JPH035168B2 - - Google Patents

Info

Publication number
JPH035168B2
JPH035168B2 JP57193945A JP19394582A JPH035168B2 JP H035168 B2 JPH035168 B2 JP H035168B2 JP 57193945 A JP57193945 A JP 57193945A JP 19394582 A JP19394582 A JP 19394582A JP H035168 B2 JPH035168 B2 JP H035168B2
Authority
JP
Japan
Prior art keywords
optical system
projection optical
refractive power
optotype
examined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57193945A
Other languages
Japanese (ja)
Other versions
JPS5985640A (en
Inventor
Fumio Kondo
Yoshinori Oana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOPUKON KK
Original Assignee
TOPUKON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOPUKON KK filed Critical TOPUKON KK
Priority to JP57193945A priority Critical patent/JPS5985640A/en
Publication of JPS5985640A publication Critical patent/JPS5985640A/en
Publication of JPH035168B2 publication Critical patent/JPH035168B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Description

【発明の詳細な説明】 本発明は、自覚式屈折度測定装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a subjective refractometer.

従来より、屈折度を変換し得るように構成され
た両検眼測定用の1対の矯正光学系を介して屈折
度検査用視標を被検者に見せ、被検者の応答によ
り矯正光学系で屈折度を矯正し、この矯正値によ
り被検眼の屈折度を測定するいわゆる自覚式屈折
度測定装置が知られている。なお、この種の装置
としては遠用屈折測定の際屈折度検査用視標を被
検者から3〜5m程度離して配置し、この屈折度
検査用視標を矯正光学系を介して被検者に視準さ
せ得るように構成したものも知られている。
Conventionally, a refractive power test optotype is shown to the examinee through a pair of corrective optical systems for both ophthalmometric measurements, which are configured to convert the refractive power, and the corrective optical system changes depending on the examinee's response. A so-called subjective refractive power measuring device is known that corrects the refractive power by using the corrected value and measures the refractive power of the eye to be examined. In addition, for this type of device, when performing distance refraction measurement, the refractive power test optotype is placed approximately 3 to 5 meters away from the subject, and this refractive power test optotype is passed through the corrective optical system to the test subject. It is also known that the lens is constructed so that it can be sighted by a person.

しかしながら、このような従来装置においては
遠用屈折測定の際に上記の測定距離が必要なこと
から広い範囲スペースを必要とし、近用屈折測定
の際には測定距離に応じた屈折度検査用視標を配
置する必要があるという欠点があつた。
However, such conventional devices require a wide range of space because the above-mentioned measurement distance is required when measuring distance refraction, and when measuring near refraction, a refractive power test sight corresponding to the measurement distance is required. There was a drawback that it was necessary to place markers.

このような欠点を解消するため、例えば第1図
に示すように屈折度検査用視標P1,P2を投影レ
ンズL1,L2を介して被検眼e1,e2に投影すると共
に、投影レンズL1,L2と被検眼E1,E2との間に
それぞれ矯正光学系q1,q2を介在させた装置が提
案された。なお、符号の添字の1,2は右眼、左
眼をそれぞれ示している。
In order to eliminate such drawbacks, for example , as shown in FIG . , an apparatus was proposed in which corrective optical systems q 1 and q 2 were interposed between projection lenses L 1 and L 2 and eyes E 1 and E 2 to be examined, respectively. Note that subscripts 1 and 2 indicate the right eye and left eye, respectively.

