JPH0351775A - Method for detecting water tree deterioration of power cable - Google Patents

Method for detecting water tree deterioration of power cable

Info

Publication number
JPH0351775A
JPH0351775A JP18822189A JP18822189A JPH0351775A JP H0351775 A JPH0351775 A JP H0351775A JP 18822189 A JP18822189 A JP 18822189A JP 18822189 A JP18822189 A JP 18822189A JP H0351775 A JPH0351775 A JP H0351775A
Authority
JP
Japan
Prior art keywords
water tree
deterioration
voltage
power cable
tree deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18822189A
Other languages
Japanese (ja)
Inventor
Yoshio Tsunoda
角田 美伯
Masayoshi Nakagawa
雅善 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP18822189A priority Critical patent/JPH0351775A/en
Publication of JPH0351775A publication Critical patent/JPH0351775A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately detect water tree deterioration by removing the effect of a local battery by monitoring the transmission voltage of a power cable and detecting the water tree deterioration from the change degree of DC component quantity accompanying the change of the transmission voltage. CONSTITUTION:A voltage measuring device 3 for monitoring the transmission voltage to a power cable 1 is connected between a conductor L and the earth. In a cable wherein no water tree deterioration is present, there is no change in the DC component quantity measured by a measuring device 2 even when transmission voltage changes. However, in a cable wherein water tree deterioration is present, the DC component quantity is changed corresponding to deterioration and, therefore, the value of the measuring device 3 and the DC component quantity of the measuring device obtained when the transmission voltage boosts or drops by the load change of one day are measured and the measured values are compared with each other. By this method, even when a local battery is generated between an anti-corrosion layer and the earth, water tree deterioration can be accurately detected.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電力ケーブル、特にCvケーブルと称される
架橋ポリエチレン電力ケーブルの水トリ−劣化を検出す
るための電力ケーブルの水トリ−劣化検出方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to water tree deterioration detection of power cables for detecting water tree deterioration of power cables, particularly cross-linked polyethylene power cables called Cv cables. It is about the method.

[従来の技術] 一般的に、電力ケーブルは布設後の経年変化により電気
絶縁体の絶縁性能が低下する。特に、Cvケーブルでは
架橋ポリエチレン絶縁体に樹状の亀裂が生じ、この亀裂
に水分が侵入する所謂水トリ−の発生が絶縁劣化の主な
原因であることが知られている。このような絶縁性能の
低下は、放置すると進展して早晩大きな絶縁破壊事故に
つながる虞れがある。従って、ケーブルの絶縁抵抗の変
化を把握し、劣化を早期に発見することが極めて重要で
ある。このため、従来から種々の絶縁測定方法が知られ
ているが、特に近年では測定時に送電を停止することな
く活線状態で診断する方法が幾つか提案されており、状
態監視も常時可能である等の有利な点が多いため注目さ
れている。
[Prior Art] Generally, the insulation performance of the electric insulator of a power cable deteriorates due to aging after installation. In particular, it is known that in Cv cables, dendritic cracks occur in the crosslinked polyethylene insulator, and the occurrence of so-called water trees, in which water enters the cracks, is the main cause of insulation deterioration. If left untreated, such deterioration in insulation performance may progress and sooner or later lead to a major dielectric breakdown accident. Therefore, it is extremely important to understand changes in cable insulation resistance and discover deterioration early. For this reason, various insulation measurement methods have been known for a long time, but in recent years in particular, several methods have been proposed for diagnosing live wires without stopping power transmission during measurement, making it possible to constantly monitor the condition. It is attracting attention because of its many advantages.

