表す.従ってB6B4はアーマヘッドを炉
壁より5 0 0 mmに後退→炉壁より7 5 0
amに前進→炉壁より5 0 0 +nに後退→炉壁よ
り8 5 0 amに前進を表す.)を、86B5に変
更し、6時間後平均粒度が更に、11.2mmまで下が
ったので、アーマ強度をB4B6に変更した.この結果
、ベル下温度は590℃以上を維持することができた.
そして、粒度が小径化したにもかかわらす炉況は安定し
ていた.
[発明の効果]
本発明の方法は、槽下ベルトフィーダ上の焼結鉱をテレ
ビカメラで撮影し、画像処理により平均粒度を求め、平
均粒度に合ったアーマ強度を演算装置で決定して、ムー
バブルアーマを自動操作するものであるから、燗結鉱粒
度が小径化の方向に変化しても、従来のように炉況を悪
化させるようなことが無くなる.4 hours after the start of the test, the average particle size became 11.5sm, so the armor strength at ○↓O↓C↓C↓ was changed to B6B4 (
Armored is 1000 from 500 battles from the furnace wall.
It reciprocates between 50 mm and 50 mm apart from the center side toward the furnace wall. For example, 4 is 8 5 mm from the furnace wall.
The positions are named 0 u+, 6 is the position 750 points from the furnace wall, and so on. In addition, B is 500 from the furnace wall.
Represents the position of as. Therefore, for B6B4, the armor head is set back 500 mm from the furnace wall → 750 mm from the furnace wall.
Advance at am → retreat from the furnace wall to 5 00 + n → advance from the furnace wall to 8 50 am. ) was changed to 86B5, and the average particle size further decreased to 11.2 mm after 6 hours, so the armor strength was changed to B4B6. As a result, the temperature under the bell could be maintained at 590°C or higher.
Despite the particle size becoming smaller, the furnace conditions remained stable. [Effects of the Invention] The method of the present invention photographs the sintered ore on the belt feeder under the tank with a television camera, calculates the average grain size through image processing, determines the armor strength that matches the average grain size with a calculation device, and Since the movable armor is automatically operated, even if the slag grain size changes toward a smaller diameter, the furnace conditions will not worsen as in the past.
第1図は本発明の方法を実施するブロック図,第2図は
本発明の方法を実施したときの焼結鉱の平均粒度の変化
とそのときのベル下温度との関係を示すグラフ図、第3
図は従来方法における焼結鉱の変化とそのときのベル下
温度との関係を示すグラフ図である.FIG. 1 is a block diagram for implementing the method of the present invention, and FIG. 2 is a graph diagram showing the relationship between the change in the average particle size of sintered ore and the temperature below the bell at that time when the method of the present invention is implemented. Third
The figure is a graph showing the relationship between changes in sintered ore and the temperature below the bell in the conventional method.
Claims (1)
影し、画像処理装置で焼結鉱の平均粒度を演算し、次い
で、予め、焼結鉱の平均粒度とアーマ強度の関係データ
を入力した演算装置で平均粒度に対するアーマ強度を求
め、その結果によりムーバブルアーマーの操作を制御す
る高炉の装入物制御方法。The sintered ore on the feeder cut out from the bottom of the sintering tank is photographed with a TV camera, the average particle size of the sintered ore is calculated using an image processing device, and then the relationship data between the average particle size of the sintered ore and the armor strength is input in advance. A blast furnace charge control method that calculates the armor strength for the average particle size using a calculation device and controls the operation of the movable armor based on the results.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18850789A JPH0353013A (en) | 1989-07-20 | 1989-07-20 | Method for controlling charge of blast furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18850789A JPH0353013A (en) | 1989-07-20 | 1989-07-20 | Method for controlling charge of blast furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0353013A true JPH0353013A (en) | 1991-03-07 |
Family
ID=16224932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18850789A Pending JPH0353013A (en) | 1989-07-20 | 1989-07-20 | Method for controlling charge of blast furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0353013A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006518000A (en) * | 2003-02-04 | 2006-08-03 | サンフォード エル.ピー. | Multicolor ink for writing |
CN104296851A (en) * | 2014-08-28 | 2015-01-21 | 莱芜钢铁集团电子有限公司 | Blast furnace feeding control method and control device |
-
1989
- 1989-07-20 JP JP18850789A patent/JPH0353013A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006518000A (en) * | 2003-02-04 | 2006-08-03 | サンフォード エル.ピー. | Multicolor ink for writing |
JP4699352B2 (en) * | 2003-02-04 | 2011-06-08 | サンフォード エル.ピー. | Multicolor ink for writing |
CN104296851A (en) * | 2014-08-28 | 2015-01-21 | 莱芜钢铁集团电子有限公司 | Blast furnace feeding control method and control device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0353013A (en) | Method for controlling charge of blast furnace | |
WO2021085221A1 (en) | Blast furnace operation method | |
JPS6310058B2 (en) | ||
JPH0598322A (en) | Method for controlling grain size of charging material into blast furnace | |
JP3329244B2 (en) | Blast furnace operation method | |
JPH08127822A (en) | Operation of sintering | |
CN109988909A (en) | A kind of material adjusting method and device for pelletizer | |
CN110055407A (en) | A kind of method for adjusting rotation speed and device for pelletizer | |
US4314694A (en) | Method for controlling exhaust gases in oxygen blown converter | |
CN110055408A (en) | A kind of material adjusting method and device for pelletizer | |
JP2722494B2 (en) | Blast furnace operation method | |
RU2790500C1 (en) | Method for operation of blast furnace | |
JPH0390506A (en) | Method for controlling opening degree of gate for adjusting raw material flow rate in bell-less blast furnace charging device | |
WO2024089482A1 (en) | Real time slag temperature control | |
JPH05271724A (en) | Method for controlling gas flow distribution in blast furnace | |
JPH0681015A (en) | Operation of blast furnace | |
JPH05186811A (en) | Method for operating blast furnace | |
JP2006152317A (en) | Blast furnace-operation method | |
JPH03264612A (en) | Method for controlling distribution of charged raw material at furnace top in blast furnace | |
JPH0841511A (en) | Control of blast furnace and device therefor | |
JP2023103049A (en) | Method for controlling blowing in converter | |
JP2600803B2 (en) | Blast furnace raw material charging method | |
SU1052820A1 (en) | Method of automatic control of process of smelting manganese ferroalloys in electric furnace | |
CN110106349A (en) | A kind of material adjusting method and device for pelletizer | |
SU1278036A1 (en) | Automatic control system of phosphorite melting in apparatus of cyclone type |