JPH035296B2 - - Google Patents

Info

Publication number
JPH035296B2
JPH035296B2 JP58126696A JP12669683A JPH035296B2 JP H035296 B2 JPH035296 B2 JP H035296B2 JP 58126696 A JP58126696 A JP 58126696A JP 12669683 A JP12669683 A JP 12669683A JP H035296 B2 JPH035296 B2 JP H035296B2
Authority
JP
Japan
Prior art keywords
melting point
metal
low melting
thermoplastic resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58126696A
Other languages
Japanese (ja)
Other versions
JPS6018330A (en
Inventor
Hiroatsu Tsunoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Kokusaku Pulp Co Ltd
Original Assignee
Sanyo Kokusaku Pulp Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Kokusaku Pulp Co Ltd filed Critical Sanyo Kokusaku Pulp Co Ltd
Priority to JP12669683A priority Critical patent/JPS6018330A/en
Publication of JPS6018330A publication Critical patent/JPS6018330A/en
Publication of JPH035296B2 publication Critical patent/JPH035296B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は低融点金属又は低融点合金(以下単に
低融点金属と称する)の繊維を含有する熱可塑性
樹脂組成物、詳しくは熱可塑性樹脂100重量部に
対し繊維化した低融点金属10〜1000重量部を含む
熱可塑性樹脂組成物の製造方法に関するものであ
る。
Detailed Description of the Invention The present invention relates to a thermoplastic resin composition containing fibers of a low melting point metal or a low melting point alloy (hereinafter simply referred to as a low melting point metal), more specifically, a thermoplastic resin composition containing fibers of a low melting point metal or a low melting point alloy (hereinafter simply referred to as a low melting point metal). The present invention relates to a method for producing a thermoplastic resin composition containing 10 to 1000 parts by weight of a low melting point metal.

近年電子機器の急速な普及によりそれらが発す
る電磁波を防止する電磁波遮蔽材料や電子機器素
材としての合成樹脂に導電性を付与した導電性材
料が注目され、多くの提案がなされている。従来
合成樹脂に高度の導電性を付与する方法として高
融点の繊維状金属を合成樹脂に混合する方法があ
る。これはあらかじめ繊維化された高融点金属繊
維と熱可塑性樹脂とを押出機、ミキサーなどでよ
く混練し押出成形機にて所定の形状に成形加工す
るものである。高度の導電性を付与するには合成
樹脂中で金属繊維同志が充分接触することが必要
となり、そのためには金属繊維の長さと直径の
比、即ちアスペクト比が大きいことが好ましい。
従来の方法ではこのようにアスペクト比が大き
い、即ち長さが大きく、径が小さい金属繊維を経
済的に得ることは生産性の制約から極めて困難で
あつた。更に又繊維長の大きい繊維を多量にかつ
均一に合成樹脂と混合させることはむずかしく又
多大な時間と動力を要する。しかも混練中に金属
繊維が切断されてアスペクト比を減少したり、あ
るいは不均一な混合により充分な導電効果が得難
い。更にこれら混合物を押出成形あるいは射出成
形する場合固体の金属繊維が混合されているため
混合物の見かけの認度が著しく高くなり成形性が
悪くかつ多大の動力を要して生産性が低いという
欠点がある。
In recent years, with the rapid spread of electronic devices, electromagnetic shielding materials that prevent electromagnetic waves emitted by these devices and conductive materials that add conductivity to synthetic resins used as electronic device materials have attracted attention, and many proposals have been made. Conventionally, as a method of imparting a high degree of conductivity to a synthetic resin, there is a method of mixing a fibrous metal with a high melting point into the synthetic resin. This is a method in which pre-fiberized high-melting point metal fibers and thermoplastic resin are thoroughly kneaded using an extruder, mixer, etc., and then molded into a predetermined shape using an extruder. In order to provide a high degree of conductivity, it is necessary for the metal fibers to be in sufficient contact with each other in the synthetic resin, and for this purpose, it is preferable that the ratio of the length to diameter of the metal fibers, that is, the aspect ratio, be large.
With conventional methods, it has been extremely difficult to economically obtain metal fibers with such a large aspect ratio, ie, large length and small diameter, due to productivity constraints. Furthermore, it is difficult to uniformly mix a large amount of fibers with a large fiber length with a synthetic resin, and it requires a great deal of time and power. Moreover, metal fibers may be cut during kneading, reducing the aspect ratio, or may be mixed non-uniformly, making it difficult to obtain a sufficient conductive effect. Furthermore, when these mixtures are extrusion molded or injection molded, solid metal fibers are mixed, so the appearance of the mixture becomes extremely high, resulting in poor moldability and low productivity due to the large amount of power required. be.

