JPH0352963B2 - - Google Patents
Info
- Publication number
- JPH0352963B2 JPH0352963B2 JP58220785A JP22078583A JPH0352963B2 JP H0352963 B2 JPH0352963 B2 JP H0352963B2 JP 58220785 A JP58220785 A JP 58220785A JP 22078583 A JP22078583 A JP 22078583A JP H0352963 B2 JPH0352963 B2 JP H0352963B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon black
- layer
- polyamide
- monofilament
- conductive carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 32
- 239000004952 Polyamide Substances 0.000 claims description 17
- 229920002647 polyamide Polymers 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 15
- 239000002131 composite material Substances 0.000 claims description 13
- 210000004209 hair Anatomy 0.000 claims description 11
- 229920002302 Nylon 6,6 Polymers 0.000 claims description 3
- -1 polyhexamethylene Polymers 0.000 claims description 3
- 238000009987 spinning Methods 0.000 description 21
- 238000001816 cooling Methods 0.000 description 11
- 230000000704 physical effect Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 239000006229 carbon black Substances 0.000 description 6
- 235000019241 carbon black Nutrition 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 5
- 238000007711 solidification Methods 0.000 description 5
- 230000008023 solidification Effects 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000005611 electricity Effects 0.000 description 3
- 239000006232 furnace black Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 239000006230 acetylene black Substances 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910021595 Copper(I) iodide Inorganic materials 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Landscapes
- Brushes (AREA)
Description
本発明は導電性に優れたヘアブラシ用モノフイ
ラメントに関するものである。
従来、衣料用やカーペツト用繊維の分野におい
て、静電気による弊害を克服すべく導電性繊維の
研究開発が数多く行なわれてきており、種々の成
果をあげている。たとえば繊維素材に配合する導
電性物質について金属をはじめカーボンブラツ
ク、ヨウ化第1銅および酸化スズ等各種のものが
検討され、また、これら導電性物質の繊維への導
入の方法についても、繊維全体に混練する方法や
複合紡糸により繊維と一部に導入する方法、等が
種々提案されている。
一方、ヘアブラシや工業用ブラシ等の線径が
400μ以上のモノフイラメントの分野においても、
同様に静電気による弊害があり、ヘアブラシでは
しばしば経験されることであるが、洗髪後の過乾
燥状態でのブラツシング時に静電気が発生し、整
髪がうまくいかないという問題がある。このよう
なヘアブラシ用毛材の欠点を改良するために従来
からも、ポリアルキレングリコール系等の親水性
重合体を導入するなどの対策がとられたりした
が、乾燥状態と低湿度下では効果がなく不十分な
結果しか得られていなかつた。また、導電性物質
を含む物質を表面コーテイングしたモノフイラメ
ントも試みられたが、耐摩耗性が不十分で耐久性
の点で難があつた。さらにまた複合紡糸により導
電性カーボンを含有する層を設けたブラシ用モノ
フイラメントもその導電性改良効果が予想される
が、従来、この種のヘアブラシ用毛材の開発は次
の理由により困難であると考えられていた。
すなわち衣料用やカーペツト用の導電性糸は一
般に単糸繊度が高々50デニールであり、口金から
紡出後、巻取までの間での空冷、固化される際の
糸の巻取速度は一般的にモノフイラメントのそれ
よりも速いため、冷却固化までの時間はモノフイ
ラメントの場合に比べて短いものの、冷却は除々
に進行する。一方、線径が400μ以上のモノフイ
ラメントの場合は、一般に紡出後、冷水、温水あ
るいは液状の冷媒浴を通過させて冷却する方法が
とられており、その際にたとえ沸騰水に近い熱水
を用いようとも、重合体の溶融温度からみれば急
冷である。ようするにモノフイラメントは糸の直
径が太いため、未延伸糸の真円性を保ち、かつ直
径の均一性を維持させようとすれば、除冷ではな
かなか冷却されず、口金から吐出された溶融重合
体の落下速度と引取速度のバランスをとるために
は、このような急例工程が必要とされるのであ
り、また、急冷固化することにより、未延伸糸の
分子配向を抑制することができ、延伸性を向上さ
せ得るのである。
したがつて導電性物質として導電性カーボンブ
ラツクを用い、複合紡糸により導電性モノフイラ
メントを得ようとする場合、以上のような製糸工
程と、製糸する糸の太さの違いにより、衣料用や
カーペツト用の細デニール系の製糸工程では問題
にならなかつたいくつかのことが障害となる。
その一つの例は、冷却固化の工程で導電性カー
ボンブラツクを含有する熱可塑性重合体と、導電
性カーボンブラツクを含有しない熱可塑性重合体
の収縮挙動が異なることである。これは導電性カ
ーボンブラツクを含有する層の収縮が大きいため
であり、この層の導入位置と層の厚さ等にもよる
が、結果としてモノフイラメントの真円性が悪化
し、扁平化するという現象や複合層の剥離を招
き、製品の物性上、品位上問題を生ずる。またの
例として、空冷紡糸による網デニール糸、水冷紡
糸によるモノフイラメントの如何にかかわらず、
一般的に、延伸することによりカーボンブラツク
の鎖状構造が破壊され導電性が低下することが認
められるが、モノフイラメントの場合は、細デニ
ール糸とは異なり、導電性カーボンブラツク含有
層の厚さも必然的に大きく、導電性カーボンブラ
