JPH0352778B2 - - Google Patents

Info

Publication number
JPH0352778B2
JPH0352778B2 JP59092925A JP9292584A JPH0352778B2 JP H0352778 B2 JPH0352778 B2 JP H0352778B2 JP 59092925 A JP59092925 A JP 59092925A JP 9292584 A JP9292584 A JP 9292584A JP H0352778 B2 JPH0352778 B2 JP H0352778B2
Authority
JP
Japan
Prior art keywords
base material
polymerization
ion exchange
exchange membrane
polymerizable monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59092925A
Other languages
Japanese (ja)
Other versions
JPS60238327A (en
Inventor
Toshikatsu Hamano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP9292584A priority Critical patent/JPS60238327A/en
Priority to US06/730,481 priority patent/US4608393A/en
Priority to EP85114653A priority patent/EP0222926B1/en
Publication of JPS60238327A publication Critical patent/JPS60238327A/en
Publication of JPH0352778B2 publication Critical patent/JPH0352778B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】 本発明は、イオン交換膜の製造方法に関し、更
に詳しく言えば、特定の基材及び特定の重合方法
を採用することからなるイオン交換膜の新規な製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an ion exchange membrane, and more particularly to a novel method for producing an ion exchange membrane, which comprises employing a specific base material and a specific polymerization method.

スルホン酸基、カルボン酸基の如き陽イオン交
換基を有する陽イオン交換膜あるいは第四アンモ
ニウム基の如き陰イオン交換基を有する陰イオン
交換膜などのイオン交換膜は、各種の電解用隔
膜、電気透析用膜、拡散透析用膜、燃料電池用隔
膜、各種廃液処理用膜など広範な用途が提案され
ている。而して、実用的なイオン交換膜の場合、
主に機械的強度の点から、一般に基材にイオン交
換樹脂を膜状に支持させることが望ましいとされ
ている。イオン交換樹脂を基材に膜状に支持させ
る手段としては、加熱プレス法により布などの基
材をイオン交換膜に裏打ち、埋込みの如く積層す
る方法も知られているが、重合性モノマーを、そ
のままあるいは必要に応じて部分的に重合した後
に、基材に含浸担持させ重合せしめ、必要により
イオン交換基導入反応を施す方法が、従来より各
種提案されている。
Ion exchange membranes, such as cation exchange membranes with cation exchange groups such as sulfonic acid groups and carboxylic acid groups, or anion exchange membranes with anion exchange groups such as quaternary ammonium groups, are used in various electrolytic diaphragms, electrical A wide range of applications have been proposed, including dialysis membranes, diffusion dialysis membranes, fuel cell diaphragms, and various waste liquid treatment membranes. Therefore, in the case of a practical ion exchange membrane,
Mainly from the viewpoint of mechanical strength, it is generally considered desirable to support the ion exchange resin in the form of a membrane on the base material. As a method for supporting an ion exchange resin on a base material in the form of a membrane, a method is known in which a base material such as cloth is lined with an ion exchange membrane using a hot press method and laminated like embedding. Various methods have been proposed in the past, in which the polymer is impregnated onto a substrate, polymerized, and subjected to an ion-exchange group introduction reaction if necessary, either as it is or after partial polymerization if necessary.

基材に重合性モノマーを含浸担持させ、該モノ
マーを重合せしめ、必要によりイオン交換基導入
反応を施すことからなるイオン交換膜の製造方法
においては、基材の種類によつては、基材とイオ
ン交換樹脂との親和性が小さく、このために得ら
れるイオン交換膜の機械的強度及び電気化学的性
質が不充分な場合がある。特に基材がポリエチレ
ン、ポリプロピレンなどのオレフイン系重合体や
四フツ化エチレン、三フツ化塩化エチレン、フツ
化ビニリデンなどのフツ素化オレフイン系重合体
からなる場合には、耐熱性、耐薬品性などの点で
優れたイオン交換膜が期待できるにもかかわら
ず、従来の重合方法によると前記の如き問題点に
遭遇する。かかる問題点の解消を目的として、特
公昭57−30136号公報、特公昭59−14047号公報、
米国特許第4414090号明細書などに記載されてい
るように、重合手段として電離性放射線の照射法
を採用し、重合性モノマーを基材にグラフト重合
せしめる方法が提案されている。
In the method for manufacturing an ion exchange membrane, which comprises impregnating and supporting a polymerizable monomer on a base material, polymerizing the monomer, and performing an ion exchange group introduction reaction if necessary, depending on the type of base material, The affinity with the ion exchange resin is low, and therefore the resulting ion exchange membrane may have insufficient mechanical strength and electrochemical properties. In particular, when the base material is made of olefin polymers such as polyethylene and polypropylene, or fluorinated olefin polymers such as tetrafluoroethylene, trifluorochloroethylene, and vinylidene fluoride, heat resistance, chemical resistance, etc. Although an ion exchange membrane excellent in this respect can be expected, conventional polymerization methods encounter the above-mentioned problems. For the purpose of solving such problems, Japanese Patent Publication No. 57-30136, Japanese Patent Publication No. 59-14047,
As described in US Pat. No. 4,414,090, etc., a method has been proposed in which a polymerizable monomer is graft-polymerized onto a base material by employing ionizing radiation irradiation as a polymerization means.

しかしながら、前記の特公昭57−30136号公報
においても指摘されているように、電離性放射線
の照射重合法による場合には、充分なグラフト重
合を行なうために過酷な条件にて処理すると、多
くの場合、基材自体が劣化してしまい、結果的に
充分な機械的強度を有するイオン交換膜が得られ
難い。特公昭57−30136号公報においては、基材
に3〜80重量%グラフト重合された重合層を形成
し、この重合層を介してイオン交換樹脂を支持す
るという手段が採用されている。
However, as pointed out in the above-mentioned Japanese Patent Publication No. 57-30136, when using the ionizing radiation irradiation polymerization method, many In this case, the base material itself deteriorates, and as a result, it is difficult to obtain an ion exchange membrane with sufficient mechanical strength. In Japanese Patent Publication No. 57-30136, a method is employed in which a 3 to 80% by weight graft polymerized layer is formed on a base material, and an ion exchange resin is supported through this polymerized layer.