本発明はこれら従来技術の欠点を一掃し、全く
新しい着想のもとに高度の導電性を有する金属繊
維含有熱可塑性樹脂組成物の工業的に有利な製造
方法を提供するものである。即ち本発明は合成樹
脂と既成の金属繊維とを混合する従来技術と異つ
て、繊維化されていない低融点金属を微細粒の状
態で予め熱可塑性樹脂中に均一分散させておき、
しかる後該金属粒/樹脂混合物を該金属の融点或
いは固相線温度以上の温度で延伸することを特徴
とするものであつて、樹脂中の低融点金属粒はこ
の温度で液粒となり、延伸時に樹脂の流動力の作
用を受けて延伸方向に引伸ばされ、一挙に繊維化
される。
The present invention eliminates these drawbacks of the conventional techniques and provides an industrially advantageous method for producing a highly conductive metal fiber-containing thermoplastic resin composition based on a completely new idea. That is, unlike the conventional technology in which synthetic resin and ready-made metal fibers are mixed, the present invention involves uniformly dispersing unfiberized low-melting point metal in a thermoplastic resin in the form of fine particles,
After that, the metal particles/resin mixture is drawn at a temperature higher than the melting point or solidus temperature of the metal, and the low melting point metal particles in the resin turn into liquid particles at this temperature and are not drawn. At times, the resin is stretched in the drawing direction under the influence of the flow force of the resin, and is turned into fibers all at once.

換言すれば本発明は熱可塑性樹脂100重量部に
対し、低融点金属10〜1000重量部を均一に分散せ
しめた金属粒/樹脂混合物を該金属の融点ないし
は固相線温度以上の温度で、延伸倍率5倍以上に
一軸延伸して、繊細な樹脂繊維を含有する高導電
性の熱可塑性樹脂組成物を製造せんとするもので
ある。
In other words, the present invention involves stretching a metal particle/resin mixture in which 10 to 1000 parts by weight of a low melting point metal are uniformly dispersed in 100 parts by weight of a thermoplastic resin at a temperature higher than the melting point or solidus temperature of the metal. The purpose is to produce a highly conductive thermoplastic resin composition containing delicate resin fibers by uniaxially stretching at a magnification of 5 times or more.

本発明の製造方法には二つの条件がある。第一
の条件は混合物の延伸過程で低融点金属を液状に
保つ必要があり、そのため低融点金属の融点(合
金の場合には固相線温度)は延伸過程での処理温
度より低いことが必要である。
The manufacturing method of the present invention has two conditions. The first condition is that the low melting point metal must be kept in a liquid state during the drawing process of the mixture, so the melting point (solidus temperature in the case of alloys) of the low melting point metal must be lower than the processing temperature during the drawing process. It is.

第二の条件は混合物を延伸する際延伸倍率5倍
以上に一軸延伸することが必要である。延伸倍率
を5倍以上としたのはそれ以下では低融点金属を
繊細に繊維化できないことによる。
The second condition requires that the mixture be uniaxially stretched at a stretching ratio of 5 times or more. The reason why the stretching ratio is set to 5 times or more is because if it is lower than that, the low melting point metal cannot be delicately made into fibers.