ツクを含まない部分との延伸性の差異が極端に現
われる。すなわち、細デニール糸では延伸時の熱
が短時間に比較的均一に伝播し、均一に延伸され
易いのに対し、モノフイラメントの場合は、導電
性カーボンブラツクを含有しない部分は、明確な
ネツキングポイントをもつて延伸されるにも係ら
ず、導電性カーボンブラツク含有層はネツキング
ポイントが定まり難いといつた違いが顕著に現わ
れ、導電性カーボンブラツクの鎖状構造の切断
が、細デニール糸の場合よりはげしく生じるもの
と考えられる。
本発明者らは、上記導電性モノフイラメントの
問題点改良を目的として種々の検討を重ねた結
果、導電性カーボンブラツクを含有した層を有す
る芯鞘構造の導電性モノフイラメントの各層の厚
み比率と線径を特定化することにより、効率的な
製造に成功し、かつこれをヘアブラシ用毛材とし
て用いた場合、物性面、耐久性面で問題のない特
性を備えた導電性ブラシを得ることができること
を見出し、本発明に至ることができた。
すなわち本発明は、導電性カーボンブラツクを
含有するポリアミド(A)と、本質的に導電性カーボ
ンブラツクを含有しないポリアミド(B)を、上記A
層が三重芯鞘構造(下記式のX>0の場合)の
中間層あるいは二重芯鞘構造(下記式のX=0
の場合)の鞘層となるように配置した線径Dが
400μ以上の同心芯鞘複合モノフイラメントであ
つて、本質的に上記ポリアミドBからなる最外層
の厚さをx(μ)、上記ポリアミドAからなる中間
層と厚さをy(μ)、モノフイラメントの線径をD
(μ)とするとき、下記および式を同時に満
足する断面形状をもち、かつ体積固有抵抗が108
Ω・cm以下である複合モノフイラメントからなる
ことを特徴とするヘアブラシ用毛材を提供するも
のである。
D−2x−√42−4+0.982≦2y≦D
−2x−42−4+0.72 ……
0≦x≦50 ……
本発明においてポリアミド(A)および(B)としては
ポリカプロアミド、ポリヘキサメチレンアジパミ
ドおよびポリヘキサメチレンセバカミドから選択
した少なくとも1種を用いることが好適である。
重合体(A)および(B)はそれぞれ同種のものである方
が好ましいが、異種の場合でも(A)がポリカプロア
ミド、(B)がポリヘキサメチレンアジパミドの場合
など、好結果が得られる。
本発明で用いる導電性カーボンブラツクはアセ
チレンブラツク、フアーネスブラツク、チヤンネ
ルブラツク等通常、導電性樹脂組成物に適用され
るカーボンブラツクの中から任意に選択すること
ができる。
また、この導電性カーボンブラツクの配合量は
使用するカーボンブラツクの種類によつて異な
る。たとえばアセチレンブラツクの場合は、ポリ
アミド樹脂な対し20〜55重量%、好ましくは25〜
35重量%の範囲であり、フアーネスブラツクの場
合は、ポリアミド樹脂に対して5〜38重量%、好
ましくは10〜35重量%の範囲である。これら適正
範囲はカーボンブラツクの粒度によつても異な
り、一般的には粒度が小さく表面積の大きいもの
については比較的低率の配合量で良く、粒度の大
きいものについては比較的高率の配合量が必要で
ある。
一般に導電性だけに注目すれば、導電性カーボ
ンブラツクを含有する層が繊維表面に現われてい
る形態が最も好ましい。しかし、モノフイラメン
トの場合は既述したように冷却固化時の各層の収
縮率の違いによる糸断面形状の変形の点から糸断
面のある一部に導電性カーボンブラツクを含有す
る層を導入するのは好ましくなく、同心芯鞘構造
が必要で、層の厚さの均一性についても配慮する
必要がある。したがつて、芯鞘複合形態の中、導
電性の点からみれば、導電性カーボンブラツクを
含有する層を鞘成分とした二重芯鞘構造が優れて
いるが、導電性層の耐久性の点からは導電性カー
ボンブラツクを含有する層を中間層に配置した三
重芯鞘構造の方が有利である。
本発明において、導電性カーボンブラツクを含
有する層の厚さと位置および導電性カーボンブラ
ツクの濃度は、適宜設定することができるが、本
発明で用いる導電性カーボンブラツクの含有量5
〜55重量%のポリアミド(A)の場合、その層の厚さ
と位置について本発明者らが検討した結果、次の
関係式、を同時に満足する断面形状の場合に
のみ、導電性と十分な物性および耐久性をそなえ
たものが得られることが判明した。
D−2x−√42−4+0.982≦2y≦D
−2x−42−4+0.72 ……
0≦x≦50 ……
ここで、xは本質的に導電性カーボンブラツク
を含有しないポリアミド(B)からなる最外層と厚さ
(μ)
yは導電性カーボンブラツクを含有するポリア
ミドからなる中間層の厚さ(μ)
Dはブラシ用毛材の線径(μ)であり、400μ
以上の範囲を示す。
2y<D−2x−√42−4+0.982の場合、導
電性カーボンブラツク含有層の厚さの均一性が乏
しくなると同時に、導電性能が不十分である。ま
た、2y>D−2x−√42−4+0.72の場合は、
製糸時の延伸性不良、断面形状のつぶれおよび物
性低下といつた弊害が生ずるばかりでなく、導電
性能が飽和に達し導電層の厚さがふえたほど導電
性の向上がみられない。さらにx>50の場合に
は、導電性能の点で好ましくは、ブラシに要求さ
れる導電性と耐久性の兼ね合いをみて、0≦x≦
50の範囲内に納めることが得策である。
たとえば、一例をとつて説明すると、0.55mmの
直径のモノフイラメントにフアーネスブラツク30
%を含有するポリアミドを導電層として導入した
二重芯鞘構造糸では、導電性カーボンブラツクを
含有する層の厚さは、層の厚さの均一性の点から
は、少なくとも0.005mm以上が必要であり、導電
性の点からは0.015mm以下で十分であつた。また、
糸の物性面からは製糸条件の制約が入つてくるた
め0.040mm以下であることが好ましいという結果
が得られた。これらの値は、モノフイラメントの
直径や導電性カーボンブラツクの含有量等によつ
て当然異なるものである。
本発明による導電性モノフイラメントを得るた
めに留意しなければならない重要な点は、口金か
ら吐出された溶融重合体の冷却方法にある。真円
性を保ちつつ、導電性カーボンブラツク含有層の
急冷による収縮を緩和させる必要がある。吐出量
と引取速度および得ようとする糸の太さにより、
その都度条件は異なるが、許される限り、除冷の
方法を選ぶことが肝要である。吐出物の温度、冷
却媒体に入るまでの距離、冷却媒体の温度の浸漬
長などによつて調整することができる。場合によ
つては、口金直下に保温筒等と補助加熱手段を講
ずる必要が生ずる。
また、延伸時の導電性カーボンブラツクの構造
破壊を抑制するためには、導電性カーボンブラツ
クを混練するポリアミドAの重合度を調整するこ
とにより、溶融粘性を調節するし、加熱延伸時の
分子の可塑変形のしやすさを調整するのが適当で
ある。これは、混練するカーボンブラツクの種類
と配合量によつても影響を受ける。
かくしてなる本発明のヘアブラシ用毛材は、製
糸性(延伸性)、断面形状(真円性)および物性
(導電性、強伸度特性)ががすぐれており、ヘア
ブラシの毛材としての理想的な性能を有してい
る。
以下、本発明の具体的に実施形態を実施例によ
つて説明する。
実施例 1
硫酸相対粘度2.6ポリカプロアミドに導電性フ
アーネスブラツクを35重量%混合し、二軸押出機
により溶融混練した後、ペレタイズして成分Aを
得た。
硫酸相対粘度3.0のポリヘキサメチレンジアミ
ンを成分Bとして、通常の複合紡糸方法により成
分Aを鞘、成分Bを芯とする直径0.57mmの二重芯
鞘複合モノフイラメントを得た。
成分Aと成分Bの押出量を調整し、最終的に得
られるモノフイラメントにおける前述の式から
