JPH0352307A - Multi-beam antenna - Google Patents

Multi-beam antenna

Info

Publication number
JPH0352307A
JPH0352307A JP18706389A JP18706389A JPH0352307A JP H0352307 A JPH0352307 A JP H0352307A JP 18706389 A JP18706389 A JP 18706389A JP 18706389 A JP18706389 A JP 18706389A JP H0352307 A JPH0352307 A JP H0352307A
Authority
JP
Japan
Prior art keywords
sub
reflector
partial
reflecting mirror
revolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18706389A
Other languages
Japanese (ja)
Inventor
Ryuichi Iwata
岩田 龍一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18706389A priority Critical patent/JPH0352307A/en
Publication of JPH0352307A publication Critical patent/JPH0352307A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the deterioration in the aperture phase efficiency by interposing a sub reflecting mirror able to a phase error caused when a radio wave radiates from a main reflecting mirror in advance between the main reflecting mirror and a primary radiator and forming the sub reflecting mirror to be nearly a hyperboloid of revolution. CONSTITUTION:A main reflecting mirror 1 is formed by combining a partial main reflecting mirror 11 being part of a hyperboloid of revolution A and a partial main reflecting mirror 12 being part of a paraboloid of revolution B so that both rotation center axes 41, 42 are crossed with each other. while the shape of the curved face of the partial sub reflecting mirrors 21, 24 of the sub reflecting mirror 2 is selected so that a phase error is corrected when its reflected radio wave radiates via the main reflecting mirrors 11, 12, the shape of the cured face of the middle part 25 is formed with a curved face jointing partial sub reflecting mirrors 22, 23 being part of two different hyperboloids of revolution at a bonding border line 8. Then a primary radiator 31 is provided to a focus Fa' at the projection side in two focii of the hyperboloid of revolution A, and a primary radiator 32 is provided to a focus Fb' at the projection side in two focii of the hyperboloid of revolution B similarly and a radio wave radiates toward the sub reflecting mirror 2. Thus, the deterioration in the aperture phase efficiency is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は1つのアンテナで互いに異なる2方向へアンテ
ナビームを形成するマルチビームアンテナに関する. (従来の技術) 1つのアンテナで互いに異なる2方向ヘアンテナビーム
を形成するマルチビームアンテナとしては、従来、例え
ば第6図に示すものが知られている.第6図において、
13は反射鏡であり、この反射鏡工3は直線43を回転
中心軸とする回転放物面の一部面であって該回転中心軸
43を外した適宜部位の曲面で形成される.そして、1
次放射器3lと同32は、回転中心軸43上に存在する
当該回転放物面の焦点Fの近傍に適宜距離離隔して配置
され、それぞれ反射鏡13に対し電波放射を行う.その
結果、反射鏡13からは互いに異なる2方向へ電波放射
が行われる. この種のマルチビームアンテナは、例えば静止軌道上の
2個の衛星との同時通信を可能にすべく開発されたもの
である. (発明が解決しようとする課題) しかし、第6図に示す従来のマルチビームアンテナにお
いては、次のような問題がある.まず、反射鏡13から
放射されるビニムの偏移を大きくするには、1次放射器
31,同32の配置間隔を広げる必要があるが、そうす
ると配置位置が焦点Fから離れることになるので、反射