また、特公昭56−8857号公報や特公昭56−
34014号公報には、ポリプロピレンの繊維または
布を基材としたイオン交換膜が記載されている。
この方法では、放射線グラフト重合に関するポリ
プロピレンの特異な現象の発見に基き、特定条件
下の前照射法あるいは短時間低温共存照射法が採
用されている。特公昭56−8857号公報や特公昭56
−34014号公報に記載の方法で得られたイオン交
換膜は、基材と膜形成層とが実質的にグラフト重
合によつて強固に結合しているので、機械的強度
及び化学的性質に優れ、長期的に安定な性質を有
するものであるとされている。
In addition, Special Publication No. 8857 and Special Publication No. 56-8857
Publication No. 34014 describes an ion exchange membrane based on polypropylene fibers or cloth.
This method employs a pre-irradiation method under specific conditions or a short-time low-temperature co-irradiation method based on the discovery of a unique phenomenon in polypropylene related to radiation graft polymerization. Special Publication No. 56-8857 and Special Publication No. 1988
The ion exchange membrane obtained by the method described in Publication No. 34014 has excellent mechanical strength and chemical properties because the base material and the membrane forming layer are firmly bonded substantially through graft polymerization. It is said to have long-term stable properties.

本発明者の研究によれば、フツ素化オレフイン
系重合体からなる基材を採用し、該基材に重合性
モノマーを含浸担持させ重合せしめるという方法
においては、従来の重合開始剤存在下加熱重合に
よる場合には、得られるイオン交換膜が極めて脆
弱のものとなつてしまうことが見出された。即
ち、エチレン−四フツ化エチレン系共重合体など
からなる基材に、スチレン、ジビニルベンゼン、
クロルメチルスチレンの如き重合性モノマーを含
浸担持させ加熱重合せしめ、得られた膜状内にス
ルホン化や第四アンモニウム化を施す場合、その
反応過程あるいは取扱い中に基材と生成イオン交
換樹脂とが容易に剥離し、さらには生成イオン交
換樹脂が脆弱なため、容易に亀裂や微小クラツク
が発生するという難点が認められる。また、上記
加熱重合の難点を解消すべく、電離性放射線照射
重合法を採用した場合は、含浸担持せしめた重合
性モノマーを電離性放射線の照射下に全部重合さ
せると、基材自体の劣化により結局のところ充分
な機械的強度を有するイオン交換膜が得られな
い。
According to the research of the present inventor, in the method of employing a base material made of a fluorinated olefin polymer, impregnating the base material with a polymerizable monomer and polymerizing it, heating in the presence of a polymerization initiator is not possible. It has been found that when polymerization is used, the resulting ion exchange membrane becomes extremely fragile. That is, styrene, divinylbenzene,
When a polymerizable monomer such as chloromethylstyrene is impregnated and supported, heated and polymerized, and the resulting film is subjected to sulfonation or quaternary ammonium formation, the base material and the generated ion exchange resin may come into contact with each other during the reaction process or handling. The problem is that it peels off easily and, furthermore, the ion exchange resin produced is brittle, so cracks and micro-cracks easily occur. In addition, when the ionizing radiation irradiation polymerization method is adopted in order to overcome the above-mentioned difficulties in thermal polymerization, if all the impregnated and supported polymerizable monomers are polymerized under the irradiation of ionizing radiation, the substrate itself will deteriorate. Ultimately, an ion exchange membrane with sufficient mechanical strength cannot be obtained.

本発明は、前記問題点の認識に基づいて完成さ
れたものであり、基材に重合性モノマーを含浸担
持させ、該モノマーを重合せしめ、必要によりイ
オン交換基導入反応を施すことからなるイオン交
換膜の製造方法において、基材としてフツ素化オ
レフイン系重合体からなるものを使用し、前記基
材に含浸担持された重合性モノマーを、前段で電
離性放射線の照射により一部重合させ、後段で重
合開始剤の存在下加熱により残部重合せしめるこ
とを特徴とするイオン交換膜の製造方法を新規に
提供するものである。
The present invention was completed based on the recognition of the above problems, and is an ion exchange method in which a base material is impregnated and supported with a polymerizable monomer, the monomer is polymerized, and if necessary, an ion exchange group introduction reaction is performed. In the method for producing a membrane, a material made of a fluorinated olefin polymer is used as a base material, and the polymerizable monomer impregnated and supported on the base material is partially polymerized by irradiation with ionizing radiation in the first stage, and then in the second stage. The present invention provides a novel method for producing an ion exchange membrane, characterized in that the remainder of the membrane is polymerized by heating in the presence of a polymerization initiator.

本発明においては、特定基材に含浸担持させた
重合性モノマーを、前段で電離性放射線の照射に
より一部重合せしめ、引き続いて後段で電離性放
射線の非照射下に重合開始剤の作用により残部を
加熱重合せしめることが重要である。電離性放射
線照射重合法あるいは加熱重合法のいずれか一方
のみの場合には、基材の劣化あるいは生成する膜
形成樹脂層の脆弱や剥離などにより、生成重合体
が基材に強固に結合し且つ充分な機械的強度を有
するイオン交換膜を得ることが困難である。
In the present invention, the polymerizable monomer impregnated and carried on a specific base material is partially polymerized by irradiation with ionizing radiation in the first stage, and then the remaining part is polymerized by the action of a polymerization initiator in the second stage without irradiation with ionizing radiation. It is important to polymerize by heating. When only one of the ionizing radiation irradiation polymerization method and the heating polymerization method is used, the resulting polymer may be firmly bonded to the base material due to deterioration of the base material or brittleness or peeling of the formed film-forming resin layer. It is difficult to obtain ion exchange membranes with sufficient mechanical strength.