上記本発明の実施に当つては例えば熱可塑性樹
脂と低融点金属との混合物を押出機又はミキシン
グロールなどの成形機を用いて充分に混練して棒
状、シート状その他連続形状物として成形する
か、或いは熱可塑性樹脂と低融点金属とを混合し
てからプレス成形するなどして得られた両者の均
一混合物を上記の如く一軸延伸することにより溶
融した金属は縦方向に引伸ばされて繊維状とな
る。この状態の熱可塑性樹脂成形物を冷却すれば
金属は繊細な繊維状のまま樹脂中で固化する。か
くして樹脂内部に多量の金属繊維を含んだ樹脂成
形物が得られる。この成形物をそのまま二次加工
するかあるいは適当な大きさに切断、ペレツト化
した後該金属の融点以下の温度で射出成形する
か、シート状のままプレス成形、真空成形など公
知の成形法により二次成形を行ない所望の成形品
とする。又上記成形物の熱可塑性樹脂のみを例え
ば溶剤除去して低融点金属繊維を単離して使用す
るようにすることも可能である。
In carrying out the above-mentioned invention, for example, a mixture of a thermoplastic resin and a low melting point metal is thoroughly kneaded using a molding machine such as an extruder or a mixing roll, and then molded into a rod, sheet, or other continuous shape. Alternatively, by mixing a thermoplastic resin and a low-melting point metal and then press-molding a homogeneous mixture of the two, uniaxially stretching the mixture as described above, the molten metal is stretched in the longitudinal direction to form a fibrous material. becomes. If the thermoplastic resin molded product in this state is cooled, the metal will solidify in the resin while remaining in the form of delicate fibers. In this way, a resin molded article containing a large amount of metal fibers inside the resin is obtained. This molded product can be subjected to secondary processing as it is, or it can be cut to an appropriate size, pelletized and then injection molded at a temperature below the melting point of the metal, or it can be processed into a sheet by known forming methods such as press molding or vacuum forming. Perform secondary molding to obtain the desired molded product. It is also possible to use only the thermoplastic resin of the molded product, for example, by removing the solvent and isolating the low melting point metal fibers.

本発明の低融点金属は使用する熱可塑性樹脂の
延伸可能な温度以下の融点即ちおよそ400℃以下
の融点を有することが望ましい。かかる金属とし
ては例えば鉛、錫、亜鉛、カドミウム、ビスマス
等の単体又はこれらの金属を含む合金を挙げるこ
とが出来る。金属と熱可塑性樹脂との混合割合は
合成樹脂100重量部に対し金属10〜1000重量部、
特に100〜500重量部が好適である。金属の混合割
合が10重量部未満では導電性付与効果が得られず
又金属配合による衝撃強度、曲げ強度の向上も期
待出来ない。一方1000重量部を越すと混練時に均
一な混合分散が極めて困難となる。熱可塑性樹脂
に混合する金属の形態としては特に制約はない
が、粒状、リボン状、粉状のものが好ましい。
The low melting point metal of the present invention desirably has a melting point below the drawing temperature of the thermoplastic resin used, that is, about 400°C or below. Examples of such metals include lead, tin, zinc, cadmium, bismuth, etc., or alloys containing these metals. The mixing ratio of metal and thermoplastic resin is 10 to 1000 parts by weight of metal to 100 parts by weight of synthetic resin.
Particularly suitable is 100 to 500 parts by weight. If the mixing ratio of the metal is less than 10 parts by weight, no effect of imparting conductivity can be obtained, and no improvement in impact strength or bending strength can be expected due to the metal mixture. On the other hand, if it exceeds 1000 parts by weight, it becomes extremely difficult to mix and disperse uniformly during kneading. There are no particular restrictions on the form of the metal mixed into the thermoplastic resin, but granular, ribbon-like, and powder-like forms are preferred.