かかる構成によると、遠用屈折測定時には視標
P1,P2からの光束を平行光束にして矯正光学系
q1,q2を通過させ、これにより、視標P1,P2を被
検眼e1,e2に投影するようになつているため。視
標P1,P2は投影レンズL1,L2の焦点位置f1,f2
配置されることとなる。また、視標P1,P2から
の光束の主光線は互いに平行となり、被検者の両
眼視軸は遠用視の状態となる。一方、近用屈折測
定時には例えば眼前の30cmの位置に視標像を形成
し、この視標像によりあたかもその位置に視標が
存するかのように設定して測定を行なうものであ
るが、上記のような装置の構成では視標P1,P2
を光軸に沿つて移動させるような操作をしても被
検者の両眼視軸は平行状態に保たれたままであ
り、実際の近用視の状態をつくり出すことはでき
ない。そのため、近用屈折測定の際には、両眼の
視軸の偏角操作を行なうため、眼前に偏角プリズ
ムを配置し、被検者の視軸が視標像形成位置で合
致するように設定し、これにより両眼視軸の変換
(以下輻輳という)を行なつて近用視の状態をつ
くり出すようにすることが行なわれていた。
According to such a configuration, the optotype is used during distance refraction measurement.
A correction optical system converts the light beams from P 1 and P 2 into parallel light beams.
q 1 and q 2 are passed through, thereby projecting the optotypes P 1 and P 2 onto the eyes e 1 and e 2 to be examined. The optotypes P 1 and P 2 will be placed at focal positions f 1 and f 2 of the projection lenses L 1 and L 2 . Furthermore, the chief rays of the light beams from the optotypes P 1 and P 2 are parallel to each other, and the subject's binocular visual axes are in a far-sighted state. On the other hand, when measuring near refraction, an optotype image is formed at a position of, for example, 30 cm in front of the eyes, and measurements are performed using this optotype image as if the optotype existed at that position. In the configuration of the device, the visual targets P 1 , P 2
Even if the subject's binocular visual axes are kept in a parallel state even if the subject's binocular visual axes are moved along the optical axis, it is not possible to create an actual state of near vision. Therefore, when measuring near refraction, in order to manipulate the declination of the visual axes of both eyes, a declination prism is placed in front of the eyes so that the subject's visual axes match at the target image formation position. This is used to convert the binocular visual axes (hereinafter referred to as convergence) to create a near vision condition.

しかしがら、このような従来の欠点解消手段に
よると近用屈折測定の際逐一偏角プリズムを光路
に挿入しなければならず、しかも近用距離に応じ
てプリズム偏角量を変える必要があり構成上の複
雑さだけでなく、測定能率の悪化を招来させてい
た。また、偏角プリズムの挿入という手段では、
個々の被検者に応じた輻輳状態の実現が容易にな
し得ないという欠点もあつた。
However, with such conventional means of resolving the shortcomings, it is necessary to insert a declination prism into the optical path one by one when measuring near refraction, and it is also necessary to change the amount of prism declination depending on the near distance. In addition to the above-mentioned complexity, this also resulted in deterioration of measurement efficiency. In addition, by inserting a declination prism,
Another drawback was that it was not easy to achieve a convergence state that suited each individual subject.

本件発明は、このような従来装置の欠点を解消
するためになされたものであり、遠用屈折測定は
もとより近用屈折測定の際にも極めて容易かつ適
正な両眼の輻輳状態をつくり出すことができ、自
然視の状態で高精度の屈折度測定が可能な自覚式
屈折度測定装置を提供することを目的とする。
The present invention was made in order to eliminate the drawbacks of the conventional apparatus, and it is possible to extremely easily and appropriately create a convergence state of both eyes not only for distance refraction measurement but also for near refraction measurement. It is an object of the present invention to provide a subjective refractometer that is capable of measuring refractive power with high precision in a state of natural vision.

以下、本件発明の実施例につき第2図および第
3図に基づいて説明する。図において符号1は光
源であり、この光源1からの光束は集光レンズ2
を介して屈折度測定用視標3を照明する。そし
て、この視標3は回転可能に軸支された円板4の
外周部に各種配置されており、測定目的に応じて
選択的に光路内に挿入し得るようになつている。
また、視標3からの光束は1群の投影レンズ5を
介して矯正光学系61,62を通過し被検眼E1,E2
の瞳孔にそれぞれ投影されるようになつている。
ここで、矯正光学系61,62は一対で構成され、
それぞれ回転円板71,72の外周部の適宜位置に
取り付けられたレンズ81,82の選択により屈折
度を変え得るようになつている。こうして、検者
は被検者の応答により回転円板71,72を回転さ
せて適正な矯正屈折度を得るレンズ81,82を光
路に挿入し、その時のレンズ81,82の屈折度値
から被検眼の屈折度測定を行ない得ることとな
る。
Embodiments of the present invention will be described below with reference to FIGS. 2 and 3. In the figure, reference numeral 1 is a light source, and the light flux from this light source 1 is transmitted through the condensing lens 2.
The optotype 3 for refractive power measurement is illuminated through. Various optotypes 3 are arranged on the outer periphery of a rotatably supported disc 4, and can be selectively inserted into the optical path depending on the purpose of measurement.
Furthermore, the light flux from the optotype 3 passes through the correction optical systems 6 1 and 6 2 via a group of projection lenses 5 and is transmitted to the eyes E 1 and E 2 to be examined.
The light is projected onto each pupil of the child.
Here, the correction optical systems 6 1 and 6 2 are configured as a pair,
The refractive power can be changed by selecting lenses 8 1 and 8 2 attached to appropriate positions on the outer peripheries of rotating disks 7 1 and 7 2 , respectively. In this way, the examiner rotates the rotating discs 7 1 and 7 2 according to the test subject's response, inserts the lenses 8 1 and 8 2 into the optical path to obtain an appropriate corrective refractive power, and then inserts the lenses 8 1 and 8 2 into the optical path. The refractive power of the eye to be examined can be measured from the refractive power value.