而して、本発明においては、重合性モノマーと
しては、従来より公知乃至周知のものなどが広範
囲にわたつて採用され得る。目的とするイオン交
換膜の種類あるいはイオン交換基導入反応の必要
性の有無などに応じて、所望の重合性モノマーが
選定採用され得るものである。好適な具体例とし
ては、スチレン、クロルメチルスチレン及びジビ
ニルベンゼンを必須成分として含有する重合性モ
ノマー混合物が例示され得る。特に、スチレン及
びクロルメチルスチレンの採用は、そのいずれか
一方を採用しない場合には、生成重合体を特定の
基材に強固に結合した状態で強靭なイオン交換膜
とする上で不利を伴なうので、本発明において好
適な実施態様となる。本発明においては、特定基
材と特定重合手段の採用により、基材と膜形成樹
脂層とが簡単に剥離したりするという難点が解消
され、あるいは膜形成樹脂層自体も強靭なものと
なり、簡単に亀裂や微小クラツクが発生するとい
うような難点も解消される。
Accordingly, in the present invention, a wide range of conventionally known or well-known polymerizable monomers can be employed. A desired polymerizable monomer can be selected and employed depending on the type of the intended ion exchange membrane or whether or not an ion exchange group introduction reaction is necessary. A preferred specific example is a polymerizable monomer mixture containing styrene, chloromethylstyrene and divinylbenzene as essential components. In particular, the use of styrene and chloromethylstyrene is disadvantageous if one of them is not used in order to form a strong ion exchange membrane with the resulting polymer firmly bonded to a specific base material. Therefore, it is a preferred embodiment of the present invention. In the present invention, by employing a specific base material and a specific polymerization method, the difficulty that the base material and the film-forming resin layer easily peel off can be solved, or the film-forming resin layer itself can be made strong and easy to use. Problems such as the occurrence of cracks and microcracks are also eliminated.

上記の好適な重合性モノマー混合物は、スチレ
ン、クロルメチルスチレン及びジビニルベンゼン
の総重量基準で、スチレン10〜80%、クロルメチ
ルスチレン10〜80%、ジビニルベンゼン1〜25%
を含有するのが好ましい。この含有割合は、目的
とするイオン交換膜の種類により、その好適な範
囲が若干異なるが、例えば陽イオン交換膜を目的
とする場合には、スチレンを上記範囲の多い方
で、あるいは陰イオン交換膜を目的とする場合に
は、クロルメチルスチレンを上記範囲の多い方で
選定するなどが可能である。いずれにしても、ジ
ビニルベンゼンは、余りに多量すぎると、得られ
るイオン交換膜の電気抵抗を増大せしめるし、ま
た余りに少量すぎると、機械的強度の達成に不利
となるが、通常は上記範囲で可及的に少ない方を
採用するのが好ましく、特にジビニルベンゼン5
〜15%程度が好適である。クロルメチルスチレン
は、余りに多量すぎると、陰イオン交換膜を目的
とする場合は樹脂層が膨潤して崩壊し、陽イオン
交換膜を目的とする場合は抵抗が高いものとなつ
てしまう難点が生じ、またクロルメチルスチレン
が余りに少量すぎると、陰イオン交換膜を目的と
する場合は抵抗が高いものとなつてしまう難点が
生じ、陽イオン交換膜を目的とする場合は樹脂層
が膨潤して崩壊する。従つて、好適には20〜65%
程度が選定される。また、スチレンも同様の理由
により、好適には20〜65%程度が選定される。
The preferred polymerizable monomer mixture described above is 10-80% styrene, 10-80% chloromethylstyrene, 1-25% divinylbenzene, based on the total weight of styrene, chloromethylstyrene and divinylbenzene.
It is preferable to contain. The preferred range of this content differs slightly depending on the type of ion exchange membrane intended, but for example, if the purpose is a cation exchange membrane, it is preferable to use styrene at the higher end of the above range, or for an anion exchange membrane. When the purpose is a membrane, it is possible to select chloromethylstyrene from the larger end of the above range. In any case, if too much divinylbenzene is used, it will increase the electrical resistance of the resulting ion exchange membrane, and if it is too small, it will be disadvantageous to achieve mechanical strength, but it is usually possible within the above range. It is preferable to use as little as possible, especially divinylbenzene5.
Approximately 15% is suitable. If chloromethylstyrene is used in too large a quantity, the resin layer will swell and collapse when used as an anion exchange membrane, and the resistance will be high when used as a cation exchange membrane. Also, if too little chloromethylstyrene is used, the resistance will be high if the purpose is an anion exchange membrane, and the resin layer will swell and collapse if the purpose is a cation exchange membrane. do. Therefore, preferably 20-65%
The degree is selected. Furthermore, for the same reason, styrene is preferably selected to have a content of about 20 to 65%.