本発明に用いられる熱可塑性樹脂は押出機、ミ
キシングロール等による成形の可能な熱可塑性樹
脂であれば特に制約はない。かかる熱可塑性樹脂
を例示するとポリオレフイン系、ポリスチレン
系、ポリ塩化ビニル系、ポリアクリル酸エステル
系、ポリメタクリル酸エステル系、ポリアクリロ
ニトリル系、ポリブタジエン系、ポリアミド類、
ポリエステル類、又はこれらの変性物、共重合
物、混合物等が挙げられる。これらは射出成形そ
の他の各種二次成形後の物性要求と二次成形性と
を考慮して適宜選択される。
The thermoplastic resin used in the present invention is not particularly limited as long as it can be molded using an extruder, mixing roll, or the like. Examples of such thermoplastic resins include polyolefins, polystyrenes, polyvinyl chloride, polyacrylates, polymethacrylates, polyacrylonitrile, polybutadiene, polyamides,
Examples include polyesters, modified products, copolymers, and mixtures thereof. These are appropriately selected in consideration of physical property requirements and secondary moldability after injection molding and other various secondary moldings.

又低融点金属と熱可塑性樹脂を混合する場合に
金属の繊維化時の成形性、二次成形性、金属の分
散性、二次成形品の物性等の諸特性を向上させる
ために種々の添加物を加えることが出来る。例え
ば安定剤、酸化防止剤、滑剤、分散剤、可塑剤、
難燃剤等である。更に二次成形は含有する低融点
金属の融点以下の温度で行なうが、その際の成形
性を向上させる目的で各種の樹脂類、ゴム類、可
塑剤、油脂剤、滑剤等を配合することも可能であ
る。
In addition, when mixing low melting point metals and thermoplastic resins, various additives are added to improve various properties such as moldability during metal fiberization, secondary moldability, metal dispersibility, and physical properties of secondary molded products. You can add things. For example, stabilizers, antioxidants, lubricants, dispersants, plasticizers,
Flame retardants, etc. Furthermore, secondary molding is performed at a temperature below the melting point of the low melting point metal contained, and various resins, rubbers, plasticizers, oils and fats, lubricants, etc. may be added to improve moldability. It is possible.

本発明の実施においては低融点金属と熱可塑性
樹脂及び更に要すれば各種添加剤の混合、混練に
は高性能のミキサーロールあるいは押出機などが
使用出来る。これらの機械によつて充分に混練
し、ペレツト化したものを押出機又はミキシング
ロール等の成形機に投入し、再び混練を行なつて
棒状、シート状その他連続形状物として成形する
か、あるいはミキサー、ロール又は押出機による
一次の混練を省略して直接金属と熱可塑性樹脂、
更に要すれば各種添加剤を加えて、これらを押出
機又はミキシングロール等の成形機に入れ、該成
形機により混合、混練を併せて行なうことも可能
である。このようにして得られた低融点金属が樹
脂中に分散している連続成形物を該金属の融点以
上に加熱して延伸することにより該金属は樹脂中
で繊維化する。
In carrying out the present invention, a high performance mixer roll or an extruder can be used to mix and knead the low melting point metal, thermoplastic resin and, if necessary, various additives. The pellets are sufficiently kneaded using these machines and then fed into a forming machine such as an extruder or mixing roll, where they are kneaded again and formed into rods, sheets, or other continuous shapes, or they are fed into a mixer. , metal and thermoplastic resin directly, omitting the primary kneading by roll or extruder,
Furthermore, if necessary, various additives may be added, and these may be placed in a molding machine such as an extruder or a mixing roll, and mixing and kneading may also be performed by the molding machine. The thus obtained continuous molded article in which the low melting point metal is dispersed in the resin is heated to a temperature higher than the melting point of the metal and stretched, thereby forming the metal into fibers in the resin.