また、光源1、集光レンズ2および視標3は一
体的に移動可能となつており、例えば視標3を投
影レンズ5の前側焦点位置F0から投影レンズ5
に近づく側へ移動することにより近用屈折測定を
行ない、遠用屈折測定の際には視標3をその前側
焦点位置F0に戻し得るようになつている。
In addition, the light source 1, the condensing lens 2, and the optotype 3 can be moved integrally, and for example, the optotype 3 can be moved from the front focal position F0 of the projection lens 5 to the projection lens 5.
Near refraction measurement is carried out by moving the optotype 3 toward the front side, and the optotype 3 can be returned to its front focal position F 0 during distance refraction measurement.

次に、投影レンズ5を用いた投影光学系および
矯正光学系61,62の配置および光束状態を具体
的データの一例に基づき説明する。なお、図示を
簡略化するため各光学系のレンズ51,81,82
は前側主点位置と後側主点位置とが一致する薄肉
レンズとして第3図は表わされている。
Next, the arrangement and light flux state of the projection optical system using the projection lens 5 and the correction optical systems 6 1 and 6 2 will be explained based on an example of specific data. In addition, in order to simplify the illustration, the lenses 5 1 , 8 1 , 8 2 of each optical system are
FIG. 3 shows a thin lens in which the front principal point position and the rear principal point position coincide with each other.

図において二点鎖線で示された光束M1,M2
遠用屈折測定の場合であり、実線で示された光束
Q1,Q2は近用屈折測定の場合である。この場合、
矯正光学系61,62はOデイオプターの屈折度数
に設定されたものとする。そして、投影レンズ5
の焦点距離Fは200mm、投影レンズ5と矯正光学
系61,62との間隔lは焦点距離Fと同じく200
mmに設定されている。また、矯正光学系61,62
と被検眼E1,E2の角膜位置P1,P2との間隔mは
12mmに設定され、被検者の眼鏡装用位置と同一に
する。
In the figure, the luminous fluxes M 1 and M 2 indicated by two-dot chain lines are for distance refraction measurement, and the luminous flux indicated by a solid line
Q 1 and Q 2 are for near refraction measurement. in this case,
It is assumed that the corrective optical systems 6 1 and 6 2 are set to the refractive power of the O diopter. And the projection lens 5
The focal length F is 200 mm, and the distance l between the projection lens 5 and the correction optical system 6 1 , 6 2 is 200 mm, which is the same as the focal length F.
It is set to mm. In addition, correction optical systems 6 1 , 6 2
The distance m between the corneal positions P 1 and P 2 of the eyes E 1 and E 2 to be examined is
It is set to 12mm and is the same as the position where the subject wears the glasses.

遠用屈折測定の場合、視標3は投影レンズ5の
前側焦点位置F0に配置され、視標3からの光束
M1,M2は投影レンズ5を通過すると互いに平行
な2光線となつて被検眼E1,E2に到達する。な
お、この場合被検眼の屈折度はOデイオプターと
する。
In the case of distance refraction measurement, the optotype 3 is placed at the front focal position F 0 of the projection lens 5, and the light beam from the optotype 3
When M 1 and M 2 pass through the projection lens 5, they become two mutually parallel light rays and reach the eyes E 1 and E 2 to be examined. In this case, the refractive power of the eye to be examined is O diopter.

