JP2722494B2 - Blast furnace operation method - Google Patents
Blast furnace operation methodInfo
- Publication number
- JP2722494B2 JP2722494B2 JP11287088A JP11287088A JP2722494B2 JP 2722494 B2 JP2722494 B2 JP 2722494B2 JP 11287088 A JP11287088 A JP 11287088A JP 11287088 A JP11287088 A JP 11287088A JP 2722494 B2 JP2722494 B2 JP 2722494B2
- Authority
- JP
- Japan
- Prior art keywords
- particle size
- coke
- average particle
- blast furnace
- sinter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/008—Composition or distribution of the charge
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Iron (AREA)
- Blast Furnaces (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] この発明は、高炉の操業方法に関するものである。Description: TECHNICAL FIELD The present invention relates to a method for operating a blast furnace.
[従来の技術] 焼結鉱や塊鉱石は、高炉用原料として、高炉内に装入
されるが、これらの粒径は各々であり、焼結鉱の粒径
は、5から50mmの範囲内、そして、コークスの粒径は、
25から75mmの範囲内にほぼ維持されていた。[Prior art] Sinter ore and lump ore are charged into a blast furnace as raw materials for a blast furnace, and their particle diameters are different, and the particle diameter of the sinter is in the range of 5 to 50 mm. And the particle size of the coke
It was almost maintained within the range of 25 to 75 mm.
このように、従来、高炉用原料として高炉内に装入さ
れる焼結鉱やコークスの粒径は、その上下限値が定めら
れているだけで、平均粒径は成行きまかせであった。こ
の理由は、高炉装入前に、焼結鉱やコークスの粒径を迅
速且つ正確に測定することができなかったからである。As described above, conventionally, the average particle size of the sinter or coke charged into the blast furnace as the raw material for the blast furnace has been determined only by setting the upper and lower limits. This is because the particle size of the sinter or coke could not be measured quickly and accurately before charging the blast furnace.
[発明が解決しようとする課題] しかし、焼結鉱やコークスの粒径が大きすぎると、還
元効率が悪く、一方、粒径が小さすぎると、炉内通気抵
抗が増大したり、スリップ等が生じやすくなる。[Problems to be Solved by the Invention] However, if the particle size of the sinter or coke is too large, the reduction efficiency is poor. On the other hand, if the particle size is too small, the airflow resistance in the furnace increases, slips and the like occur. It is easy to occur.
従って、この発明の目的は、焼結鉱およびコークスの
粒径を適切な大きさに維持することによって、還元効率
が良く、しかも、炉内通気抵抗が小さく、さらに、スリ
ップ等が生じにくい高炉の操業方法を提供することにあ
る。Accordingly, an object of the present invention is to provide a blast furnace having a good reduction efficiency, a low ventilation resistance in the furnace, and a low occurrence of slip and the like by maintaining the particle diameters of the sinter and coke at appropriate sizes. It is to provide an operation method.
[課題を解決するための手段] この発明は、高炉挿入原料としてのコークスおよび焼
結鉱の平均粒径をそれぞれオンラインで測定し、コーク
スの平均粒径の測定結果に基づいて、コークス用破砕機
の破砕粒度を調整して、コークスの平均粒径が30mmから
50mmの範囲内になるように維持し、次いで、焼結鉱の平
均粒径の測定結果に基づいて、焼結鉱用破砕機の破砕粒
度を調整して、コークスと焼結鉱との平均粒径の和が65
mmから80mmの範囲内になるように維持することに特徴を
有するものである。Means for Solving the Problems The present invention measures on-line the average particle size of coke and sintered ore as raw materials to be inserted into a blast furnace, and based on the measurement result of the average particle size of coke, a crusher for coke. The crushing particle size of the coke so that the average
The average particle size of the coke and the sinter was adjusted by adjusting the crushing particle size of the sinter ore crusher based on the measurement result of the average particle size of the sinter. The sum of the diameters is 65
It is characterized in that it is maintained within the range of mm to 80 mm.