また、本発明においては、基材としてフツ素化
オレフイン系重合体からなるものを採用すること
が重要である。かかる基材の採用により、目的と
するイオン交換膜の耐熱性、耐薬品性の観点から
有利になる。基材は、前記材質から構成されてい
れば、フイルム状のものも採用可能であるが、通
常は布、ネツトなどの織布、不織布あるいは多孔
質フイルムの如き薄膜状の空隙性基材が好適に採
用される。特定重合手段の採用により、その理由
は必ずしも明確でないが、上記基材の材質に対す
る重合性モノマーの親和性あるいは反応性の向上
がもたらされ、重合反応の結果生成する膜形成層
の重合体と基材とが強固に結合したイオン交換膜
が得られる。基材は通常その厚みが5〜500ミク
ロン、好ましくは20〜300ミクロン程度の薄膜状
として採用される。空隙性基材の場合の空隙率
は、主に機械的強度の点から90%以下、特には80
%以下とするのが好ましい。なお、空隙率とは
(1−基材の見かけの比重÷基材の真の比重)×
100を表わし、見かけの比重とは、基材が占める
空間をも考慮した比重を示し、真の比重とは、基
材の材質自体の比重を示す。
Furthermore, in the present invention, it is important to use a fluorinated olefin polymer as the base material. Adoption of such a base material is advantageous from the viewpoint of heat resistance and chemical resistance of the intended ion exchange membrane. As the base material, a film-like base material can be adopted as long as it is made of the above-mentioned materials, but normally, a thin film-like porous base material such as a woven fabric such as cloth or net, a non-woven fabric, or a porous film is suitable. will be adopted. Although the reason for this is not necessarily clear, the adoption of a specific polymerization method improves the affinity or reactivity of the polymerizable monomer with the material of the base material, and improves the affinity and reactivity of the polymerizable monomer with the material of the film forming layer produced as a result of the polymerization reaction. An ion exchange membrane that is firmly bonded to the base material can be obtained. The base material is usually employed in the form of a thin film having a thickness of about 5 to 500 microns, preferably about 20 to 300 microns. In the case of porous base materials, the porosity is 90% or less, especially 80%, mainly from the viewpoint of mechanical strength.
% or less. In addition, porosity is (1 - apparent specific gravity of base material ÷ true specific gravity of base material) ×
100, and the apparent specific gravity indicates the specific gravity taking into consideration the space occupied by the base material, and the true specific gravity indicates the specific gravity of the material itself of the base material.

本発明において、基材を構成するフツ素化オレ
フイン系重合体としては、四フツ化エチレン、三
フツ化塩化エチレン、フツ化ビニリデン、六フツ
化プロピレンなどの重合体あるいは共重合体が各
種例示され、具体的にはポリ四フツ化エチレン、
ポリフツ化ビニリデン、エチレン−四フツ化エチ
レン系共重合体、エチレン−三フツ化塩化エチレ
ン系共重合体、四フツ化エチレン−六フツ化プロ
ピレン系共重合体、プロピレン−四フツ化エチレ
ン系共重合体などが挙げられ得る。特に、上記特
定の重合手段の採用に関係した作用効果の観点か
ら、エチレン−四フツ化エチレン系共重合体、エ
チレン−三フツ化塩化エチレン系共重合体、プロ
ピレン−四フツ化エチレン系共重合体の如きオレ
フイン−フツ素化オレフイン系共重合体が、好適
に採用され得る。
In the present invention, various examples of the fluorinated olefin polymer constituting the base material include polymers or copolymers such as tetrafluoroethylene, trifluorochloroethylene, vinylidene fluoride, and hexafluoropropylene. , specifically polytetrafluoroethylene,
Polyvinylidene fluoride, ethylene-tetrafluoroethylene copolymer, ethylene-tetrafluoroethylene chloride copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer Examples include merging. In particular, from the viewpoint of effects related to the adoption of the above specific polymerization means, ethylene-tetrafluoroethylene copolymers, ethylene-tetrafluoroethylene chloride copolymers, propylene-tetrafluoroethylene copolymers, etc. An olefin-fluorinated olefin copolymer such as a fluorinated olefin copolymer can be suitably employed.

本発明においては、上記の如き特定の基材に重
合性モノマー混合物を含浸担持させ重合せしめる
が、該重合条件などについては特に限定される理
由はない。しかし、通常は基材とのグラフト重合
が生起するような重合条件の採用が好ましい。例
えば、基材を予め電離性放射線照射などにより前
処理する方法が採用可能であり、重合性モノマー
が含浸担持された基材に電離性放射線を照射して
重合せしめる同時照射方法も採用され得る。本発
明においては、上述の通り、基材に含浸担持され
た重合性モノマーを、前段で電離性放射線の照射
により一部重合させ、後段で重合開始剤の存在下
加熱により(電離性放射線を照射せずに)残部重
合せしめるという重合手段が好ましく採用され得
る。
In the present invention, the polymerizable monomer mixture is impregnated and supported on the above-mentioned specific base material and polymerized, but there is no particular reason to limit the polymerization conditions. However, it is usually preferable to employ polymerization conditions that allow graft polymerization with the base material to occur. For example, a method may be employed in which the base material is pretreated by irradiation with ionizing radiation, or a simultaneous irradiation method may be employed in which the base material impregnated and supported with a polymerizable monomer is irradiated with ionizing radiation for polymerization. In the present invention, as described above, the polymerizable monomer impregnated and supported on the base material is partially polymerized by irradiation with ionizing radiation in the first stage, and heated in the presence of a polymerization initiator in the latter stage (irradiation with ionizing radiation). A polymerization method in which the remainder is polymerized (without polymerization) can be preferably employed.