誘導される成分Aと層厚さyが、それぞれ50、
47、40、7.2、2.9μとなるようにした(なお、こ
の場合式においてx=0、D=570である)。
成分Aの溶融温度を280℃、成分Bの溶融温度
を285℃とし、複合口金部の温度は283℃に設定し
た。
複合口金から吐出後、口金直下に10cm長の保温
筒を置き、保温筒内の糸道温度を200℃に設定し
た。
保温筒から5cm下にある70℃の温水浴に導いた
後、引取ローラで引き取り、引き続いて温水延伸
槽を用いて4.5倍に2段延伸した。1段目延伸温
度を75℃、2段目延伸温度を83℃とした。一方、
導電性層(成分A)を全く含まない、成分Bのみ
を用いた単独糸を別の紡糸機により製造した。製
糸条件は、前記のものに準じた。
かくして得られた6水準のモノフイラメント延
伸糸を、それぞれ複数本引きそろえて長さ6mの
乾熱槽へ8m/分の速度で連続的に導き、直線化
のための熱セツトを行ない、ヘアブラシ用毛材と
した。この時の槽内温度は200℃の状態であつた。
得られたモノフイラメントの体積固有抵抗値なら
びに物性は表1のとおりであり、製糸時の状況に
ついても付記した。
なお、体積固有抵抗値の測定には、東亜電波工
業(株)製の極超絶縁計を用いた。
The present invention relates to a monofilament for hair brushes that has excellent electrical conductivity. Conventionally, in the field of textiles for clothing and carpets, much research and development has been carried out on conductive fibers in order to overcome the adverse effects caused by static electricity, and various results have been achieved. For example, various conductive substances such as metals, carbon black, cuprous iodide, and tin oxide have been studied as conductive substances to be added to fiber materials, and methods for introducing these conductive substances into fibers have also been investigated. Various methods have been proposed, such as a method of kneading the fibers and a method of introducing the fibers into a part of the fibers by composite spinning. On the other hand, the wire diameter of hair brushes, industrial brushes, etc.
In the field of monofilaments over 400μ,
Similarly, there is the problem of static electricity, which is often experienced with hairbrushes, and when brushing hair in an overly dry state after washing, static electricity is generated, resulting in poor hair styling. In order to improve these drawbacks of hair brush bristle materials, measures have been taken in the past, such as introducing hydrophilic polymers such as polyalkylene glycol, but they are not effective in dry conditions and low humidity. However, only insufficient results were obtained. Monofilaments whose surface was coated with a substance containing a conductive substance were also attempted, but these had insufficient abrasion resistance and were not durable. Furthermore, monofilament for brushes with a layer containing conductive carbon formed by composite spinning is expected to have the effect of improving conductivity, but conventionally it has been difficult to develop this type of bristle material for hairbrushes for the following reasons. It was thought that In other words, conductive yarns for clothing and carpets generally have a single yarn fineness of at most 50 denier, and the winding speed during air cooling and solidification after spinning from the spinneret to winding is typical. Since the cooling speed is faster than that of monofilament, the time required for cooling and solidification is shorter than that of monofilament, but cooling progresses gradually. On the other hand, in the case of monofilaments with a diameter of 400 μm or more, after spinning, the method is generally to cool them by passing them through cold water, hot water, or a liquid refrigerant bath. Even if a polymer is used, it is a rapid cooling from the viewpoint of the melting temperature of the polymer. Monofilament yarns have a large diameter, so if you want to maintain the circularity and uniformity of the diameter of the