次に、この発明の、高炉の操業方法をさらに説明す
る。Next, the method of operating a blast furnace according to the present invention will be further described.
高炉装入原料としての例えば焼結鉱の平均粒径をオン
ラインで測定する方法について説明する。A method for online measurement of the average particle size of, for example, a sintered ore as a blast furnace charging material will be described.
第1図に示すように、焼結機出側のベルトコンベア1
上の焼結鉱2は、テレビカメラ3によって撮影される。
テレビカメラ3は、テレビカメラ制御装置4によって倍
率等が調整される。テレビカメラ3からの画像信号は、
モニター5に送られると共に、画像処理装置6に送られ
る。画像処理装置6は、第2図(A)に示すような画像
の一走査分(図中一点鎖線で示す)の画像信号(同図
(B)参照)をフーリエ変換して、同図(C)に示すよ
うなパワースペクトルを演算する。画像処理装置6に
は、代表的な粒径を有する焼結鉱をテレビカメラによっ
て撮影し、粒径毎に求めた基準パワースペクトルが予め
記憶されている。そして、画像処理装置6は、演算した
パワースペクトルに最も近似する基準パワースペクトル
を選択し、選択された基準パワースペクトルに対応する
粒径を焼結鉱の平均粒径とする。これらの結果は、CRT
デイスプレイ7および印字装置8に表示される。As shown in FIG. 1, the belt conveyor 1 on the exit side of the sintering machine
The upper ore 2 is photographed by the television camera 3.
The magnification and the like of the television camera 3 are adjusted by the television camera control device 4. The image signal from the TV camera 3 is
It is sent to the monitor 5 and also sent to the image processing device 6. The image processing device 6 performs a Fourier transform on an image signal (see FIG. 2B) of one scan (shown by a dashed line in the figure) of the image as shown in FIG. ) Is calculated. In the image processing device 6, a sinter having a typical particle size is photographed by a television camera, and a reference power spectrum obtained for each particle size is stored in advance. Then, the image processing device 6 selects the reference power spectrum closest to the calculated power spectrum, and sets the particle size corresponding to the selected reference power spectrum as the average particle size of the sintered ore. These results are
It is displayed on the display 7 and the printing device 8.
この場合、画像処理装置6は、演算パワースペクトル
に最も近似する演算パワースペクトルは、第3図(C)
に示すパワースペクトルであると判断して、これに対応
する粒径を表示する。In this case, the image processing device 6 determines that the operation power spectrum closest to the operation power spectrum is the one shown in FIG.
And the particle diameter corresponding to the power spectrum is displayed.
以上は、焼結鉱の平均粒径をオンラインで求める方法
であるが、コークスの平均粒径も同様にしてオンライン
で求めることができる。The above is a method for determining the average particle size of the sintered ore online, but the average particle size of the coke can also be determined online.
このようにして、コークスおよび焼結鉱の平均粒径を
それぞれオンラインで測定したら、先ず、コークスの平
均粒径の測定結果に基づいて、コークス用破砕機の破砕
粒度を調整して、コークスの平均粒径が30mmから50mmの
範囲内になるように維持する。次いで、焼結鉱の平均粒
径の測定結果に基づいて、焼結鉱用破砕機の破砕粒度を
調整して、コークスと焼結鉱との平均粒径の和が65mmか
ら80mmの範囲内になるように維持する。After measuring the average particle size of the coke and the sintered ore individually in this way, first, based on the measurement result of the average particle size of the coke, the crushing particle size of the coke crusher is adjusted, and the average Maintain the particle size in the range of 30mm to 50mm. Next, based on the measurement result of the average particle size of the sinter, the crushing particle size of the sinter ore crusher was adjusted so that the sum of the average particle sizes of the coke and the sinter was in the range of 65 mm to 80 mm. Maintain to be.