而して、γ線や電子線の如き電離性放射線の照
射により重合性モノマー混合物を一部重合させる
場合、その重合反応転化率は80%以下、好ましく
は10〜70%、特に30%以上程度を選定するのが望
ましい。この段階における重合反応転化率を余り
に過大にするような照射条件を採用すると、電離
性放射線による基材自体の劣化を生起し、結果的
に充分な機械的強度を有するイオン交換膜が得ら
れ難くなる。次いで、電離性放射線の非照射下
に、過酸化ベンゾイルの如き重合開始剤の存在下
加熱により残部重合が実施される。通常の重合操
作においては、重合開始剤を添加した重合性モノ
マー混合物を基材に含浸担持せしめ、前段の電離
性放射線照射重合を行ない、引き続いて後段の加
熱重合を行なうという方法が採用される。
Therefore, when the polymerizable monomer mixture is partially polymerized by irradiation with ionizing radiation such as gamma rays or electron beams, the conversion rate of the polymerization reaction is about 80% or less, preferably 10 to 70%, especially about 30% or more. It is desirable to select If irradiation conditions that excessively increase the polymerization reaction conversion rate at this stage are adopted, the base material itself will deteriorate due to ionizing radiation, and as a result, it will be difficult to obtain an ion exchange membrane with sufficient mechanical strength. Become. Then, residual polymerization is carried out by heating in the presence of a polymerization initiator such as benzoyl peroxide without irradiation with ionizing radiation. In a normal polymerization operation, a method is adopted in which a polymerizable monomer mixture to which a polymerization initiator is added is impregnated onto a base material, and a first step of polymerization is performed by irradiation with ionizing radiation, followed by a second step of heating polymerization.

電離性放射線としては、Co−60やCs−127線源
からのγ線、あるいは電子線加速器からの電子線
が好適に採用され、線量率102〜108ラツド/秒、
好ましくは105〜107ラツド/秒で照射されるのが
望ましい。照射線量は、上記の重合反応転化率を
得るように選定され、照射温度や照射時間も同様
に選定される。通常は60℃以下、好ましくは10〜
40℃程度の温度で0.5〜48時間、好ましくは1〜
20時間程度の照射により、照射線量0.5〜10メガ
ラツド、好ましくは1.5〜8メガラツドで所望の
重合反応転化率が達成され得る。また、後段の熱
重合の条件については、特に限定される理由はな
いが、通常は添加されている重合開始剤が活性に
作用し得る温度以上に加熱し、残部重合を完結さ
せるべく加熱重合させる。例えば、過酸化ベンゾ
イルの如き重合開始剤を採用した場合には、60〜
150℃、好ましくは80〜120℃程度で0.5〜12時間
加熱重合を行なうのが望ましい。低温で活性な重
合開始剤の採用により加熱温度を下げたり、重合
時間を短縮したりすることができる。
As the ionizing radiation, gamma rays from Co-60 or Cs-127 sources, or electron beams from an electron beam accelerator are preferably used, with a dose rate of 10 2 to 10 8 rad/sec,
Preferably, the irradiation rate is 10 5 to 10 7 rad/sec. The irradiation dose is selected so as to obtain the above-mentioned polymerization reaction conversion rate, and the irradiation temperature and irradiation time are similarly selected. Usually below 60℃, preferably 10~
0.5 to 48 hours, preferably 1 to 48 hours at a temperature of about 40℃
By irradiating for about 20 hours, the desired polymerization reaction conversion can be achieved at an irradiation dose of 0.5 to 10 Megarads, preferably 1.5 to 8 Megarads. In addition, there is no particular reason to limit the conditions for the thermal polymerization in the latter stage, but it is usually heated to a temperature above which the added polymerization initiator can act actively, and the remaining thermal polymerization is carried out to complete the polymerization. . For example, when a polymerization initiator such as benzoyl peroxide is used,
It is desirable to carry out heating polymerization at 150°C, preferably about 80-120°C for 0.5-12 hours. By using a polymerization initiator that is active at low temperatures, it is possible to lower the heating temperature and shorten the polymerization time.

本発明においては、重合性モノマー混合物に上
記好適な三成分以外の重合性モノマー、例えばア
クリル酸、メタクリル酸、ヒドロキシアクリレー
ト、ヒドロキシメタクリレート、ビニルピリジ
ン、アルキル置換ビニルピリジン、アクリロニト
リル、ブタジエン、イソプレン、ビニルトルエ
ン、エチルビニルベンゼンの如きを添加すること
も可能であり、適宜有機溶剤、例えばテトラヒド
ロフラン、ベンゼンなどの溶液として使用しても
良い。更に、重合性モノマー混合物を基材に含浸
担持させる前に、予め部分的に重合させたもの、
あるいはポリスチレン、ニトリル−ブタジエンゴ
ムなどを配合したものなどの採用も可能である。
In the present invention, the polymerizable monomer mixture includes polymerizable monomers other than the above three preferred components, such as acrylic acid, methacrylic acid, hydroxyacrylate, hydroxymethacrylate, vinylpyridine, alkyl-substituted vinylpyridine, acrylonitrile, butadiene, isoprene, and vinyltoluene. , ethylvinylbenzene, etc. may also be added, and an appropriate organic solvent such as tetrahydrofuran, benzene, etc. may be used as a solution. Furthermore, before the polymerizable monomer mixture is impregnated and supported on the base material, it is partially polymerized in advance,
Alternatively, it is also possible to use a material blended with polystyrene, nitrile-butadiene rubber, or the like.