鏡13の開口面における波面に乱れが生じアンテナ利得
が低下する. また、反射鏡13は回転放物面の回転中心軸43を外し
た適宜部位の曲面からなり、1次放射器(31.32)
は回転中心軸43上の焦点F近傍に配置されるから、第
7図(a)に示すように、回転放物面を非対称に用いる
オフセットアンテナ形式となっている.その結果、1次
放射器(31,32)から軸対称なビームが放射されて
も、焦点Fから反射鏡l3の周縁端部を見込む角の中心
軸(ビーム中心軸〉7の反射鏡13による反射光線(ビ
ームの中心軸)6と開口の中心軸(反射鏡13の投影の
外形円の中心を通る直線〉5とにずれが生じる.このた
め、第7図(b)に示すように、反射鏡13の開口面に
おける電界ベクトルに曲がりが生じ反射鏡13から放射
される電波にy軸方向の電界(主偏波)だけでなくX軸
方向の電界(交差偏波〉も含まれることになる.そうす
ると、直交偏波共用方式の通信においてはクロストーク
を生じることになる. 本発明は、このような問題に鑑みなされたもので、その
目的は、副反射鏡を有する構成とすることによって開口
面位相能率の低下の軽減が図れ、かつ、開口面電界分布
に生ずる偏りの低減を図ることのできるマルチビームア
ンテナを提供することにある. (課題を解決するための手段〉 前記目的を達成するために、本発明のマルチビームアン
テナは次の如き槽戒を有する.即ち、本発明のマルチビ
ームアンテナは、第1および第2の回転放物面それぞれ
の一部からなる第1および第2の部分主反射鏡を第1お
よび第2の回転放物面それぞれの回転中心軸が交差する
ように接合した1つの主反射鏡と; 前記それぞれの回
転中心軸上に存在する第1の回転放物面の魚点く第1の
焦点〉位置および第2の回転放物面の焦点〈第2の焦点
)位置と前記主反射鏡との間に設けられる副反射鏡と;
 前記副反射鏡へ向けて電波放射を行う第1および第2
の1次放射器と;を備え、主反射鏡が副反射鏡の反射電
波を互いに異なる2方向へ放射するようにしたマルチビ
ームアンテナであって: 前記副反射鏡は、前記第1の
部分主反射鏡側の第1の部分副反射鏡と前記第2の部分
主反射鏡側の第2の部分副反射鏡と該第1および第2の
部分反射鏡を連接する中央部とからなり、第1および第
2の部分副反射鏡それぞれの曲面形状は当該部分副反射
鏡の反射電波がその部分副反射鏡側の前記部分主反射鏡
を経て放射されるときの位相誤差を補正ないしは軽減す
るように設定してある一方、中央部の曲面形状は一方の
それぞれの焦点位置が前記第1および第2の焦点位置と
それぞれ一致する第1および第2の回転双曲面それぞれ
の一部からなる第3および第4の部分副反射鏡を接合し
た曲面からなり; かつ、前記第1および第2の1次放
射器は前記主反射鏡と前記副反射鏡の間に存在する前記
第1および第2の回転双曲面それぞれの他方の焦点位置
にそれぞれ配置してあること; を特徴とするものであ
る.(作 用) 次に、前記の如く構成される本発明のマルチビームアン
テナの作用を説明する. 例えば、第1の回転双曲面の他方の焦点位置に配置され
た第1の1次放射器の出射電波は副反射鏡の中央部と第
2の部分副反射鏡を照射することになる.中央部は第1
および第2の回転双曲面それぞれの一部からなる第3お
よび第4の部分副反射鏡を接合した曲面からなるが、両
者略等曲面とみなすことができるようにしておけば、中
央部を照射した電波は恰も第1の回転双曲面の一方の焦
点位置、即ち、第1の回転放物面の第1の焦点位置から
第1の部分主反射鏡に向けて発したかの如くに反射され
第1の部分主反射鏡に到達するから、第1の部分主反射
鏡では入射電波を第1の回転放物面の回転中心軸と平行
な方向へ放射することになる.このとき、全ての光路長
は一定となる.また、第2の部分副反射鏡を照射した電
波は第1の焦点位置から第2の部分主反射鏡に向けて発
したかの如くに反射され第2の部分主反射鏡に到達する
が、第2の部分副反射鏡の曲面形状は当該部分副反射鏡
の反射電波が第2の部分主反射鏡を経て放射されるとき
の位相誤差を補正ないしは軽減するように設定してある
、即ち、光路長が一定となるように設定してあるので、
第2の部分主反射鏡での反射電波は従来の如く位相誤差
による開口面位相能率を低下させることなく前記第1の
回転放物面の回転中心軸と平行な方向へ放射されること
となる. 以上のことは、第2の回転双曲面の他方の焦点位置に配
置された第2の1次放射器(この場合は中央部と第1の
部分副反射鏡が対象となる)についても同様であり、主
反射鏡からは第2の回転中心軸と平行な方向へ放射され
る. ここで注意すべきことは、中央部は2つの1次放射器の
共用となるが、回転双曲面であるがらここでの位相誤差
は生じない.つまり、副反射鏡は2つの電波放射方向に
対し主反射鏡で生ずる位相誤差を予め同時に補正してい
るのである.また、副反射鏡は概ね回転双曲面となって
いるので、これによるビーム中心軸のずれでもって回転
放物面によるビーム中心軸のずれを打ち消す、つまり、
開口面電界分布の偏りを補正し、アンテナの交差偏波特
性を改善することが可能となる.このように、本発明の
マルチビームアンテナによれば、概ね回転双曲面となる
副反射鏡を介在させたので、開口面位相能率の低下を軽
減ないしは改善でき、また交差偏波特性を改善すること
ができる. 《実 施 例) 以下、本発明の実施例を添付図面を参照して説明する. 第1図および第2図は本発明の一実施例に係るマルチビ
ームアンテナを示す.このマルチビームアンテナは、主
反射鏡1と2つの1次放射器31、同32と、1つの副
反射鏡2とを備える.主反射鏡1は、回転放物面Aの一
部からなる部分主反射鏡11および回転放物面Bの一部
からなる部分主反射鏡12を回転放物面Aの回転中心軸
41と回転放物面Bの回転中心軸42とが交差するよう
に接合境界線14に沿って継ぎ合わせたも?である. 副反射鏡2は、部分主反射鏡12@の部分副反射鏡21
と、部分主反射!ilill側の部分副反射鏡24とこ
の両者を連接する中央部25とからなる.部分副反射鏡
21、同24のそれぞれの曲面形状は後述のように設定
される曲面形状となっている.また、中央部25の曲面
形状は2つの異なる回転双曲面Aおよび回転双曲面Bの
一部からなる部分副反射鏡22および同23を凸側を主
反射鏡it’l!lへ向けて接合境界線8で継ぎ合わせ