コークスと焼結鉱との平均粒径の和を、65mmから80mm
の範囲に限定したのは、第4図に示すように、65mm未満
では、平均粒径が小さすぎて、炉内通気性が悪化して、
スリップが多発し、一方、80mmを超えると、平均粒径が
大きすぎて、炉内ガスの流れが不安定となって、吹き抜
けが生じるからである。The sum of the average particle size of coke and sintered ore is 65mm to 80mm
As shown in FIG. 4, when the diameter is less than 65 mm, the average particle diameter is too small, and the air permeability in the furnace is deteriorated.
This is because slippage occurs frequently and, on the other hand, if it exceeds 80 mm, the average particle size is too large, the flow of gas in the furnace becomes unstable, and blow-through occurs.
コークスの平均粒径を30mmから50mmの範囲に限定した
のは、第5図に示すように、30mm未満であると、炉内通
気抵抗が増大し、一方、50mmを超える大きさはコークス
操業上好ましくないからである。The reason for limiting the average particle size of coke to the range of 30 mm to 50 mm is that, as shown in FIG. 5, when the average particle size of coke is less than 30 mm, the airflow resistance in the furnace increases. This is because it is not preferable.
焼結鉱の平均粒径Dp(Sr)は、コークスの平均粒径Dp
(Ck)が30mmから50mmの範囲であるから、上述した関
係、即ち、 65mm≦Dp(Sr)+Dp(Ck)≦80mm を満足する粒径とする。The average particle size of sintered ore Dp (Sr) is the average particle size of coke Dp
Since (Ck) is in the range of 30 mm to 50 mm, the particle size satisfies the relationship described above, that is, 65 mm ≦ Dp (Sr) + Dp (Ck) ≦ 80 mm.
このように、所定の粒径を有する焼結鉱およびコーク
スを使用することによって、還元効率をあげ、しかも、
炉内通気抵抗を小さく、さらに、スリップ等を生じにく
くすることができる。Thus, by using the sinter and coke having a predetermined particle size, the reduction efficiency is increased, and
It is possible to reduce the ventilation resistance in the furnace and to make it difficult to cause a slip or the like.
[発明の効果] 以上説明したように、この発明によれば、還元効率が
良く、しかも、炉内通気抵抗が小さく、さらに、スリッ
プ等が生じにくくなるといったきわめて有用な効果がも
たらされる。[Effects of the Invention] As described above, according to the present invention, an extremely useful effect is obtained such that the reduction efficiency is high, the ventilation resistance in the furnace is small, and slipping is less likely to occur.
第1図は、粒度測定方法を示すブロック図、第2図
(A)は、焼結鉱の画像を示す図、同図(B)は、画像
信号を示す図、同(C)図は、パワースペクトルを示す
グラフ、第3図(A),(B),(C)は、予め記憶さ
せておくパワースペクトルを示すグラフ、第4図は、燃
料比とコークスおよび焼結鉱の平均粒径の和との関係を
示すグラフ、第5図は、炉内通気抵抗とコークス粒径と
の関係を示すグラフである。図面において、 1……ベルトコンベア、2……焼結鉱、3……テレビカ
メラ、4……テレビカメラ制御装置、5……モニター、
6……画像処理装置、7……CRTディスプレイ、8……
印字装置。FIG. 1 is a block diagram showing a particle size measuring method, FIG. 2 (A) is a diagram showing an image of a sintered ore, FIG. 1 (B) is a diagram showing an image signal, and FIG. Graphs showing power spectra, FIGS. 3 (A), (B) and (C) are graphs showing power spectra stored in advance, and FIG. 4 is a graph showing fuel ratio and average particle size of coke and sintered ore. FIG. 5 is a graph showing the relationship between the in-furnace ventilation resistance and the coke particle size. In the drawings: 1 ... belt conveyor, 2 ... sintered ore, 3 ... television camera, 4 ... television camera control device, 5 ... monitor,
6 ... Image processing device, 7 ... CRT display, 8 ...