本発明法によつて得られる熱可塑性樹脂組成物
には金属が繊細な繊維となつて均一に混合されて
おり、合成樹脂と既成の金属繊維とを混合させる
ことよりなる従来の技術と比較して、一段と優れ
た導電特性を有するばかりでなく、その製造方法
が簡単で、安価にかつ能率高く生産出来る点で、
本発明は真に画期的な技術である。このように本
発明による熱可塑性樹脂組成物は優れた特性を有
するので、二次成形加工により電磁波遮蔽材料、
静電防止材料、電気メツキ用素材、電卓用キーボ
ード等、あるいはシート化により導電性テープ、
シート、フイルム等広範囲な用途に利用可能であ
る。
In the thermoplastic resin composition obtained by the method of the present invention, the metal is uniformly mixed in the form of delicate fibers, compared to the conventional technique of mixing synthetic resin and existing metal fibers. Not only does it have superior conductive properties, but its manufacturing method is simple and can be produced at low cost and with high efficiency.
This invention is truly groundbreaking technology. Since the thermoplastic resin composition according to the present invention has excellent properties as described above, it can be used as an electromagnetic shielding material by secondary molding.
Antistatic materials, electroplating materials, calculator keyboards, etc., or conductive tapes by forming sheets,
It can be used for a wide range of applications such as sheets and films.

以下実施例によつて本発明の内容を更に詳しく
説明する。
The content of the present invention will be explained in more detail with reference to Examples below.

以下単に部とあるはいずれも重量部を意味す
る。
Hereinafter, "parts" simply mean parts by weight.

実施例 1 ポリスチレン樹脂デカンスチロールHRM−2
(電気化学社製) 70部 耐衝撃性ポリスチレン樹脂エスブライト500A(昭
和電工社製) 20部 耐衝撃性ポリスチレン樹脂タフプレン691(旭化成
社製) 10部 低融点合金U−アロイ150A(融点150℃大阪アサ
ヒメタル社製) 150部 ステアリン酸 1部 上記配合を20mmφ押出機(L/D=20)に投入
し、220℃スクリユー回転数60rpmで巾20mm厚さ
2mmの板状に押出した。
Example 1 Polystyrene resin decane styrene HRM-2
(manufactured by Denki Kagaku Co., Ltd.) 70 parts impact-resistant polystyrene resin S-Brite 500A (manufactured by Showa Denko) 20 parts impact-resistant polystyrene resin Toughprene 691 (manufactured by Asahi Kasei Co., Ltd.) 10 parts low-melting point alloy U-Alloy 150A (melting point 150℃ Osaka) (manufactured by Asahi Metal Co., Ltd.) 150 parts stearic acid 1 part The above formulation was put into a 20 mmφ extruder (L/D=20) and extruded into a plate shape of 20 mm width and 2 mm thickness at 220° C. and screw rotation speed 60 rpm.

得られた連続板状物を一軸延伸機にかけ180℃
に加熱した後一軸に8倍延伸した。得られた延伸
物をトルエンで処理し、樹脂を溶解したところ、
大部分の金属は繊細に繊維化しており、太さ30μ
〜200μの細いものであつた。
The obtained continuous plate-like material is uniaxially stretched at 180°C.
After heating, the film was uniaxially stretched 8 times. When the obtained stretched product was treated with toluene to dissolve the resin,
Most of the metal is delicately fiberized, with a thickness of 30μ
It was a thin piece of ~200μ.