た曲面からなる.そして、回転双曲面Aの2つの焦点の
うち凹側にある焦点(即ち、一方の焦■点〉の位置が回
転放物面Aの焦点位置F,と一致し、凸側にある焦点(
即ち、他方の焦点)F1′の位置に第1の1次放射器3
lが設けられ、副反射鏡2に向けて電波を放射する.同
様に、回転双曲面Bの2つの焦点のうち凹側にある焦点
(即ち、一方の焦点)の位置が回転放物面Bの焦点位置
Fbと一致し、凸側にある焦点(即ち、他方の焦点)F
l,’の位置に第2の1次放射器32が設けられ副反射
鏡2に向けて電波を放射するようになっている.次に、
第3図および第4図を参照して副反射鏡2の曲面形状の
決定方法を説明する. まず、第3図は副反射a2のうち、1次放射器3lから
の電波放射を受ける部分(副反射fl2’とする)を示
す.今、当該部分(副反射鏡2′〉全体が、F.を凹側
の焦点、F1′を凸側の焦点とする回転双曲面Aである
と仮定する.すると、焦点F.′から発せられる多数の
光線を考えた場合、これらの光線が副反射鏡2′で反射
された後はあたかも焦点F,から光線が発せられている
ように進む.そして、これらの光線のうち部分主反射#
](回転放物面A)11に入射する光線はすべて部分主
反射鏡(回転放物面A)11で反射された後、回転中心
軸41と平行な平行光線となり、焦点F,′から副反射
鏡(回転双曲面A)2′を経て回転中心軸41に垂直な
平面に至る距離が等しくなっている.他方、焦点F.か
ら仮想的に発せられた光線のうち部分主反射鏡(回転放
物面B)12に入射する光線は、部分主反射鏡(回転放
物面B)12で反射された後、概ね回転中心軸41に平
行な光線となるが、焦点F&′から副反射鏡(回転双曲
面A)2を経て回転中心141に垂直な平面に至る距離
は一定とはならず、わずかな誤差を生じる. そこで、部分主反射鏡11に対応する部分26は、前記
中央部25となるところであるが、この部分26の曲面
形状は回転双曲面Aと決定する.また、部分主反射鏡1
2に対応する部分21は、前記部分副反射鏡21となる
ところであるが、この部分2lの曲面形状は回転双曲面
Aからわずかに変位させた所定の曲面形状にする。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a multi-beam antenna that forms antenna beams in two different directions using one antenna. (Prior Art) As a multi-beam antenna that forms antenna beams in two different directions using one antenna, for example, the one shown in FIG. 6 is known. In Figure 6,
Reference numeral 13 denotes a reflecting mirror, and this reflecting mirror 3 is a part of a paraboloid of revolution having a straight line 43 as its central axis of rotation, and is formed by a curved surface at an appropriate portion outside the central axis of rotation 43. And 1
The secondary radiators 3l and 32 are arranged at appropriate distances apart from each other in the vicinity of the focal point F of the paraboloid of revolution that exists on the central axis of rotation 43, and emit radio waves to the reflecting mirror 13, respectively. As a result, radio waves are emitted from the reflecting mirror 13 in two different directions. This type of multi-beam antenna was developed to enable simultaneous communication with two satellites in geostationary orbit, for example. (Problems to be Solved by the Invention) However, the conventional multi-beam antenna shown in FIG. 6 has the following problems. First, in order to increase the deviation of the vinyl radiated from the reflecting mirror 13, it is necessary to widen the arrangement interval between the primary radiators 31 and 32, but this will cause the arrangement positions to move away from the focal point F. Disturbance occurs in the wavefront at the aperture of the reflecting mirror 13, and the antenna gain decreases. In addition, the reflecting mirror 13 is made of a curved surface of a paraboloid of rotation at an appropriate portion with the central axis of rotation 43 removed, and has a primary radiator (31, 32).