このような方法として、従来例えば特開昭59−202
075号公報等に開示されているように水トリ−の電流
整流作用を利用したものが提案されている。第3図はこ
の方法の原理的な説明図であり、水トリ−劣化ケーブル
検査時の等価電気回路を示している。三相電線路を構成
する電力ケープル1は三相交流電源Pにより活線状態と
されている。また、電力ケーブル1の導体りには3相の
うちの1相の電圧が加えられており、導体り以外のケー
ブル導体は省略されている。この三相電線路には、接地
用変圧器GPTが接続されその中性点は接地されている
。ここで、電力ケーブル1において導体りと遮蔽層Sの
間の絶縁層■に水トリ−が生じている場合には、導体り
と遮蔽層S間には静電容量Ciによる交流結合に加えて
水トリ−による整流部りと直流抵抗Riによる直流結合
が生ずる。この整流部り及び直流抵抗Riは、水トリ−
の発生方向及び体積と長さの特性量であるとされ、この
ため従来方法では遮蔽層Sと大地との間に低インピーダ
ンスの測定器2を接続し、流れる接地線電流11の直流
成分を測定することにより水トリ−による劣化状況を評
価している。
Conventionally, as such a method, for example, Japanese Patent Application Laid-Open No. 59-202
As disclosed in Japanese Patent No. 075, etc., a device utilizing the current rectification effect of a water tree has been proposed. FIG. 3 is an explanatory diagram of the principle of this method, and shows an equivalent electric circuit when inspecting a deteriorated cable in a water tree. A power cable 1 constituting a three-phase electric line is brought into a live state by a three-phase AC power source P. Further, the voltage of one of the three phases is applied to the conductor of the power cable 1, and cable conductors other than the conductor are omitted. A grounding transformer GPT is connected to this three-phase electric line, and its neutral point is grounded. Here, if a water tree occurs in the insulating layer (2) between the conductor and the shielding layer S in the power cable 1, in addition to the AC coupling due to the capacitance Ci between the conductor and the shielding layer S, A rectifier by the water tree and a DC coupling by the DC resistance Ri occur. This rectifier and DC resistance Ri are
Therefore, in the conventional method, a low impedance measuring device 2 is connected between the shielding layer S and the earth to measure the DC component of the flowing ground line current 11. By doing so, we are evaluating the state of deterioration caused by water trees.

[発明が解決しようとする課題] しかしながら、電力ケーブルには遮蔽層Sの外側に絶縁
ビニル等から成る防食層Cが設けられており、実際に大
地に埋設するなどして布設された場合には、遮蔽層Sと
大地間の防食層Cの絶縁抵抗Rcが問題となる。防食層
Cもまた絶縁層重と同様に布設後の経年変化により劣化
し、絶縁抵抗Reが低下するという問題点を有している
が、むしろ一般的には防食層Cの劣化のほうが絶縁層I
の劣化よりも激しい場合が多い、また、防食層Cと大地
との接触部分では界面に電荷が誘起される所謂局部電池
が発生する現象が知られており1局部電池の起電力Ec
は絶縁抵抗Rcと直列に遮蔽層Sと大地間に与えられる
ことになる。この現象が起きた場合には、遮蔽層S、絶
縁抵抗Re、起電力Ec、測定器2、遮蔽層Sの閉路に
起電力Ecによる電流12が流れる。起電力Ecは導体
りに印加された交流電圧には無関係であるが、劣化によ
り絶縁抵抗Reが低下すれば電流12は増大する。従っ
て、測定器2によって接地線電流11の直流分を正しく
測定することは困難となり、活線状態の電力ケーブル1
では水トリ−劣化の正確な診断は不可能になるという問
題がある。
[Problems to be Solved by the Invention] However, power cables are provided with an anti-corrosion layer C made of insulating vinyl etc. on the outside of the shielding layer S, and when actually laid by being buried in the ground, , the insulation resistance Rc of the anticorrosion layer C between the shielding layer S and the ground becomes a problem. Similarly to the weight of the insulating layer, the anti-corrosion layer C also deteriorates over time after installation, resulting in a decrease in insulation resistance Re. However, in general, the deterioration of the anti-corrosion layer C is worse than the deterioration of the insulating layer. I
In addition, it is known that a so-called local battery occurs where electric charge is induced at the interface where the anticorrosive layer C contacts the earth, and the electromotive force Ec of one local battery is
is applied between the shielding layer S and the ground in series with the insulation resistance Rc. When this phenomenon occurs, a current 12 due to the electromotive force Ec flows in a closed circuit between the shielding layer S, the insulation resistance Re, the electromotive force Ec, the measuring device 2, and the shielding layer S. The electromotive force Ec is unrelated to the AC voltage applied to the conductor, but if the insulation resistance Re decreases due to deterioration, the current 12 increases. Therefore, it is difficult to accurately measure the DC component of the ground line current 11 with the measuring device 2, and the power cable 1
However, there is a problem in that accurate diagnosis of water tree deterioration is impossible.