基材に重合性モノマー混合物を含浸担持せしめ
て重合させるに当り、重合反応に対して不活性で
あり且つ重合反応終了後に剥離可能なポリエステ
ルフイルム、ガラス板、アルムニウム箔などの間
にモノマー含浸された基材を挟んで実施する方法
は、本発明においては好適に採用され得る。例え
ば、重合性モノマー混合物が含浸担持された基材
をポリエチレンテレフタレートフイルムなどのポ
リエステルフイルムに挟んで、上記の前段及び後
段の重合を実施するのが好適であり、またモノマ
ー含浸された基材とポリエステルフイルムを積層
し、これを基材側に内側にして巻き物として重合
操作にかけることなども可能である。而して、電
離性放射線照射による前段重合に引き続いて加熱
重合を行なう場合などには、加熱重合を温水中に
て行なうことなども可能である。また、重合性モ
ノマー混合物を基材に含浸担持する場合に、減圧
操作を用いることも有効である。
When a base material is impregnated with a polymerizable monomer mixture and polymerized, the monomer is impregnated between polyester films, glass plates, aluminum foils, etc. that are inert to the polymerization reaction and can be peeled off after the polymerization reaction is completed. The method of sandwiching the base materials can be suitably employed in the present invention. For example, it is preferable to sandwich the base material impregnated and supported with the polymerizable monomer mixture between polyester films such as polyethylene terephthalate film to carry out the above-mentioned first and second stage polymerization, and also to conduct the polymerization between the base material impregnated with the monomer and the polyester film. It is also possible to laminate the films and subject them to the polymerization operation as a roll with the substrate side facing inside. Thus, when heating polymerization is performed subsequent to the first-stage polymerization by ionizing radiation irradiation, it is also possible to carry out the heating polymerization in warm water. Furthermore, when impregnating and supporting a polymerizable monomer mixture on a base material, it is also effective to use a reduced pressure operation.

本発明において、基材に含浸担持させて重合せ
しめた重合物は、好適な三成分混合物の場合には
イオン交換基導入反応を施して、イオン交換膜と
される。重合性モノマー混合物にイオン交換基含
有化合物を配合して直接イオン交換膜とすること
も可能である。通常は、上記の如き前段及び後段
の重合反応終了後に、従来より公知乃至周知の手
段などにより、陽イオン交換基又は陰イオン交換
基が導入され、目的とするイオン交換膜が製造さ
れる。例えば、濃硫酸、クロルスルホン酸の如き
スルホン化剤を用いてスルホン酸型陽イオン交換
基を導入する方法、クロルメチル基を第三級アミ
ンでアミン化し第四級アンモニウム型陰イオン交
換基を導入する方法などが例示され得る。
In the present invention, the polymer impregnated and supported on a base material and polymerized, in the case of a suitable three-component mixture, is subjected to an ion exchange group introduction reaction to form an ion exchange membrane. It is also possible to form an ion exchange membrane directly by blending an ion exchange group-containing compound with the polymerizable monomer mixture. Usually, after the above-mentioned first-stage and second-stage polymerization reactions are completed, cation exchange groups or anion exchange groups are introduced by conventionally known or well-known means to produce the desired ion exchange membrane. For example, a method of introducing a sulfonic acid type cation exchange group using a sulfonating agent such as concentrated sulfuric acid or chlorosulfonic acid, or a method of aminating a chloromethyl group with a tertiary amine to introduce a quaternary ammonium type anion exchange group. Methods and the like may be exemplified.

本発明方法によつて得られるイオン交換膜は、
特定基材の採用により、従来のイオン交換膜に比
して耐熱性、耐薬品性が優れ、また特定の重合手
段の採用により、膜形成層と基材とが強固に結合
した充分な機械的強度を有するイオン交換膜とす
ることができる。当然のことながら、電気的性
能、例えば実効抵抗、輸率、イオン選択性など
は、適宜好適なものとすることができる。従つ
て、本発明のイオン交換膜は、従来の陽イオン交
換膜及び陰イオン交換膜について提案されている
広範囲な用途に使用され、上記優秀な性質、利点
を生かして更にその用途が広がる。具体的には、
燃料電池用隔膜、各種電解用隔膜、レドツクス電
池用隔膜、酸回収濃縮用膜、アルカリ回収濃縮用
膜、高温電気透析用膜、高温拡散透析用膜、複分
解用膜などの用途が例示され得る。
The ion exchange membrane obtained by the method of the present invention is
By using a specific base material, it has superior heat resistance and chemical resistance compared to conventional ion exchange membranes, and by using a specific polymerization method, it has sufficient mechanical strength to firmly bond the membrane forming layer and base material. It can be made into an ion exchange membrane with strength. Naturally, electrical properties such as effective resistance, transference number, ion selectivity, etc. can be adjusted as appropriate. Therefore, the ion exchange membrane of the present invention can be used in a wide range of applications that have been proposed for conventional cation exchange membranes and anion exchange membranes, and its applications will further expand by taking advantage of the above-mentioned excellent properties and advantages. in particular,
Examples of uses include diaphragms for fuel cells, diaphragms for various electrolysis, diaphragms for redox batteries, membranes for acid recovery and concentration, membranes for alkali recovery and concentration, membranes for high-temperature electrodialysis, membranes for high-temperature diffusion dialysis, and membranes for double decomposition.

以下に、本発明の実施例について、更に具体的
に説明するが、かかる説明によつて本発明は何ら
限定されるものでなく、本発明の目的及び精神を
逸脱しない限り、適宜の付加や変更が可能である
ことは言うまでもない。なお、実施例における割
合は、特に明示しない限り、重量割合を示す。ま
た、イオン交換膜の各種物性は、それぞれ次のよ
うにして測定したものである。
Examples of the present invention will be described in more detail below, but the present invention is not limited by such explanations, and appropriate additions and changes may be made without departing from the purpose and spirit of the present invention. It goes without saying that this is possible. Note that the proportions in the examples indicate weight proportions unless otherwise specified. Further, various physical properties of the ion exchange membrane were measured as follows.

実効抵抗:2室型のセルに膜をはさみ、
0.5NのNaCl溶液で両室を満たして1000c/s
の交流ブリツジでセル全体の抵抗を測り、次に
膜をとりはずし溶液のみの抵抗を測る。両抵抗
の差より膜の全抵抗Rを求め、次式により実効
抵抗Rmを得る。
Effective resistance: sandwiching a membrane between two-chamber cells,
Fill both chambers with 0.5N NaCl solution at 1000c/s
Measure the resistance of the entire cell using an AC bridge, then remove the membrane and measure the resistance of only the solution. The total resistance R of the membrane is determined from the difference between both resistances, and the effective resistance Rm is obtained using the following formula.