is placed near the focal point F on the center axis of rotation 43, so it is an offset antenna type that uses a paraboloid of revolution asymmetrically, as shown in FIG. 7(a). As a result, even if an axially symmetrical beam is emitted from the primary radiator (31, 32), the center axis of the corner (beam center axis>7) that looks from the focal point F to the peripheral end of the reflector l3 is A deviation occurs between the reflected light beam (the central axis of the beam) 6 and the central axis of the aperture (the straight line passing through the center of the outer circle projected by the reflecting mirror 13) 5. Therefore, as shown in FIG. 7(b), The electric field vector at the aperture of the reflecting mirror 13 is bent, and the radio waves emitted from the reflecting mirror 13 include not only the electric field in the y-axis direction (main polarization) but also the electric field in the X-axis direction (cross polarization). As a result, crosstalk will occur in communications using the orthogonal polarization system.The present invention was made in view of this problem, and its purpose is to improve An object of the present invention is to provide a multi-beam antenna that can reduce the decrease in aperture phase efficiency and reduce the bias that occurs in the aperture electric field distribution. (Means for solving the problems) Achieving the above objects. In order to achieve this, the multi-beam antenna of the present invention has the following structure.That is, the multi-beam antenna of the present invention has first and second paraboloids each consisting of a portion of the first and second paraboloids of revolution. one main reflecting mirror in which the partial main reflecting mirrors are joined such that the rotation center axes of the first and second rotation paraboloids intersect; a sub-reflector provided between the first focal point of the object surface and the second focal point of the paraboloid of rotation and the main reflector;
first and second beams that emit radio waves toward the sub-reflector;
a primary radiator; and the main reflecting mirror radiates the reflected radio waves of the sub-reflecting mirror in two different directions. The first partial sub-reflector includes a first partial sub-reflector on the reflecting mirror side, a second partial sub-reflector on the second partial main reflector side, and a central portion connecting the first and second partial reflectors; The curved surface shape of each of the first and second partial sub-reflectors is designed to correct or reduce a phase error when the reflected radio waves of the partial sub-reflector are radiated through the partial main reflector on the side of the partial sub-reflector. On the other hand, the curved surface shape of the central portion is a third curved surface formed of a portion of each of the first and second hyperboloids of revolution, the focal position of one of which coincides with the first and second focal positions, respectively. and a fourth partial sub-reflector; and the first and second primary radiators are formed of the first and second primary radiators existing between the main reflector and the sub-reflector. It is characterized by being placed at the focal point of the other of the hyperboloids of rotation. (Function) Next, the function of the multi-beam antenna of the present invention configured as described above will be explained. For example, the emitted radio waves from the first primary radiator placed at the other focal point of the first rotational hyperboloid illuminate the center of the sub-reflector and the second partial sub-reflector. The central part is the first
It consists of a curved surface that joins the third and fourth partial sub-reflectors, each of which is a part of the second hyperboloid of rotation, but if both can be regarded as approximately equal curved surfaces, it is possible to irradiate the central part. The radio waves are reflected as if they were emitted from one focal point of the first hyperboloid of rotation, that is, the first focal point of the first paraboloid of revolution, toward the first partial main reflecting mirror. Since it reaches the first partial main reflector, the first partial main reflector radiates the incident radio wave in a direction parallel to the center axis of rotation of the first paraboloid of revolution. At this time, all optical path lengths are constant. Furthermore, the radio waves irradiated on the second partial sub-reflector are reflected as if they were emitted from the first focal point toward the second partial main reflector and reach the second partial main reflector; The curved shape of the second partial sub-reflector is set so as to correct or reduce the phase error when the reflected radio waves of the partial sub-reflector are radiated via the second partial main reflector, that is, Since the optical path length is set to be constant,