一方、近用屈折測定の場合、視標3は投影レン
ズ5に向つて移動させ、視標4を投影レンズ5の
前方の近用測定視標位置F0に配置する。これに
より、視標からの2つの主光線は投影レンズ5を
介して輻輳角θで被検眼E1,E2に到達する。こ
れにより、被検者は眼鏡装用位置から前方へ距離
nだけ離れた位置mにあたかも視標3が配置さ
れたごとくいわゆる近用自然視の状態で視準する
ことができる。なお、視標位置0は投影レンズ
5の前方に距離だけ離れた位置にあるが、この
実施例では距離は67mmに設定され、視標3の虚
像位置となる距離nは300mmに設定される。
On the other hand, in the case of near refraction measurement, the optotype 3 is moved toward the projection lens 5, and the optotype 4 is placed at the near measurement optotype position F 0 in front of the projection lens 5. Thereby, the two principal rays from the optotype reach the eyes E 1 and E 2 to be examined through the projection lens 5 at a convergence angle θ. Thereby, the subject can aim in a so-called near natural vision state as if the optotype 3 were placed at a position m that is a distance n forward from the glasses-wearing position. Note that the optotype position 0 is located in front of the projection lens 5 by a distance, but in this embodiment, the distance is set to 67 mm, and the distance n, which is the virtual image position of the optotype 3, is set to 300 mm.

以上の説明は、矯正光学系61,62の屈折度を
Oデイオプターに設定してOデイオプターの被検
眼の測定を行なう場合であるが、勿論他の屈折度
の測定も可能である。
The above explanation deals with the case where the refractive power of the corrective optical systems 6 1 and 6 2 is set to the O diopter and the eye to be examined is measured using the O diopter, but it is of course possible to measure other refractive powers.

以上説明したように、本発明によれば屈折度検
査用視標を両被検眼の瞳孔に投影し得る口径の1
つの投影レンズ系を設け、この投影レンズ系の後
方に両眼用の1対の矯正光学系を配置し、かつ屈
折度検査用視標を光軸に沿つて移動可能に構成し
たので、近用屈折測定時には容易に適正な輻輳状
態をつくり得ることにより遠用近用のいずれの屈
折度測定においても被検者は常に自然視の状態で
検査を受けることができる。また、矯正光学系を
投影レンズ系の後側焦点位置に配置した場合に
は、遠用近用屈折測定のいずれの際にも被検者の
視角は常に一定となり、測定距離に応じて視標を
変更するような必要がなくなり測定能率が向上す
る。
As explained above, according to the present invention, the diameter of the optotype for refractive power testing can be projected onto the pupils of both eyes to be examined.
Two projection lens systems are provided, a pair of corrective optical systems for both eyes are placed behind the projection lens system, and the optotype for refractive power testing is configured to be movable along the optical axis. By easily creating an appropriate convergence state during refraction measurement, the subject can always be examined in a state of natural vision in both distance and near refraction measurements. In addition, if the corrective optical system is placed at the back focal position of the projection lens system, the subject's visual angle will always be constant during both distance and near refraction measurements, and the visual angle will change depending on the measurement distance. There is no need to change the measurement efficiency, which improves measurement efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の自覚式屈折度測定装置を説明す
る概略構成図、第2図は本発明の一実施例を示す
光学系の断面図、第3図はOデイオプターの屈折
度の場合における遠用及び近用屈折測定時の光学
系の光束状態を示す模式図である。 3……屈折度検査用視標、5……投影レンズ、
1,62……矯正光学系、E12……被検眼。
FIG. 1 is a schematic configuration diagram explaining a conventional subjective refractometer, FIG. 2 is a sectional view of an optical system showing an embodiment of the present invention, and FIG. FIG. 3 is a schematic diagram showing the state of the light flux of the optical system during measurement of refraction for vision and near vision. 3... Optotype for refractive power test, 5... Projection lens,
6 1 , 6 2 ... Corrective optical system, E 1 , 2 ... Eye to be examined.