ところで、電力ケーブルによる送配電を行う際には、需
要側における需要量の変動即ち負荷変動に伴って送電電
圧は昇降する。つまり、例えば1日の内、一般的に日中
には需要量が多く負荷は大となって送電電圧は降下する
傾向を示し、夜間には需要量が少なく負荷は小となり送
電電圧は上昇する傾向となる。この変動は電力需要側に
とって好ましいものではなく、電力供給側ではこの電圧
値を常時監視・記録し、例えば±5%等の所定の範囲内
に収まるように発電電力量等を調整して対処する場合が
通常である。この電圧変動を全く無くすることは困難で
あって、また需要側が用いる各電力機器も上述の所定範
囲内での電圧変動が考慮されており、実用的にはその程
度の電圧変動が存在している。
By the way, when transmitting and distributing power using power cables, the power transmission voltage increases and decreases in accordance with fluctuations in demand on the demand side, that is, fluctuations in load. In other words, for example, during the day, demand is generally high and the load is large, and the transmission voltage tends to drop, while at night, the demand is low and the load is small, causing the transmission voltage to rise. It becomes a trend. This fluctuation is not favorable for the power demand side, and the power supply side constantly monitors and records this voltage value, and deals with it by adjusting the amount of generated power, etc., so that it stays within a predetermined range, such as ±5%. The case is normal. It is difficult to completely eliminate this voltage fluctuation, and each power equipment used by the demand side is designed to handle voltage fluctuations within the above-mentioned predetermined range. There is.

本発明の目的は、上述の事実を考慮し、布設ケーブルの
防食層と大地との間に局部電池の効果が生じた場合でも
、水トリ−劣化の検出を正確に行える電力ケーブルの水
トリ−劣化検出方法を提供することにある。
In view of the above-mentioned facts, it is an object of the present invention to provide a water tree system for power cables that allows accurate detection of water tree deterioration even when a local battery effect occurs between the corrosion protection layer of the installed cable and the ground. An object of the present invention is to provide a deterioration detection method.

[課題を解決するための手段] 上記の目的を達成するために、本発明に係る電力ケーブ
ルの水トリ−劣化検出方法においては、活線状態にある
電力ケーブルの遮蔽層と大地との間に流れる電流のうち
の直流成分を検出して前記電力ケーブルの水トリ−劣化
を検知する方法において、前記電気ケーブルへの送電電
圧を監視し、該送電電圧の変化に伴う前記直流成分量の
変化度合から前記水トリ−劣化を検知することを特徴と
するものである。
[Means for Solving the Problems] In order to achieve the above object, in the method for detecting water tree deterioration of a power cable according to the present invention, there is provided In the method of detecting water tree deterioration of the power cable by detecting a DC component of the flowing current, the power transmission voltage to the power cable is monitored, and the degree of change in the amount of the DC component due to a change in the power transmission voltage is The present invention is characterized in that the deterioration of the water tree is detected from the above.