undrawn yarn, it will not be able to cool down easily with slow cooling, and the molten polymer will be discharged from the spinneret. Such an emergency step is necessary to balance the falling speed and take-up speed of the yarn, and rapid cooling and solidification can suppress the molecular orientation of the undrawn yarn. It can improve your sexuality. Therefore, when attempting to obtain a conductive monofilament by composite spinning using conductive carbon black as a conductive substance, due to the above-mentioned spinning process and the difference in the thickness of the yarn to be spun, it is difficult to produce a monofilament for clothing or carpets. Several issues that were not a problem in the fine denier yarn spinning process become obstacles. One example is the different shrinkage behavior of thermoplastic polymers containing conductive carbon black and thermoplastic polymers without conductive carbon black during the cooling and solidification process. This is due to the large contraction of the layer containing conductive carbon black, and although it depends on the introduction position of this layer and the thickness of the layer, it is said that as a result, the roundness of the monofilament deteriorates and it becomes flattened. This causes problems in terms of physical properties and quality of the product. As an example, regardless of whether it is a net denier yarn made by air-cooled spinning or a monofilament made by water-cooled spinning,
It is generally recognized that drawing destroys the chain structure of carbon black and reduces its conductivity, but in the case of monofilament, unlike fine denier yarn, the thickness of the conductive carbon black-containing layer also decreases. There is inevitably a large difference in stretchability between the part and the part that does not contain conductive carbon black. In other words, with fine denier yarn, the heat during drawing spreads relatively uniformly in a short period of time, making it easier to draw uniformly, whereas in the case of monofilament, the portions that do not contain conductive carbon black have clear netting. Although the conductive carbon black-containing layer is stretched with a point, there is a noticeable difference in that the necking point is difficult to determine, and the cutting of the chain structure of the conductive carbon black is caused by the thin denier yarn. This is considered to occur more frequently than in other cases. As a result of various studies aimed at improving the problems of the above-mentioned conductive monofilament, the present inventors have determined that the thickness ratio of each layer of a conductive monofilament having a core-sheath structure and having a layer containing conductive carbon black. By specifying the wire diameter, we succeeded in efficient manufacturing, and when used as a bristle material for a hairbrush, we were able to obtain a conductive brush with no problems in terms of physical properties and durability. We discovered that this can be done, and were able to arrive at the present invention. That is, the present invention combines a polyamide (A) containing conductive carbon black and a polyamide (B) which essentially does not contain conductive carbon black with the polyamide (A) containing conductive carbon black.