Rm=R・S(Ω−cm2) S:膜面積 輸率:2室型のセルに膜をはさみ、
0.5NKCl/2.5NKClの溶液を両室に満たして甘
こう電極を用いて両液間の起電力を測定し、輸
率を求める。
Rm=R・S (Ω−cm 2 ) S: membrane area Transference number: sandwich the membrane between two-chamber cells,
Fill both chambers with a solution of 0.5NKCl/2.5NKCl and measure the electromotive force between the two solutions using an agaric electrode to determine the transference number.

強度(破裂強度):シエーレン式破裂強度試
験機により、グリセリンを圧力媒体としゴム薄
膜を介して圧力を加えていき、膜の破裂する最
大圧力を測定する。
Strength (bursting strength): Using a Schieren bursting strength tester, pressure is applied through a thin rubber membrane using glycerin as a pressure medium, and the maximum pressure at which the membrane bursts is measured.

実施例 1 エチレン−四フツ化エチレン系共重合体から織
つた布(厚さ145μ、重量81.3g/m2)を基材とし
て用い、この基材に、ジビニルベンゼン8%、ス
チレン49%、クロルメチルスチレン43%の組成の
シロツプに過酸化ベンゾイル2%添加したものを
含浸せしめ、2枚のポリエステルフイルムと2枚
の硝子板の間にこの含浸した布をはさんで固定す
る。さらにコバルト60のガンマー線を室温で3メ
ガラツド照射し放射線重合を行ない、さらに90℃
の温水中で6時間加熱重合を行ない重合膜を作
る。この重合膜を98%濃硫酸の60℃の条件で16時
間スルホン化処理して陽イオン交換膜とする。
Example 1 A cloth woven from an ethylene-tetrafluoroethylene copolymer (thickness 145 μ, weight 81.3 g/m 2 ) was used as a base material, and this base material was coated with 8% divinylbenzene, 49% styrene, and chloride. A syrup with a composition of 43% methylstyrene is impregnated with 2% benzoyl peroxide, and the impregnated cloth is sandwiched and fixed between two polyester films and two glass plates. Furthermore, radiation polymerization was performed by irradiating cobalt-60 with 3 megarads of gamma rays at room temperature, and then at 90°C.
Heat polymerization in warm water for 6 hours to form a polymer film. This polymerized membrane is sulfonated in 98% concentrated sulfuric acid at 60°C for 16 hours to obtain a cation exchange membrane.

でき上つた陽イオン交換膜の性能は、実効抵抗
17Ω−cm2(0.5NKCl中)、厚み152μ、輸率87%、
破裂強度5Kg/cm2以上であつた。
The performance of the completed cation exchange membrane is determined by its effective resistance.
17Ω−cm 2 (in 0.5NKCl), thickness 152μ, transference number 87%,
The bursting strength was 5 kg/cm 2 or more.

実施例 2 実施例1と同様の基材に、ジビニルベンゼン11
%、スチレン28%、クロルメチルスチレン61%の
組成のシロツプに過酸化ベンゾイル2%添加した
ものを含浸せしめ、実施例1と同様にして重合膜
を得た。この重合膜を、1Nトリメチルアミンの
60℃の条件で16時間アミノ化処理を行ない陰イオ
ン交換膜とする。
Example 2 Divinylbenzene 11 was added to the same base material as in Example 1.
%, styrene 28%, and chloromethylstyrene 61% was impregnated with 2% benzoyl peroxide, and a polymer film was obtained in the same manner as in Example 1. This polymerized film was coated with 1N trimethylamine.
Amination treatment is performed at 60°C for 16 hours to obtain an anion exchange membrane.

でき上がつた陰イオン交換膜の性能は、実効抵
抗6.8Ω−cm2、厚み174μ、輸率85%、破裂強度5
Kg/cm2以上であつた。
The performance of the completed anion exchange membrane is as follows: effective resistance 6.8Ω-cm 2 , thickness 174μ, transference number 85%, and bursting strength 5.
It was more than Kg/ cm2 .

比較例 1 ジビニルベンゼン9%、スチレン43%、クロル
メチルスチレン48%の組成のシロツプに過酸化ベ
ンゾイル2%添加したものを、実施例1と同様の
エチレン−四フツ化エチレン系共重合体の糸で織
つた布に含浸し、実施例1と同様の方法で固定
し、90℃の温水中で12時間加熱重合して重合膜を
作つた。この重合膜を用いて、実施例1と同様に
98%濃硫酸でスルホン化し陽イオン交換膜とし、
実施例2と同様に1Nトリメチルアミンでアミノ
化し陰イオン交換膜とした。重合膜では一見実施
例1,2と区別できないものが得られたが交換基
を導入しイオン交換膜とすると、いずれの膜も樹
脂層と基材が剥離した。
Comparative Example 1 A syrup with a composition of 9% divinylbenzene, 43% styrene, and 48% chloromethylstyrene was added with 2% benzoyl peroxide, and the same ethylene-tetrafluoroethylene copolymer thread as in Example 1 was prepared. A woven cloth was impregnated with the solution, fixed in the same manner as in Example 1, and heated and polymerized in warm water at 90° C. for 12 hours to form a polymer film. Using this polymer film, the same procedure as in Example 1 was carried out.
Sulfonated with 98% concentrated sulfuric acid to create a cation exchange membrane.
In the same manner as in Example 2, it was aminated with 1N trimethylamine to obtain an anion exchange membrane. Although polymerized membranes were obtained that were indistinguishable from Examples 1 and 2 at first glance, when an ion exchange membrane was obtained by introducing an exchange group, the resin layer and base material of each membrane peeled off.