実施例 2 低密度ポリエチレン樹脂ユカロンLK−30(三菱油
化社製) 30部 高密度ポリエチレン樹脂ハイゼツクス7000F(三
井石油化学社製) 70部 ステアリン酸 1部 上記配合をブラベンダープラストグラフで135
℃で混練した後、低融点金属Uアロイ−150A(大
阪アサヒメタル社製融点150℃)の粉状物(平均
粒径200μ)150部を添加し同じく135℃で混合し、
ホツトプレスで厚さ3mmの板状物にした。このも
のの電気抵抗を測定したところ108Ω・cm以上で
あつた。
Example 2 Low-density polyethylene resin Yucalon LK-30 (manufactured by Mitsubishi Yuka Co., Ltd.) 30 parts High-density polyethylene resin Hi-Zex 7000F (manufactured by Mitsui Petrochemicals Co., Ltd.) 70 parts Stearic acid 1 part The above composition was converted to 135 parts by Brabender Plastograph.
After kneading at 135°C, 150 parts of powder (average particle size 200μ) of low melting point metal U Alloy-150A (manufactured by Osaka Asahi Metal Co., Ltd. melting point 150°C) was added and mixed at 135°C.
It was made into a plate with a thickness of 3 mm using a hot press. When the electrical resistance of this material was measured, it was 10 8 Ω·cm or more.

この板状物を160℃に加熱し、延伸倍率20倍に
一軸延伸した。延伸物を再度ブラベンダープラス
トグラフで135℃5分間混練してホツトプレスで
厚さ3mmの板状にした。このものの電気抵抗を測
定したところ3.0×102Ω・cmを示した。樹脂中に
は無数の金属繊維を見ることができた。
This plate-like material was heated to 160°C and uniaxially stretched at a stretching ratio of 20 times. The stretched product was kneaded again at 135° C. for 5 minutes using a Brabender Plastograph and then formed into a plate with a thickness of 3 mm using a hot press. When the electrical resistance of this material was measured, it was found to be 3.0×10 2 Ω·cm. Numerous metal fibers could be seen in the resin.

以上本発明によれば熱可塑性樹脂に該樹脂の延
伸可能な温度以下の融点もしくは固相線温度を有
する低融点金属もしくは低融点金属を配合し、こ
の配合混合物を該低融点金属もしくは低融点合金
の融点もしくは固相線温度よりも高い温度に加熱
して熱可塑性樹脂中でそれに配合した低融点金属
もしくは低融点金属を熔融液状化し、これを樹脂
の延伸に伴つて繊維化することによりアスペクト
比の大きい金属繊維を含有する導電性材料として
有用な熱可塑性樹脂を簡単でしかも安価かつ効率
的に生産することができる。
As described above, according to the present invention, a low melting point metal or a low melting point metal having a melting point or solidus temperature below the drawing temperature of the resin is blended into a thermoplastic resin, and the blended mixture is mixed with the low melting point metal or the low melting point alloy. The aspect ratio can be changed by heating the melting point or solidus temperature of the thermoplastic resin to a temperature higher than the melting point or solidus temperature of the thermoplastic resin to melt and liquefy the low melting point metal or the low melting point metal blended therein, and then converting it into fibers as the resin is stretched. A thermoplastic resin useful as a conductive material containing large metal fibers can be produced easily, inexpensively, and efficiently.

Claims (1)

【特許請求の範囲】 1 熱可塑性樹脂100重量部に対し、該熱可塑性
樹脂の延伸可能な温度以下の融点もしくは固相線
温度を有する低融点金属もしくは低融点合金10〜
1000重量部配合しこの配合混合物を該低融点金属
の融点もしくは低融点合金の固相線温度よりも高
い温度に加熱して該熱可塑性樹脂中に配合された
低融点金属もしくは低融点合金を熔融し、次いで
延伸倍率5倍以上に一軸延伸することにより上記
の熔融した低融点金属もしくは低融点合金を熱可
塑性樹脂中で該樹脂の延伸に伴つて繊維化するこ
とを特徴とする金属繊維を含有する熱可塑性樹脂
組成物の製造方法。 2 低融点金属もしくは低融点合金を粉状ないし
は粒状化物として熱可塑性樹脂中に均一に分散さ
せる特許請求の範囲第1項記載の製造方法。
[Claims] 1. 10 to 10 parts by weight of a low melting point metal or low melting point alloy having a melting point or solidus temperature below the temperature at which the thermoplastic resin can be stretched, based on 100 parts by weight of the thermoplastic resin.
1000 parts by weight of the blended mixture is heated to a temperature higher than the melting point of the low melting point metal or the solidus temperature of the low melting point alloy to melt the low melting point metal or low melting point alloy blended in the thermoplastic resin. Then, by uniaxially stretching at a stretching ratio of 5 times or more, the above-mentioned molten low-melting point metal or low-melting point alloy is turned into fibers in a thermoplastic resin as the resin is stretched. A method for producing a thermoplastic resin composition. 2. The manufacturing method according to claim 1, wherein a low melting point metal or a low melting point alloy is uniformly dispersed in a thermoplastic resin in the form of powder or granules.
JP12669683A 1983-07-12 1983-07-12 Manufacture of thermoplastic resinous composite containing metallic fiber Granted JPS6018330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12669683A JPS6018330A (en) 1983-07-12 1983-07-12 Manufacture of thermoplastic resinous composite containing metallic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12669683A JPS6018330A (en) 1983-07-12 1983-07-12 Manufacture of thermoplastic resinous composite containing metallic fiber