The layer has a triple core-sheath structure (X>0 in the formula below) or a double core-sheath structure (X=0 in the formula below).
), the wire diameter D arranged to become the sheath layer is
A concentric core-sheath composite monofilament of 400μ or more, in which the thickness of the outermost layer essentially consisting of the above polyamide B is x (μ), and the thickness of the intermediate layer consisting of the above polyamide A is y (μ), the monofilament The wire diameter is D
(μ), it has a cross-sectional shape that satisfies the following and the formula at the same time, and has a volume resistivity of 10 8
The present invention provides a bristle material for a hairbrush characterized by being made of a composite monofilament having a resistance of Ω·cm or less. D−2x−√4 2 −4+0.98 2 ≦2y≦D −2x−4 2 −4+0.7 2 ... 0≦x≦50 ... In the present invention, polycapropylene is used as polyamide (A) and (B). It is preferable to use at least one selected from amide, polyhexamethylene adipamide, and polyhexamethylene sebamide.
It is preferable that the polymers (A) and (B) are of the same type, but good results can be obtained even when they are of different types, such as when (A) is polycaproamide and (B) is polyhexamethylene adipamide. can get. The conductive carbon black used in the present invention can be arbitrarily selected from carbon blacks commonly used in conductive resin compositions, such as acetylene black, furnace black, and channel black. Further, the amount of conductive carbon black to be blended varies depending on the type of carbon black used. For example, in the case of acetylene black, it is 20 to 55% by weight, preferably 25 to 55% by weight, based on the polyamide resin.
35% by weight, and in the case of furnace blacks, from 5 to 38% by weight, preferably from 10 to 35% by weight, based on the polyamide resin. These appropriate ranges also vary depending on the particle size of carbon black; generally, if the particle size is small and the surface area is large, a relatively low amount is sufficient, and if the particle size is large, a relatively high amount is required. is necessary. Generally speaking, when focusing only on conductivity, it is most preferable to have a layer containing conductive carbon black on the fiber surface. However, in the case of monofilament, as mentioned above, it is difficult to introduce a layer containing conductive carbon black into a certain part of the yarn cross section because of the deformation of the cross-sectional shape of the yarn due to the difference in shrinkage rate of each layer during cooling and solidification. is not preferable, requires a concentric core-sheath structure, and requires consideration of uniformity of layer thickness. Therefore, among the core-sheath composite structures, the double-core-sheath structure with a layer containing conductive carbon black as a sheath component is superior from the point of view of conductivity, but the durability of the conductive layer is From this point of view, a triple core-sheath structure in which a layer containing conductive carbon black is disposed as an intermediate layer is more advantageous. In the present invention, the thickness and position of the layer containing conductive carbon black and the concentration of conductive carbon black can be set as appropriate.