[作用] 上記の構成を有する電力ケーブルの水トリ−劣化検出方
法は、送電電圧を監視することにより電圧の昇降を知見
し、この送電電圧の変動によって接地線電流中の直流成
分量がどの程度変化したかにより水トリ−劣化の具合を
検知するものである。即ち、水トリ−が存在しないケー
ブルでは送電電圧に変動があっても直流成分量には変化
はないが、水トリ−が存在するケーブルでは劣化の具合
に応じて直流成分量が変化するので、送電電圧値が異な
るときに直流成分量をそれぞれ測定し、これらの測定値
を比較することによって水トリ−劣化が検知できる。
[Operation] The water tree deterioration detection method for power cables having the above configuration detects the rise and fall of the voltage by monitoring the power transmission voltage, and determines the amount of DC component in the ground wire current due to fluctuations in the power transmission voltage. The degree of deterioration of the water tree is detected based on the change. In other words, in a cable without a water tree, the amount of DC component does not change even if the transmission voltage fluctuates, but in a cable with a water tree, the amount of DC component changes depending on the degree of deterioration. Water tree deterioration can be detected by measuring the DC component amount when the power transmission voltage values are different and comparing these measured values.

[実施例] 本発明を第1図、第2図に図示の実施例に基づいて詳細
に説明する。
[Example] The present invention will be explained in detail based on the example illustrated in FIGS. 1 and 2.

第1図は本発明に係る方法を実施するための回路図であ
り、第3図に示した従来方法の場合と同様の回路におい
て、導体りと大地との間に電力ケーブル1への送電電圧
を監視するための電圧測定器3を接続する。なお、電圧
測定器3は各電力ケーブル1に別個に設けて測定しても
よいし、或いは電力供給側において送電電圧を把握する
ために、幾つかの線路について総括的に設けられている
ものをそのまま利用してもよい、更には、接地用変圧器
GPTの低圧側でも送電電圧を知見することができる。
FIG. 1 is a circuit diagram for carrying out the method according to the present invention, in which the voltage transmitted to the power cable 1 is connected between the conductor and the ground in a circuit similar to that in the conventional method shown in FIG. Connect a voltage measuring device 3 for monitoring. Note that the voltage measuring device 3 may be installed separately on each power cable 1 for measurement, or it may be installed on several lines collectively in order to grasp the transmission voltage on the power supply side. It may be used as is, and furthermore, the power transmission voltage can be determined on the low voltage side of the grounding transformer GPT.

この構成において電力供給側が送電を開始すると、導体
りに印加され測定器2で測定される交流電圧は、前述の
ように例えばV±αの所定の許容範囲内で比較的長周期
の変動をすることになる。
In this configuration, when the power supply side starts power transmission, the AC voltage applied to the conductor and measured by the measuring device 2 fluctuates over a relatively long period within a predetermined tolerance range of, for example, V±α, as described above. It turns out.

ここで、局部電池の起電力Ecつまり電流12は前述の
ように導体りに印加された交流電圧に無関係である。一
方、水トリ−の整流作用によって検出される接地線電流
11の直流成分は、印加交流電圧の増加に対して単調に
増加するので、電圧測定器3が異なる電圧値を示す少な
くとも2つの任意の時点で測定器2の電流値を求めれば
、電流12の影響を除くことができる。
Here, the electromotive force Ec of the local battery, that is, the current 12, is independent of the AC voltage applied to the conductor as described above. On the other hand, the DC component of the ground line current 11 detected by the rectifying action of the water tree increases monotonically with respect to the increase in the applied AC voltage. If the current value of the measuring device 2 is determined at this point in time, the influence of the current 12 can be removed.