The reflected radio waves from the second partial main reflecting mirror are radiated in a direction parallel to the central axis of rotation of the first paraboloid of revolution without reducing the aperture phase efficiency due to phase error as in the conventional case. .. The above also applies to the second primary radiator placed at the other focal point of the second hyperboloid of rotation (in this case, the central part and the first partial sub-reflector are targeted). The light is emitted from the main reflecting mirror in a direction parallel to the second rotation center axis. What should be noted here is that although the central part is shared by two primary radiators, no phase error occurs here even though it is a hyperboloid of rotation. In other words, the sub-reflector simultaneously corrects the phase error that occurs in the main reflector in the two radio wave emission directions. In addition, since the sub-reflector is generally a hyperboloid of rotation, the deviation of the beam center axis due to this cancels out the deviation of the beam center axis due to the paraboloid of revolution, that is,
It is possible to correct the bias in the aperture electric field distribution and improve the cross-polarization characteristics of the antenna. As described above, according to the multi-beam antenna of the present invention, since the sub-reflector that is approximately a rotational hyperboloid is interposed, the decrease in aperture phase efficiency can be reduced or improved, and cross-polarization characteristics can be improved. be able to. <<Example>> Hereinafter, an example of the present invention will be described with reference to the attached drawings. Figures 1 and 2 show a multi-beam antenna according to an embodiment of the present invention. This multi-beam antenna includes a main reflector 1, two primary radiators 31 and 32, and one sub-reflector 2. The main reflecting mirror 1 rotates a partial main reflecting mirror 11 made up of a part of a paraboloid of revolution A and a partial main reflecting mirror 12 made of a part of a paraboloid of revolution B about the central axis of rotation 41 of the paraboloid of revolution A. Is it joined along the joining boundary line 14 so that the rotation center axis 42 of the paraboloid B intersects? It is. The sub-reflector 2 is a partial sub-reflector 21 of the partial main reflector 12@
And, partial principal reflex! It consists of a partial sub-reflector 24 on the ilill side and a central part 25 that connects both. Each of the partial sub-reflectors 21 and 24 has a curved surface shape set as described below. Moreover, the curved surface shape of the central portion 25 consists of two different partial sub-reflectors 22 and 23, which are made up of parts of a hyperboloid of rotation A and a hyperboloid of rotation B, with the convex side being the main reflector it'l! It consists of a curved surface joined by a joining boundary line 8 toward l. Of the two focal points of the hyperboloid of revolution A, the position of the focal point on the concave side (i.e., one focal point) coincides with the focal position F of the paraboloid of revolution A, and the focal point on the convex side (
That is, the first primary radiator 3 is placed at the position of F1' (the other focal point).
1 is provided, and radiates radio waves toward the sub-reflector 2. Similarly, of the two focal points of the hyperboloid of revolution B, the position of the focal point on the concave side (i.e., one focal point) coincides with the focal point position Fb of the paraboloid of rotation B, and the focal point on the convex side (i.e., the other focus of) F
A second primary radiator 32 is provided at the position l,' and emits radio waves toward the sub-reflector 2. next,
The method for determining the curved shape of the sub-reflector 2 will be explained with reference to FIGS. 3 and 4. First, FIG. 3 shows a portion of the sub-reflection a2 that receives radio wave radiation from the primary radiator 3l (referred to as sub-reflection fl2'). Now, assume that the entire part (sub-reflector 2') is a hyperboloid of revolution A with F. as the concave focal point and F1' as the convex focal point. Then, the light emitted from the focal point F.' When considering a large number of rays, after these rays are reflected by the sub-reflector 2', they proceed as if they were being emitted from the focal point F. Then, among these rays, partial main reflection #
] (Paraboloid of revolution A) 11 All rays of light incident on the partial main reflecting mirror (paraboloid of revolution A) 11 become parallel rays parallel to the rotation center axis 41, and from the focal point F,' to the secondary The distances from the reflecting mirror (hyperboloid of rotation A) 2' to the plane perpendicular to the rotation center axis 41 are equal. On the other hand, focus F. Among the rays virtually emitted from the rays, the rays incident on the partial main reflecting mirror (paraboloid of revolution B) 12 are reflected by the partial main reflecting mirror (paraboloid of revolution B) 12, and then are approximately aligned with the central axis of rotation. However, the distance from the focal point F&' to the plane perpendicular to the rotation center 141 via the subreflector (hyperboloid of rotation A) 2 is not constant, resulting in a slight error. Therefore, the portion 26 corresponding to the partial main reflecting mirror 11 is the central portion 25, and the curved surface shape of this portion 26 is determined to be a hyperboloid of revolution A. In addition, partial main reflecting mirror 1
The portion 21 corresponding to No. 2 becomes the partial sub-reflector 21, and the curved shape of this portion 2l is a predetermined curved shape slightly displaced from the hyperboloid of rotation A.