比較例 2 比較例1と同様の組成のシロツプを、実施例1
と同様のエチレン−四フツ化エチレン系共重合体
の糸で織つた布に含浸し固定した。この膜をコバ
ルト60の放射線で重合が完了するまで(約8メガ
ラツド)照射し、重合膜を作つたところ、得られ
た重合膜は脆弱で崩壊した。
Comparative Example 2 A syrup having the same composition as Comparative Example 1 was added to Example 1.
It was impregnated into a cloth woven with threads of the same ethylene-tetrafluoroethylene copolymer and fixed. When this film was irradiated with cobalt-60 radiation until polymerization was completed (approximately 8 megarads) to form a polymer film, the resulting polymer film became brittle and collapsed.

Claims (1)

【特許請求の範囲】 1 基材に重合性モノマーを含浸担持させ、該モ
ノマーを重合せしめ、必要によりイオン交換基導
入反応を施すことからなるイオン交換膜の製造方
法において、基材としてフツ素化オレフイン系重
合体からなるものを使用し、前記基材に含浸担持
された重合性モノマーを、前段で電離性放射線の
照射により一部重合させ、後段で重合開始剤の存
在下加熱により残部重合せしめることを特徴とす
るイオン交換膜の製造方法。 2 電離性放射線の照射による前段の重合性モノ
マーの重合反応転化率が80%以下である特許請求
の範囲第1項記載の製造方法。
[Scope of Claims] 1. A method for producing an ion exchange membrane comprising impregnating and supporting a polymerizable monomer on a base material, polymerizing the monomer, and performing an ion exchange group introduction reaction if necessary, in which a fluorinated base material is used. Using an olefin polymer, the polymerizable monomer impregnated and supported on the base material is partially polymerized by irradiation with ionizing radiation in the first stage, and the remaining part is polymerized by heating in the presence of a polymerization initiator in the second stage. A method for producing an ion exchange membrane, characterized by: 2. The manufacturing method according to claim 1, wherein the conversion rate of the polymerization reaction of the polymerizable monomer in the first stage by irradiation with ionizing radiation is 80% or less.
JP9292584A 1984-05-11 1984-05-11 Manufacture of ion-exchange membrane Granted JPS60238327A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9292584A JPS60238327A (en) 1984-05-11 1984-05-11 Manufacture of ion-exchange membrane
US06/730,481 US4608393A (en) 1984-05-11 1985-05-06 Process for producing an ion exchange membrane using irradiation by ionizing radiation followed by thermal polymerization
EP85114653A EP0222926B1 (en) 1984-05-11 1985-11-18 Process for producing an ion exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9292584A JPS60238327A (en) 1984-05-11 1984-05-11 Manufacture of ion-exchange membrane

Publications (2)

Publication Number Publication Date
JPS60238327A JPS60238327A (en) 1985-11-27
JPH0352778B2 true JPH0352778B2 (en) 1991-08-13

Family

ID=14068062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9292584A Granted JPS60238327A (en) 1984-05-11 1984-05-11 Manufacture of ion-exchange membrane

Country Status (1)

Country Link
JP (1) JPS60238327A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2876298B1 (en) * 2004-10-12 2007-01-12 Solvay PROCESS FOR THE MANUFACTURE OF RADIOGRAFT MEMBRANES AND APPLICATION OF MEMBRANES OBTAINED
WO2011156937A1 (en) * 2010-06-18 2011-12-22 山东东岳神舟新材料有限公司 Fluorine containing ionomer composite with ion exchange function, preparation method and use thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914047A (en) * 1982-07-14 1984-01-24 Fujitsu Ltd Automatic response system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914047A (en) * 1982-07-14 1984-01-24 Fujitsu Ltd Automatic response system

Also Published As

Publication number Publication date
JPS60238327A (en) 1985-11-27

Similar Documents

Publication Publication Date Title
US7344791B1 (en) Electrolytic membrane for fuel cell and its manufacturing method, and fuel cell and its manufacturing method
JP6293822B2 (en) Anion exchange membrane and production method
JP5889907B2 (en) Method for producing a monomer solution for producing a cation exchange membrane
US4374232A (en) Graft copolymer membrane and processes of manufacturing and using the same
JP3417946B2 (en) Electrochemical battery provided with polymer electrolyte and method for producing polymer electrolyte
US6461772B1 (en) Battery diaphragm
CN101048434B (en) Electrolyte material, electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
US4295952A (en) Novel cationic membranes
GB2330836A (en) Polyelectrolyte membrane for fuel cells
JPH09102322A (en) Solid polymeric electrolyte film for fuel cell and its manufacture
JP2001348439A (en) Ion-exchange membrane of fluororesin having widely ranging ion-exchange capacity, and process for preparation thereof
JP4724971B2 (en) Anion exchange membrane, method for producing the same, and solution processing apparatus
JP3797578B2 (en) Membrane for vanadium redox flow battery
EP0222926B1 (en) Process for producing an ion exchange membrane
JP2002348389A (en) Fluoropolymer ion-exchange membrane having wide ion- exchange capacity and its production method
CN106463740B (en) Anion exchange dielectric film, have the dielectric film fuel cell film-electrode bond and fuel cell
JPH0352777B2 (en)
US4154909A (en) Process for producing cation exchange membrane by treatment of fluorinated polymer containing sulfonyl halide groups with amine and vinyl monomer
JPH0352778B2 (en)
US4539277A (en) Ion exchange membrane and process for producing the same
US4287275A (en) Alkaline cell with graft polymer separator
JPH06271687A (en) Production of ion-exchange membrane
JP5059256B2 (en) Method for producing membrane for polymer electrolyte fuel cell and membrane for polymer electrolyte fuel cell
JP3423765B2 (en) Lamination method of ion exchange membrane
JP2002198068A (en) Solid polymer electrolyte membrane and its manufacturing method