即ち、電圧測定器3による印加交流電圧値を横軸に、測
定器2による直流電流値を縦軸に示した第2図のような
グラフ図において、水トリ−劣化が全く無いケーブルの
場合には、aのように横軸に平行な直線が得られ、この
場合には直流電流値は電流12に等しくなる。これに対
し水トリ−劣化が存在するケーブルでは、bに示すよう
に印加交流電圧の増加に従って直流電流は単調に増加す
る。また、電圧変動量に対する電流変化量の比率は直流
抵抗Riが小さいケーブルはど、即ち水トリ−劣化が激
しいケーブルはどCのように大きくなる。従って、所定
の許容範囲内の異なる少なくとも2つの交流電圧値にお
ける直流電流値を計測し、これらの直流電流値を比較す
れば水トリ−劣化の有無、程度を的確に判断することが
可能となる0例えば、2つの電流値に差が存在する場合
には水トリ−劣化が存在すると判定でき、更にこれらの
差と印加交流電圧値の差との比率により、水トリ−の程
度を定量的に判断することができる。
That is, in a graph such as that shown in FIG. 2, in which the horizontal axis shows the AC voltage value applied by the voltage measuring device 3 and the vertical axis shows the DC current value measured by the measuring device 2, in the case of a cable with no water tree deterioration, , a straight line parallel to the horizontal axis is obtained like a, and in this case, the DC current value is equal to the current 12. On the other hand, in a cable with water tree deterioration, the DC current increases monotonically as the applied AC voltage increases, as shown in b. Further, the ratio of the amount of current change to the amount of voltage change becomes larger for a cable with a small DC resistance Ri, that is, for a cable that is severely degraded by water tree. Therefore, by measuring the DC current value at at least two different AC voltage values within a predetermined allowable range and comparing these DC current values, it is possible to accurately determine the presence and extent of water tree deterioration. 0 For example, if there is a difference between two current values, it can be determined that water tree deterioration exists, and further, the degree of water tree deterioration can be determined quantitatively based on the ratio of these differences to the difference in applied AC voltage value. can be judged.

なお1以上の実施例において、印加交流電圧の変動は負
荷変動により受動的に起るものとしたが、測定に緊急を
要するような場合には印加電圧の変動を所定の変動許容
範囲内で能動的に起こしてもよい。
In one or more of the embodiments, it is assumed that fluctuations in the applied AC voltage occur passively due to load fluctuations, but in cases where measurement is urgently required, fluctuations in the applied voltage may be actively controlled within a predetermined fluctuation tolerance range. You may wake up.

[発明の効果] 以上説明したように本発明に係る電力ケーブルの水トリ
−劣化検出方法は、局部電池及び防食層の劣化の影響が
除去され、更に絶縁層の絶縁抵抗の大きさを評価できる
ので水トリ−劣化の的確な検出ができ、誤診断による絶
縁破壊事故の発生が防止され、損害の大幅な低減を図る
ことができる。
[Effects of the Invention] As explained above, the method for detecting water tree deterioration of power cables according to the present invention eliminates the influence of deterioration of local batteries and anticorrosive layers, and can further evaluate the magnitude of the insulation resistance of the insulating layer. Therefore, water tree deterioration can be accurately detected, insulation breakdown accidents due to misdiagnosis can be prevented, and damage can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

図面第1図、第2図は本発明に係る電力ケーブルの水ト
リ−劣化検出方法の実施例を示し、第1図は本発明の方
法を実施するための回路構成図、第2図は印加交流電圧
と測定される直流成分のグラフ図であり、第3図は従来
の検出方法を実施するための回路構成図である。 符号1は電力ケーブル、2は測定器、3は電圧測定器、
Lは導体、■は絶縁層、Sは遮蔽層、Cは防食層である
Drawings 1 and 2 show an embodiment of the method for detecting water tree deterioration of power cables according to the present invention. FIG. 3 is a graph diagram of an AC voltage and a measured DC component, and FIG. 3 is a circuit configuration diagram for implementing a conventional detection method. Code 1 is a power cable, 2 is a measuring device, 3 is a voltage measuring device,
L is a conductor, ■ is an insulating layer, S is a shielding layer, and C is a corrosion protection layer.