Printing device.
Claims (1)
鉱の平均粒径をそれぞれオンラインで測定し、コークス
の平均粒径の測定結果に基づいて、コークス用破砕機の
破砕粒度を調整して、コークスの平均粒径が30mmから50
mmの範囲内になるように維持し、次いで、焼結鉱の平均
粒径の測定結果に基づいて、焼結鉱用破砕機の破砕粒度
を調整して、コークスと焼結鉱との平均粒径の和が65mm
から80mmの範囲内になるように維持することを特徴とす
る、高炉の操業方法。An average particle size of coke and sintered ore as raw materials to be inserted into a blast furnace is measured online, and a crushing particle size of a coke crusher is adjusted based on a measurement result of the average particle size of coke, Average particle size of coke from 30mm to 50
mm, and then adjust the crushing particle size of the sinter ore crusher based on the measurement result of the average particle size of the sintered ore to obtain the average particle size of the coke and the sintered ore. The sum of the diameters is 65mm
A method of operating a blast furnace, characterized in that the blast furnace is maintained within a range of from 80 to 80 mm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11287088A JP2722494B2 (en) | 1988-05-10 | 1988-05-10 | Blast furnace operation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11287088A JP2722494B2 (en) | 1988-05-10 | 1988-05-10 | Blast furnace operation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01283307A JPH01283307A (en) | 1989-11-14 |
JP2722494B2 true JP2722494B2 (en) | 1998-03-04 |
Family
ID=14597587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11287088A Expired - Lifetime JP2722494B2 (en) | 1988-05-10 | 1988-05-10 | Blast furnace operation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2722494B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7575686B2 (ja) | 2021-03-30 | 2024-10-30 | 日本製鉄株式会社 | 焼結鉱の分析方法及び焼結鉱の分析装置 |
-
1988
- 1988-05-10 JP JP11287088A patent/JP2722494B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7575686B2 (ja) | 2021-03-30 | 2024-10-30 | 日本製鉄株式会社 | 焼結鉱の分析方法及び焼結鉱の分析装置 |
Also Published As
Publication number | Publication date |
---|---|
JPH01283307A (en) | 1989-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2722494B2 (en) | Blast furnace operation method | |
EP4029953A1 (en) | Blast furnace operation method | |
JPS6310058B2 (en) | ||
JP6179726B2 (en) | Method for producing sintered ore | |
JPH01283306A (en) | Method for controlling grain size of raw material in blast furnace | |
JPH0598322A (en) | Method for controlling grain size of charging material into blast furnace | |
CN114012100A (en) | Raw material powder preparation process for powder metallurgy | |
JPH0353013A (en) | Method for controlling charge of blast furnace | |
JPH11140515A (en) | Operation of blast furnace | |
KR100896569B1 (en) | An Apparatus for Controlling the Sub Gate in Sintering Facilities | |
KR102305734B1 (en) | Apparatus and method for controlling charging amount of sintering material | |
JPH08127822A (en) | Operation of sintering | |
KR100384123B1 (en) | Manufacturing apparatus and method for sinter cake non-addition return fine sinter | |
JPH0234709A (en) | Method for operating blast furnace | |
KR100419172B1 (en) | Control apparatus of charge angle of blanding raw for sintering | |
KR20030041722A (en) | Apparatus for controlling segregation pushing of mixed raw material for sinter manufacture | |
JPH05186811A (en) | Method for operating blast furnace | |
JPH044380B2 (en) | ||
JPS6148537A (en) | Operating method for sintering | |
JPH0211710A (en) | Method for charging ore in blast furnace | |
JP2001107151A (en) | Method and device for producing reduced iron | |
JPS63230787A (en) | Production of calcined coke | |
JPH01188636A (en) | Method for controlling heat level of raw material for sintered ore | |
JPH0668138B2 (en) | Raw material charging control method for sintering machine | |
JPH05272872A (en) | Control device for feed amount of sintering material |