In the case of ~55% by weight polyamide (A), the inventors investigated the thickness and position of the layer, and found that conductivity and sufficient physical properties can be achieved only when the cross-sectional shape satisfies the following relational expression: It has been found that a product with high durability and durability can be obtained. D−2x−√4 2 −4+0.98 2 ≦2y≦D −2x−4 2 −4+0.7 2 …… 0≦x≦50 …… Here, x essentially does not contain conductive carbon black The outermost layer made of polyamide (B) and its thickness (μ) y is the thickness (μ) of the middle layer made of polyamide containing conductive carbon black D is the wire diameter (μ) of the brush bristle material, 400μ
The above range is shown. In the case of 2y<D-2x-√4 2 -4+0.98 2 , the uniformity of the thickness of the conductive carbon black-containing layer becomes poor, and at the same time, the conductive performance is insufficient. Also, if 2y>D−2x−√4 2 −4+0.7 2 ,
Not only do disadvantages such as poor stretchability during spinning, collapse of the cross-sectional shape, and deterioration of physical properties occur, but the conductivity reaches saturation, and as the thickness of the conductive layer increases, no improvement in conductivity is observed. Furthermore, in the case of x>50, it is preferable from the viewpoint of conductive performance that 0≦x≦
It is a good idea to keep it within the range of 50. For example, if a monofilament with a diameter of 0.55 mm is coated with a furnace black 30
In double core-sheath structure yarns in which polyamide containing % is introduced as a conductive layer, the thickness of the layer containing conductive carbon black must be at least 0.005 mm or more from the point of view of uniformity of layer thickness. From the viewpoint of conductivity, a thickness of 0.015 mm or less was sufficient. Also,
The results show that the diameter is preferably 0.040 mm or less since the spinning conditions are constrained from the viewpoint of the physical properties of the thread. These values naturally differ depending on the diameter of the monofilament, the content of conductive carbon black, etc. An important point that must be kept in mind in order to obtain the conductive monofilament according to the present invention is the method of cooling the molten polymer discharged from the die. It is necessary to reduce the shrinkage of the conductive carbon black-containing layer due to rapid cooling while maintaining roundness. Depending on the discharge amount, take-up speed, and desired thread thickness,
Although the conditions differ each time, it is important to choose a gradual cooling method as long as it is permissible. It can be adjusted by adjusting the temperature of the discharged material, the distance it enters the cooling medium, the immersion length of the cooling medium temperature, etc. In some cases, it may be necessary to provide a heat insulating cylinder or the like and auxiliary heating means directly below the cap. In addition, in order to suppress structural destruction of the conductive carbon black during stretching, the degree of polymerization of polyamide A used to knead the conductive carbon black is adjusted to adjust the melt viscosity, and the molecular It is appropriate to adjust the ease of plastic deformation. This is also affected by the type and amount of carbon black to be kneaded. The thus obtained hair brush bristle material of the present invention has excellent spinning properties (stretchability), cross-sectional shape (roundness), and physical properties (electrical conductivity, strength and elongation properties), making it ideal as a hair brush bristle material. It has excellent performance. Hereinafter, specific embodiments of the present invention will be described by way of examples. Example 1 35% by weight of conductive furnace black was mixed with sulfuric acid polycaproamide with a relative viscosity of 2.6, melt-kneaded using a twin-screw extruder, and then pelletized to obtain component A. Using polyhexamethylene diamine having a relative viscosity of 3.0 as component B, a double core-sheath composite monofilament having component A as a sheath and component B as a core and having a diameter of 0.57 mm was obtained by a conventional composite spinning method. By adjusting the extrusion amount of component A and component B, component A and layer thickness y derived from the above formula in the final monofilament are 50 and 50, respectively.
47, 40, 7.2, and 2.9μ (in this case, x=0 and D=570 in the equation). The melting temperature of component A was set at 280°C, the melting temperature of component B was set at 285°C, and the temperature of the composite mouthpiece was set at 283°C. After discharging from the composite nozzle, a 10 cm long heat insulating tube was placed directly below the nozzle, and the thread passage temperature inside the heat insulating tube was set at 200°C. The film was introduced into a 70°C hot water bath located 5 cm below the heat-insulating cylinder, then taken off with a take-up roller, and then stretched in two stages to 4.5 times using a hot water stretching tank. The first-stage stretching temperature was 75°C, and the second-stage stretching temperature was 83°C. on the other hand,
A single yarn using only component B without any conductive layer (component A) was produced on a separate spinning machine. The spinning conditions were the same as those described above. A plurality of the six levels of monofilament drawn yarn thus obtained were drawn together and continuously guided into a dry heat tank with a length of 6 m at a speed of 8 m/min, heat set for straightening, and made into hair brushes. Made of wool. At this time, the temperature inside the tank was 200°C.
The volume resistivity and physical properties of the obtained monofilament are shown in Table 1, and the conditions during spinning are also noted. Note that a Kyokucho insulation meter manufactured by Toa Denpa Kogyo Co., Ltd. was used to measure the volume resistivity value.