Publications (2)

Publication Number Publication Date
JPS6018330A JPS6018330A (en) 1985-01-30
JPH035296B2 true JPH035296B2 (en) 1991-01-25

Family

ID=14941580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12669683A Granted JPS6018330A (en) 1983-07-12 1983-07-12 Manufacture of thermoplastic resinous composite containing metallic fiber

Country Status (1)

Country Link
JP (1) JPS6018330A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305168A (en) * 1987-06-05 1988-12-13 Matsushita Electric Works Ltd Resin composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215827A (en) * 1983-05-24 1984-12-05 Unitika Ltd Electric conductive film
JPS59225927A (en) * 1983-06-07 1984-12-19 Unitika Ltd Thermo-shrinkable conductive film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215827A (en) * 1983-05-24 1984-12-05 Unitika Ltd Electric conductive film
JPS59225927A (en) * 1983-06-07 1984-12-19 Unitika Ltd Thermo-shrinkable conductive film

Also Published As

Publication number Publication date
JPS6018330A (en) 1985-01-30

Similar Documents

Publication Publication Date Title
EP0099573A1 (en) Improved conductive resinous composites
KR20180015501A (en) Electrically conductive resin composition and method of preparing the same
EP0337487A1 (en) Electroconductive polymer composition
EP0013872B1 (en) A process for the production of particulate polyolefinic moulding materials containing conductive carbon black, and their use in the production of mouldings
GB2112796A (en) Plastics materials containing electrically conductive fibers
US5213736A (en) Process for making an electroconductive polymer composition
KR102034670B1 (en) Electrically conductive resin composition and method of preparing the same
CN113308104A (en) High-conductivity plastic master batch, preparation method thereof and conductive plastic particles
CN110885496A (en) Antistatic heat-conducting polyolefin composition and preparation method thereof
JPH03289004A (en) Conductive resin composite
JP3708390B2 (en) Conductive thermoplastic resin composition
CN115678196A (en) Polymer composite material toughened based on liquid metal and preparation method thereof
JPH035296B2 (en)
CN114196069B (en) High-dispersion carbon black and preparation method and application thereof
JPS59207947A (en) Thermoplastic resin composition containing metal fiber and its preparation
CN113292062A (en) Heat-conducting PBT (polybutylene terephthalate) material with bicontinuous-phase three-dimensional network structure
CN106117767B (en) Method for doping graphene in base material
JPS63207855A (en) Conductive polymer alloy and production thereof
JPH0354711B2 (en)
JP2593902B2 (en) Plastic sheet filled with mica powder and method for producing the same
CN115160706B (en) Rice hull-based silicon carbon black/polyvinyl chloride composite material
JPS5930837A (en) Electroconductive resin composition
JPS59109537A (en) Production of electromagnetic shielding material
CN113667268B (en) Antistatic wear-resistant polyether-ether-ketone composite material and preparation method thereof
JPS6072935A (en) Electroconductive plastic composition