つまり、焦点F1から発せられ部分副反射鏡21で反射
された後、部分主反射鏡12で反射され回転中心軸41
に垂直な平面に至る光線の光路長がそれぞれの光線につ
いて等しくなるようにするのである.その結果、回転放
物面Bに基づく位相誤差による能率低下を少なくするこ
とができる.次に、第4図は副反射鏡2のうち、1次放
射器32からの電波放射を受ける部分(副反射鏡2″と
する〉を示す.今、当該部分(副反射鏡2″)全体が、
Fbを凹側焦点、Fb を凸厠焦点とする回転双曲面B
であると仮定する.すると、焦点Fb’から発せられ回
転中心軸42の方向へ放射される光線の経路について第
3図と同様に説明でき、同様に副反射鏡2″曲面形状が
決定できる.即ち、部分主反射鏡12に対応する部分2
7は、前記中央部25となるところであるが、この部分
27の曲面形状は回転双曲面Bと決定する.また、部分
主反射鏡11に対応する部分24は、前記部分副反射鏡
24となるところであるが、この部分24の曲面形状は
回転双曲面Bからわずかに変位させた所定の曲面形状に
する. そして、このように決定した副反射鏡2′と同2″から
1つの副反射鏡2を形戒するのである.即ち、第3図に
示す副反射鏡2′における部分主反射鏡11に対応する
部分26と、第4図に示す副反射鏡2″における部分主
反射鏡12に対応する部分27は前記中央部25となる
ところであるから、相互に重ね合わせて主反射鏡1の接
合境界線l4と対応する接合境界線8で切断し、その切
断端部を互いに継ぎ合わせるのである.部分主反射鏡1
1に対応する部分26のうち残存する部分が前記部分副
反射鏡22となり、部分主反射鏡12に対応する部分2
7のうち残存する部分が前記部分副反射鏡23となるこ
とが解る.ここで、回転双曲面Aと同Bは曲面形状が異
なるが、回転双曲面Aおよび同Bの中心軸の傾き角β(
第2図)を適当に選べば2つの回転双曲面を部分副反射
鏡22と同23の範囲内で近似的に等しい曲面とするこ
とができ、1つの副反射鏡を2つのビーム放射方向に対
して共用することができることになる. 次いで、第5図を参照して交差偏波抑圧の原理を説明す
る.第5図(a)において、焦点F1から発せられるビ
ームの中心軸61(同図で焦点F,′から副反射鏡2を
見込む角2θ1の中心軸)の副反射鏡2による反射光の
ビーム中心軸62は、焦点F.から主反射鏡1を見込む
角2θ2の中心軸52よりも同図で上開となっている.
即ち、同図でθ,〉θ4となる.これを第7図と比べれ
ばわかるように、回転双曲面による軸ずれ(θ,−θ4
)の方向は第7図に示す回転放物面による軸ずれの方向
と逆向きである.よって、軸ずれを軽減し、ビーム中心
軸62の光線の主反射鏡1による反射光のビーム中心軸
63が開口の中心軸53と一致させることができる.そ
の結果、主反射鏡1の開口面電界分布は第5図(b)に
示す如くになり、電界ベクトルの曲り(第7図(b)参
照)が補正され、交差偏波特性が改善されることになる
. 本発明によるマルチビームアンテナでは主反射鏡1が回
転放物面であり、副反射鏡2は概ね回転双曲面であるの
で、主反射鏡1と副反射鏡2との位置関係を適切にする
ことによって交差偏波特性を改善できることが理解でき
る. (発明の効果) 以上説明したように、本発明のマルチビームアンテナに
よれば、主反射鏡で電波放射をする際に生ずる位相誤差
を予め補正できる副反射鏡を主反射鏡と1次放射器との
間に介在させたので、開口面位相能率の低下を軽減ない
しは改善できる.また、副反射鏡が概ね回転双曲面とな
っているので、主反射鏡によって生ずる開口面分布の偏
りを補正でき交差偏波発生量の少ないマルチビームアン
テナが実現できる効果がある.
That is, the light is emitted from the focal point F1, is reflected by the partial sub-reflector 21, is reflected by the partial main reflector 12, and is reflected by the rotation center axis 41.