【表】
表1から明らかなように、成分Aの層厚さyが
47μ以上になると製糸時の延伸性が悪化し、モノ
フイラメントの機械的強伸度特性も低下する。ま
た、yが2.9μより小さくなると、糸断面形状のy
と層厚さに斑が生じ、不安定になると共に導電性
能が低下する。特許請求の範囲に記載した式、
式を同時に満足する範囲内の層厚さを有するも
のについては製糸性、断面形状、物性とともに、
ヘアブラシ用毛材として満足なものであり、導電
性成分Aを含まない成分Bのみの単独糸に比較し
て、優れた導電性能を有している。
実施例 2
実施例1に記載の導電性成分Aと成分Cとして
硫酸相対粘度3.2のポリカプロアミドとを用い、
実施例1と同様の方法により紡出機、延伸倍率
4.55倍で延伸し、直径0.55mmの三重芯鞘複合モノ
フイラメントを得た。最外層および中心層に成分
C、中間層に成分Aを配置した断面形状とし、表
2のように最外層の厚さxμ、中間層の厚さyμを
変えたものおよび、導電性成分Aを全く含まない
成分Cのみの単独糸を製造した。得られたモノフ
イラメント延伸糸を実施例1と同様に槽内温度
180℃で直線化熱セツトを行ないヘアブラシ用毛
材とした。[Table] As is clear from Table 1, the layer thickness y of component A is
If it exceeds 47μ, the drawability during spinning will deteriorate, and the mechanical strength and elongation characteristics of the monofilament will also deteriorate. Also, when y is smaller than 2.9μ, the y of the yarn cross-sectional shape
This causes unevenness in the layer thickness, resulting in instability and a decrease in conductive performance. The formula described in the claims,
For those having a layer thickness within the range that satisfies the formula at the same time, in addition to the reeling properties, cross-sectional shape, and physical properties,
It is satisfactory as a bristle material for a hairbrush, and has excellent conductive performance compared to a single yarn containing only component B without conductive component A. Example 2 Using the conductive component A described in Example 1 and polycaproamide with a sulfuric acid relative viscosity of 3.2 as component C,
Using a spinning machine and stretching ratio in the same manner as in Example 1
It was drawn at 4.55 times to obtain a triple core-sheath composite monofilament with a diameter of 0.55 mm. The cross-sectional shape is such that component C is placed in the outermost layer and the center layer, and component A is placed in the middle layer, and the thickness xμ of the outermost layer and the thickness yμ of the middle layer are changed as shown in Table 2, and the conductive component A is A single yarn containing only component C was produced. The obtained monofilament drawn yarn was heated to the same temperature in the bath as in Example 1.
The bristle material was heat-set for straightening at 180°C and used as a bristle material for hair brushes.
【表】
表2から明らかなように、最外層の厚さが60μ
のものについては導電性の点で問題があり、中間
層の厚さが50μを越えるものについては、製糸時
の延伸性の不良が目立つばかりでなく、物性上の
問題がある。また2μ以下のものについては、製
糸性に問題はないが、成分A層の厚みが不安定で
あり、導電性能の点でも好ましくない。
前述の式、式を同時に満足する範囲内の層
厚さを有するものについては、ヘアブラシ用毛材
として製糸性、断面形状、物性ともに問題なく、
導電性層を含まない単独糸に比較して、特に優れ
た導電性を有している。[Table] As is clear from Table 2, the thickness of the outermost layer is 60μ
There is a problem in terms of electrical conductivity, and those in which the thickness of the intermediate layer exceeds 50μ not only shows poor drawability during spinning but also has problems in physical properties. In addition, if it is less than 2 μm, there is no problem in spinning properties, but the thickness of the component A layer is unstable, and it is not preferable in terms of electrical conductivity. If the layer thickness is within the range that simultaneously satisfies the above formulas and formulas, there will be no problems in spinning properties, cross-sectional shape, and physical properties as a bristle material for hair brushes.
It has particularly excellent conductivity compared to a single yarn that does not contain a conductive layer.