Claims (1)

【特許請求の範囲】 1 被検眼に対して移動可能な屈折度検査用指標
と、該指標からの光束を少なくとも両被検眼の瞳
孔に投影し得る口径に設定された1群の投影光学
系と、該投影光学系の後方に配置された屈折度を
変化し得るように構成された1対の矯正光学系と
から成り、遠用屈折測定時には前記指標を前記投
影光学系の前側焦点位置に配置し、近用屈折測定
時には前記指標を前記投影光学系の光軸に沿いか
つ該投影光学系の前側焦点位置側から該投影光学
系へ近づく側へ移動させるように構成したことを
特徴とする自覚式屈折度測定装置。 2 投影光学系の後側焦点位置に矯正光学系を配
置したことを特徴とする特許請求の範囲第1項記
載の自覚式屈折度測定装置。
[Scope of Claims] 1. A refractive power testing index that is movable with respect to the eye to be examined, and a group of projection optical systems set to an aperture that can project the luminous flux from the index onto at least the pupils of both eyes to be examined. , a pair of corrective optical systems configured to be able to change the refractive power and arranged behind the projection optical system, and the index is placed at the front focal position of the projection optical system during distance refraction measurement. The self-awareness is characterized in that, when measuring near refraction, the index is moved along the optical axis of the projection optical system from the front focal position side of the projection optical system to the side approaching the projection optical system. type refractometer. 2. The subjective refractometer according to claim 1, characterized in that a correction optical system is disposed at the rear focal position of the projection optical system.
JP57193945A 1982-11-06 1982-11-06 Self-conscious refractive index measuring apparatus Granted JPS5985640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57193945A JPS5985640A (en) 1982-11-06 1982-11-06 Self-conscious refractive index measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57193945A JPS5985640A (en) 1982-11-06 1982-11-06 Self-conscious refractive index measuring apparatus

Publications (2)

Publication Number Publication Date
JPS5985640A JPS5985640A (en) 1984-05-17
JPH035168B2 true JPH035168B2 (en) 1991-01-24

Family

ID=16316361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57193945A Granted JPS5985640A (en) 1982-11-06 1982-11-06 Self-conscious refractive index measuring apparatus

Country Status (1)

Country Link
JP (1) JPS5985640A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2684332B2 (en) * 1994-01-17 1997-12-03 株式会社トプコン Subjective optometry device
JPH06277180A (en) * 1994-01-17 1994-10-04 Topcon Corp Subjective optometric apparatus
EP3711654A1 (en) * 2019-03-20 2020-09-23 Essilor International Optometry device for testing an individual's eye and associated method

Also Published As

Publication number Publication date
JPS5985640A (en) 1984-05-17

Similar Documents

Publication Publication Date Title
US3524702A (en) Apparatus for objectively and automatically refracting the eye
CN100391398C (en) Device for measuring aberrations in an eye-type system
US3664631A (en) Cylindrical lens systems for simultaneous bimeridional measurement in a lens measuring instrument
US3495897A (en) Device for measuring the pupillary distance
US3879113A (en) Photo-refractometer and methods for ophthalmic testing of young children
US3602580A (en) Method and optical system for refracting eyes
US5255027A (en) Eye testing device
JP7506965B2 (en) Refraction characteristic measuring device, measuring tool, and refraction characteristic measuring method
US3454331A (en) Optical apparatus for use in fitting spectacles on patient
US20140111764A1 (en) Method and Apparatus for Determining Depth of Focus of an Eye Optical System
US2081969A (en) Instrument for examining the eyes
US6676258B2 (en) Eye characteristic measurement apparatus with speckle noise reduction
JPS60249931A (en) Eye inspector
US3572908A (en) Apparatus for measuring and recording refractive errors of a patient{3 s eye
JPH035168B2 (en)
JP3114819B2 (en) Ophthalmic measurement device
US2114984A (en) Apparatus for the determination of the refraction of the eye
JPH0315446B2 (en)
US3588234A (en) Optical device for moving a luminous target across the eyes
US3778164A (en) Ophthalmometer having alternative viewing measuring systems and including improved contact lens holding means
US2380263A (en) Apparatus for measuring the distance between visual axes of the eyes and for determining vertical inbalance of the eyes or eyeglass lenses
JPH0315448B2 (en)
RU2134530C1 (en) Refractometer
JPH0315447B2 (en)
JPS6155375B2 (en)