The optical path length of each ray to the plane perpendicular to is made equal for each ray. As a result, efficiency degradation due to phase errors based on the paraboloid of revolution B can be reduced. Next, FIG. 4 shows the part of the sub-reflector 2 that receives radio wave radiation from the primary radiator 32 (referred to as the sub-reflector 2''). but,
Hyperboloid of revolution B with Fb as the concave focus and Fb as the convex focus
Assume that Then, the path of the light beam emitted from the focal point Fb' and radiated in the direction of the rotation center axis 42 can be explained in the same way as in FIG. Part 2 corresponding to 12
7 is the central portion 25, and the curved surface shape of this portion 27 is determined to be a hyperboloid of revolution B. Further, the portion 24 corresponding to the partial main reflecting mirror 11 becomes the partial sub-reflecting mirror 24, and the curved shape of this portion 24 is made into a predetermined curved shape slightly displaced from the hyperboloid of rotation B. Then, one sub-reflector 2 is determined from the sub-reflector 2' and the same 2'' determined in this way. That is, it corresponds to the partial main reflector 11 in the sub-reflector 2' shown in FIG. The portion 26 corresponding to the partial main reflecting mirror 12 in the sub-reflecting mirror 2″ shown in FIG. It is cut along the joining boundary line 8 corresponding to l4, and the cut ends are joined together. Partial main reflector 1
The remaining portion of the portion 26 corresponding to the partial main reflecting mirror 12 becomes the partial sub-reflecting mirror 22, and the remaining portion 26 corresponding to the partial main reflecting mirror 12
It can be seen that the remaining portion of 7 becomes the partial sub-reflector 23. Here, the hyperboloids of rotation A and B have different curved shapes, but the inclination angle β (
(Fig. 2) can be appropriately selected, the two rotation hyperboloids can be made into approximately equal curved surfaces within the range of the partial sub-reflector 22 and the same 23, and one sub-reflector can be aligned in the two beam radiation directions. This means that it can be shared with other users. Next, the principle of cross-polarization suppression will be explained with reference to FIG. In FIG. 5(a), the beam center of the beam reflected by the sub-reflector 2 is the central axis 61 of the beam emitted from the focal point F1 (the central axis of the angle 2θ1 looking into the sub-reflector 2 from the focus F,' in the figure). Axis 62 is the focal point F. In the same figure, it opens upward from the central axis 52 of the angle 2θ2 from which the main reflecting mirror 1 is viewed.
That is, in the same figure, θ,〉θ4. As can be seen by comparing this with Figure 7, the axis deviation (θ, −θ4
) is opposite to the direction of axis deviation due to the paraboloid of revolution shown in Figure 7. Therefore, the axis deviation can be reduced, and the beam center axis 63 of the light reflected by the main reflecting mirror 1 of the beam center axis 62 can be made to coincide with the center axis 53 of the aperture. As a result, the aperture electric field distribution of the main reflecting mirror 1 becomes as shown in Fig. 5(b), the curvature of the electric field vector (see Fig. 7(b)) is corrected, and the cross-polarization characteristics are improved. That will happen. In the multi-beam antenna according to the present invention, the main reflecting mirror 1 is a paraboloid of revolution, and the sub-reflecting mirror 2 is approximately a hyperboloid of rotation, so the positional relationship between the main reflecting mirror 1 and the sub-reflecting mirror 2 must be made appropriate. It can be seen that cross-polarization characteristics can be improved by (Effects of the Invention) As explained above, according to the multi-beam antenna of the present invention, the sub-reflector that can pre-correct the phase error that occurs when the main reflector emits radio waves is connected to the main reflector and the primary radiator. Since it is interposed between the aperture surface and the aperture surface, the decrease in aperture phase efficiency can be reduced or improved. In addition, since the sub-reflector is approximately a rotational hyperboloid, the bias in the aperture distribution caused by the main reflector can be corrected, and a multi-beam antenna with less cross-polarization generation can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るマルチビームアンテナ
の概念構成図、第2図は実施例マルチビームアンテナの
説明図、第3図および第4図は副反射鏡の曲面形状の決
定方法の説明図、第5図は交差偏波抑圧効果の原理説明
図、第6図は従来のマルチビームアンテナの概念構戒図
、第7図は従来例アンテナにおける交差偏波発生の説明
図である.
Fig. 1 is a conceptual configuration diagram of a multi-beam antenna according to an embodiment of the present invention, Fig. 2 is an explanatory diagram of the multi-beam antenna of the embodiment, and Figs. 3 and 4 are methods for determining the curved shape of the sub-reflector. 5 is an explanatory diagram of the principle of the cross-polarization suppression effect, FIG. 6 is a conceptual diagram of a conventional multi-beam antenna, and FIG. 7 is an explanatory diagram of generation of cross-polarized waves in a conventional antenna. ..