Claims (1)
ドAと、本質的に導電性カーボンブラツクを含有
しないポリアミドBを、上記A層が三重芯鞘構造
(下記式のx>0の場合)の中間層あるいは二
重芯鞘構造(下記式のx=0の場合)の鞘層と
なるように配置した線径Dが400μ以上の同心芯
鞘複合モノフイラメントであつて、本質的に上記
ポリアミドBからなる最外層の厚さをx(μ)、上
記ポリアミドAからなる中間層の厚さをy(μ)、
モノフイラメントの線径をD(μ)とするときに、
下記および式を同時に満足する断面形状をも
ち、かつ体積固有抵抗が108Ω・cm以下である複
合モノフイラメントからなることを特徴とするヘ
アブラシ用毛材。 D−2x−√42−4+0.982≦2y≦D −2x−√42−4+0.72 …… 0≦x≦50 …… 2 ポリアミド(A)または(B)が、ポリカプロアミ
ド、ポリヘキサメチレンアジパミドおよびポリヘ
キサメチレンセバカミドから選ばれた少なくとも
1種であることを特徴とする特許請求の範囲第1
項記載のヘアブラシ用毛材。 3 ポリアミド(A)中の導電性カーボンブラツクの
含有量が5〜55重量%であることを特徴とする特
許請求の範囲第1項または第2項記載のヘアブラ
シ用毛材。[Scope of Claims] 1 Polyamide A containing conductive carbon black and polyamide B which essentially does not contain conductive carbon black, the above A layer having a triple core-sheath structure (when x>0 in the following formula) A concentric core-sheath composite monofilament with a wire diameter D of 400μ or more, which is arranged to form an intermediate layer or a sheath layer of a double core-sheath structure (when x=0 in the following formula), and is essentially made of the above-mentioned polyamide. The thickness of the outermost layer made of B is x (μ), the thickness of the intermediate layer made of polyamide A is y (μ),
When the wire diameter of the monofilament is D (μ),
A bristle material for a hairbrush comprising a composite monofilament having a cross-sectional shape that simultaneously satisfies the following formula and the formula, and having a volume resistivity of 10 8 Ω·cm or less. D−2x−√4 2 −4+0.98 2 ≦2y≦D −2x−√4 2 −4+0.7 2 …… 0≦x≦50 …… 2 Polyamide (A) or (B) is polycaproamide , polyhexamethylene adipamide, and polyhexamethylene sebamide.
Bristle material for hair brushes as described in Section 1. 3. The bristle material for a hairbrush according to claim 1 or 2, wherein the content of conductive carbon black in the polyamide (A) is 5 to 55% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22078583A JPS60114207A (en) | 1983-11-25 | 1983-11-25 | Hair material for brush |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22078583A JPS60114207A (en) | 1983-11-25 | 1983-11-25 | Hair material for brush |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60114207A JPS60114207A (en) | 1985-06-20 |
JPH0352963B2 true JPH0352963B2 (en) | 1991-08-13 |
Family
ID=16756530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22078583A Granted JPS60114207A (en) | 1983-11-25 | 1983-11-25 | Hair material for brush |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60114207A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI392463B (en) * | 2005-06-21 | 2013-04-11 | Atsushi Takahashi | Radial toothbrush |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5497429A (en) * | 1978-01-19 | 1979-08-01 | Toray Industries | Static eliminating brushes |
JPS551337A (en) * | 1978-06-15 | 1980-01-08 | Toray Ind Inc | Electrically conducitive synthetic fiber and its production |
-
1983
- 1983-11-25 JP JP22078583A patent/JPS60114207A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5497429A (en) * | 1978-01-19 | 1979-08-01 | Toray Industries | Static eliminating brushes |
JPS551337A (en) * | 1978-06-15 | 1980-01-08 | Toray Ind Inc | Electrically conducitive synthetic fiber and its production |
Also Published As
Publication number | Publication date |
---|---|
JPS60114207A (en) | 1985-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3244785A (en) | Process for producing a composite sheath-core filament | |
US4612150A (en) | Process for combining and codrawing antistatic filaments with undrawn nylon filaments | |
JP3216131B2 (en) | Two-component filament and its melt spinning method | |
JPS6346170B2 (en) | ||
JPS646762B2 (en) | ||
JP2756470B2 (en) | Conductive filament containing polystyrene, method for producing the same, multifilament system and carpet | |
JPH06294014A (en) | Production of electrically conductive fiber | |
JP3391789B2 (en) | Production of yarn consisting of heart and sheath filament | |
US4997712A (en) | Conductive filaments containing polystyrene and anti-static yarns and carpets made therewith | |
WO2000043581A1 (en) | Method for producing polyester-based combined filament yarn | |
JPH0352963B2 (en) | ||
JPH0252004B2 (en) | ||
US5116681A (en) | Anti-static yarns containing polystyrene | |
JPH0819569B2 (en) | Bristle material for conductive brush | |
US5147704A (en) | Carpets made with anti-static yarns containing polystyrene | |
JPS61119704A (en) | Cooling of collected filaments | |
JPS61194215A (en) | Production of polyamide monofilament | |
JP3036941B2 (en) | Multifilament manufacturing method | |
JP3370750B2 (en) | Multifilament manufacturing method | |
JPS61201008A (en) | Production of electrically conductive monofilament | |
JPH06287809A (en) | Production of potentially crimping polyester fiber | |
JPS6312711A (en) | Method for combining and co-stretching antistatic filament and non-stretchable nylon filament | |
JPS5822568B2 (en) | Antistatic single-core sheath type composite fiber and its manufacturing method | |
JP3347377B2 (en) | Multifilament manufacturing method | |
JP2866190B2 (en) | Method for producing mixed fiber having different elongation |