Claims (1)

【特許請求の範囲】[Claims] 1、活線状態にある電力ケーブルの遮蔽層と大地との間
に流れる電流のうちの直流成分を検出して前記電力ケー
ブルの水トリ−劣化を検知する方法において、前記電気
ケーブルへの送電電圧を監視し、該送電電圧の変化に伴
う前記直流成分量の変化度合から前記水トリ−劣化を検
知することを特徴とする電力ケーブルの水トリ−劣化検
出方法。
1. In a method for detecting water tree deterioration of the power cable by detecting a DC component of the current flowing between the shielding layer of the power cable in a live state and the earth, the power transmission voltage to the power cable is detected. A method for detecting water tree deterioration of a power cable, characterized in that the water tree deterioration is detected from the degree of change in the amount of direct current component caused by a change in the power transmission voltage.
JP18822189A 1989-07-19 1989-07-19 Method for detecting water tree deterioration of power cable Pending JPH0351775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18822189A JPH0351775A (en) 1989-07-19 1989-07-19 Method for detecting water tree deterioration of power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18822189A JPH0351775A (en) 1989-07-19 1989-07-19 Method for detecting water tree deterioration of power cable

Publications (1)

Publication Number Publication Date
JPH0351775A true JPH0351775A (en) 1991-03-06

Family

ID=16219890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18822189A Pending JPH0351775A (en) 1989-07-19 1989-07-19 Method for detecting water tree deterioration of power cable

Country Status (1)

Country Link
JP (1) JPH0351775A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100776438B1 (en) * 2003-12-12 2007-11-16 엘지전자 주식회사 Preventing device for preventing projection television from upsetting
JP2012042422A (en) * 2010-08-23 2012-03-01 Kansai Electric Power Co Inc:The Power cable deterioration determining method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100776438B1 (en) * 2003-12-12 2007-11-16 엘지전자 주식회사 Preventing device for preventing projection television from upsetting
JP2012042422A (en) * 2010-08-23 2012-03-01 Kansai Electric Power Co Inc:The Power cable deterioration determining method

Similar Documents

Publication Publication Date Title
Marzinotto et al. The feasibility of cable sheath fault detection by monitoring sheath-to-ground currents at the ends of cross-bonding sections
CN110954471B (en) Electrochemical corrosion off-line detection and evaluation method for water-blocking buffer layer of high-voltage power cable
CN109917235B (en) Method for detecting conductivity defect of cable buffer layer
CN110596538B (en) Method and system for calculating electrical parameters of power cable
EP0437214B1 (en) Method for diagnosing an insulation deterioration of an electric apparatus
KR100918515B1 (en) Method for measuring earth resistance of a single ground in active state
US20170176510A1 (en) Electrical fault location method
JPH0351775A (en) Method for detecting water tree deterioration of power cable
KR101984432B1 (en) Diagnosis device for monitoring degradation of cable and diagnosis method thereof
CN113567807A (en) Method for detecting current abnormity of power cable metal sheath layer
JP2876322B2 (en) Diagnosis method for insulation deterioration of CV cable
RU2807681C1 (en) METHOD FOR DIAGNOSING CONDITION OF 0.4 kV SUPPLY LINE
JPH063390A (en) Diagnostic method for deterioration of cable
JPH0627766B2 (en) CV cable insulation deterioration diagnosis device
JP4681391B2 (en) Degradation diagnosis method for low-voltage cables
JPS59202073A (en) Diagnosis of insulation deterioration of power cable
JPH062518U (en) Power cable with tree detector
JPH0442779Y2 (en)
JPH0376431B2 (en)
Hartshorn et al. Medium voltage cable predictive diagnostics technique
Hartshorn et al. Assuring cable reliability
JPH0378588B2 (en)
JP2002214273A (en) Breaking inspection circuit for high voltage cable shielding copper tape
JP2019120651A (en) Shield-layer-deterioration determination method and shield-layer-deterioration determination system
CN114578198A (en) Method for detecting leakage current of heat-shrinkable insulating sheath