Claims (1)

【特許請求の範囲】[Claims] 第1および第2の回転放物面それぞれの一部からなる第
1および第2の部分主反射鏡を第1および第2の回転放
物面それぞれの回転中心軸が交差するように接合した1
つの主反射鏡と;前記それぞれの回転中心軸上に存在す
る第1の回転放物面の焦点(第1の焦点)位置および第
2の回転放物面の焦点(第2の焦点)位置と前記主反射
鏡との間に設けられる副反射鏡と;前記副反射鏡へ向け
て電波放射を行う第1および第2の1次放射器と;を備
え、主反射鏡が副反射鏡の反射電波を互いに異なる2方
向へ放射するようにしたマルチビームアンテナであって
;前記副反射鏡は、前記第1の部分主反射鏡側の第1の
部分副反射鏡と前記第2の部分主反射鏡側の第2の部分
副反射鏡と該第1および第2の部分反射鏡を連接する中
央部とからなり、第1および第2の部分副反射鏡それぞ
れの曲面形状は当該部分副反射鏡の反射電波がその部分
副反射鏡側の前記部分主反射鏡を経て放射されるときの
位相誤差を補正ないしは軽減するように設定してある一
方、中央部の曲面形状は一方のそれぞれの焦点位置が前
記第1および第2の焦点位置とそれぞれ一致する第1お
よび第2の回転双曲面それぞれの一部からなる第3およ
び第4の部分副反射鏡を接合した曲面からなり;かつ、
前記第1および第2の1次放射器は前記主反射鏡と前記
副反射鏡の間に存在する前記第1および第2の回転双曲
面それぞれの他方の焦点位置にそれぞれ配置してあるこ
と;を特徴とするマルチビームアンテナ。
A first and second partial main reflecting mirrors each formed of a part of the first and second paraboloids of revolution are joined together so that the central axes of rotation of the first and second paraboloids of revolution intersect with each other.
a focal point (first focal point) position of a first paraboloid of revolution and a focal point (second focal point) position of a second paraboloid of revolution existing on the respective rotational central axes; a sub-reflector provided between the main reflector; and first and second primary radiators that emit radio waves toward the sub-reflector; A multi-beam antenna configured to radiate radio waves in two different directions; the sub-reflector includes a first partial sub-reflector on the first partial main reflector side and a second partial main reflector on the side of the first partial main reflector; It consists of a second partial sub-reflector on the mirror side and a central part that connects the first and second partial sub-reflectors, and the curved shape of each of the first and second partial sub-reflectors is the same as that of the partial sub-reflector. It is set to correct or reduce the phase error when the reflected radio wave is emitted through the partial main reflector on the side of the partial sub-reflector, while the curved shape of the central part is set to adjust the focal position of each of the is a curved surface joined to third and fourth partial sub-reflectors each made of a portion of each of the first and second hyperboloids of revolution that coincide with the first and second focal positions, respectively; and
the first and second primary radiators are respectively arranged at the other focal position of the first and second hyperboloids of rotation that exist between the main reflecting mirror and the sub-reflecting mirror; A multi-beam antenna featuring
JP18706389A 1989-07-19 1989-07-19 Multi-beam antenna Pending JPH0352307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18706389A JPH0352307A (en) 1989-07-19 1989-07-19 Multi-beam antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18706389A JPH0352307A (en) 1989-07-19 1989-07-19 Multi-beam antenna

Publications (1)

Publication Number Publication Date
JPH0352307A true JPH0352307A (en) 1991-03-06

Family

ID=16199503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18706389A Pending JPH0352307A (en) 1989-07-19 1989-07-19 Multi-beam antenna

Country Status (1)

Country Link
JP (1) JPH0352307A (en)

Similar Documents

Publication Publication Date Title
JPH0352682B2 (en)
EP0275062B1 (en) Multibeam antenna
US5136294A (en) Multibeam antenna
JPS59143405A (en) Multibeam antenna
JPH0352307A (en) Multi-beam antenna
JPH0612853B2 (en) Multi-beam antenna
JPH0543201B2 (en)
JPH0388502A (en) Multi-beam antenna
JP2572799B2 (en) Mirror modified double reflector antenna
JPS63109603A (en) Multi-beam antenna
JPS63173404A (en) Multi-beam antenna
JPS62154905A (en) Multibeam antenna
JPH0473881B2 (en)
JP2643560B2 (en) Multi-beam antenna
JPH0352244B2 (en)
JP3034262B2 (en) Aperture antenna device
JPS5840905A (en) Multibeam antenna
JPH11317617A (en) Spherical mirror antenna device
JP3149432B2 (en) Multi-beam antenna
JPH09232861A (en) Reflector antenna
JP3668913B2 (en) Reflector antenna
JPH0347764B2 (en)
JPH07101813B2 (en) Antenna device
JPH053762B2 (en)
JPH0775285B2 (en) Double reflector antenna device