JP3114819B2 - Ophthalmic measurement device - Google Patents

Ophthalmic measurement device

Info

Publication number
JP3114819B2
JP3114819B2 JP03270334A JP27033491A JP3114819B2 JP 3114819 B2 JP3114819 B2 JP 3114819B2 JP 03270334 A JP03270334 A JP 03270334A JP 27033491 A JP27033491 A JP 27033491A JP 3114819 B2 JP3114819 B2 JP 3114819B2
Authority
JP
Japan
Prior art keywords
subject
measurement
eye
lens
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03270334A
Other languages
Japanese (ja)
Other versions
JPH0576496A (en
Inventor
郁雄 北尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP03270334A priority Critical patent/JP3114819B2/en
Publication of JPH0576496A publication Critical patent/JPH0576496A/en
Application granted granted Critical
Publication of JP3114819B2 publication Critical patent/JP3114819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、被検者の眼屈折力を測
定する眼科用測定装置、特に被検者の雲霧視状態を得る
為に固視目標を調整する必要のない眼科用測定装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ophthalmologic measuring apparatus for measuring the refractive power of an eye of a subject, and more particularly to an ophthalmologic measuring apparatus which does not require adjustment of a fixation target in order to obtain a cloudy vision state of the subject. It concerns the device.

【0002】[0002]

【従来の技術】被検者の眼屈折力を測定する時に、調節
がいらない様に一般に指標(視力表、或は固視目標等、
以下固視目標とする)を機器本体内に置き、光学的に被
検者の遠点、或は更に遠くに置き、いわゆる雲霧視して
測定することが行われている。
2. Description of the Related Art When measuring the eye refractive power of a subject, an index (a visual acuity chart or a fixation target, etc.) is generally used so that no adjustment is required.
(Hereinafter referred to as a fixation target) is placed in the apparatus main body, optically placed at a far point or further away from the subject, and measurement is performed by so-called cloud vision.

【0003】この場合、被検者一人一人の遠点が異なる
為、前測定を行って、その結果を基に被検者の遠点、或
は更に遠くに固視目標を置いてから測定を行っている。
従って前測定してから、固視目標を被検者の遠点、或は
更に遠くに動かすのに時間がかかっていた。又、固視目
標を被検者の遠点、或は更に遠くに動かす為の機構も必
要であった。
In this case, since the far point of each subject is different, pre-measurement is performed, and based on the result, a fixation target is set at the far point of the subject or further away before measurement. Is going.
Therefore, it takes time to move the fixation target to the far point of the subject or farther after the pre-measurement. In addition, a mechanism for moving the fixation target to the far point of the subject or farther away is required.

【0004】一方、両眼で固視目標を見させる為、被検
者位置決め部(顎受額当部)に赤外光透過で可視光反射
のミラーを配置し、外部の固視目標を視準可能としたも
のは、特開昭55-143129 号、或は特開昭56-60530号にす
でに提案されている。
On the other hand, in order to make the target fixate with both eyes, a mirror that reflects infrared light and transmits visible light is disposed in the subject positioning section (the chin support section), and the external fixation target is viewed. Those which have been made semi-capable have already been proposed in JP-A-55-143129 or JP-A-56-60530.

【0005】[0005]

【発明が解決しようとする課題】しかし、特開昭55-143
129 号、特開昭56-60530号で提案されたものは、外部を
視準するだけであったり、前測定をした後、その結果に
合わせて被検者の遠点、或は更に遠くに固視目標を提示
させ、雲霧させるものであった。
However, Japanese Patent Application Laid-Open No. 55-143
No. 129, the one proposed in JP-A-56-60530, merely collimates the outside, or performs a pre-measurement, and then moves to the far point of the subject or further away according to the result. The fixation target was presented and fogged.

【0006】この為、遠視眼の場合に、外部の有限距離
の固視目標を視準させる場合は、調節して有限距離の固
視目標を見る様になる為、その距離に見合った測定結
果、或はそれに近い結果として測定され、遠視の検出が
困難であった。更に被検者に合わせ、被検者の遠点、或
は雲霧させて固視目標を見させる様にするには、前述し
た様に、固視目標をその位置に動かす様に前測定を行う
必要があり、更にその結果に合わせ固視目標を動かす機
構が必要であり、両眼を同時又は別々に、或は単眼で
も、その機構は複雑になっていた。
For this reason, in the case of a hyperopic eye, when the external fixation target at a finite distance is collimated, it is adjusted to look at the fixation target at a finite distance, so that the measurement result corresponding to the distance is obtained. Or near-measurements, making it difficult to detect hyperopia. Further, in order to make the far-point or cloud of the subject look at the fixation target according to the subject, as described above, perform the pre-measurement to move the fixation target to that position. This necessitates a mechanism for moving the fixation target in accordance with the result, and the mechanism is complicated when both eyes are simultaneously or separately or even with a single eye.

【0007】本発明は斯かる実情に鑑み、両眼視して、
より自然視に近い状態で見ながら、前測定や、前測定の
結果に基づき被検者の遠点、或は更に遠くに固視目標を
提示させる様に動かす為の雲霧機構なしに、又、その被
検者の前測定に合わせてテストレンズ等を掛けさせるこ
となしに、遠視の発見を可能とし、更にある一定値以上
の屈折異常があるかどうかスクリーニングを行うことを
可能とするものである。
[0007] In view of such circumstances, the present invention has two eyes.
While observing in a state closer to natural vision, there is no fog mechanism for moving the subject so as to present the fixation target at the far point of the subject or based on the result of the previous measurement, or Without allowing a test lens or the like to be applied in accordance with the pre-measurement of the subject, it is possible to detect hyperopia, and to screen for a refractive error of a certain value or more. .

【0008】[0008]

【課題を解決するための手段】本発明は、被検眼の眼屈
折力を測定する為の測定本体部を有し、被検者の両眼に
赤外光透過で可視光反射のミラーを被検者位置決め部に
固定し、前記ミラーを介して両眼にて外部指標を視準可
能とし、前記測定本体部と被検眼の間とは別に、前記ミ
ラーと外部指標の間に既知の値のレンズを配置した眼科
用測定装置に於いて、前記既知のレンズのディオプター
値と前記測定本体部からの測定結果とを比較する為の比
較演算部を有することを特徴とするものである。
SUMMARY OF THE INVENTION The present invention is directed to a flexion of a subject's eye.
It has a measurement main body for measuring the bending force, and fixes a mirror of infrared light transmission and visible light reflection to the subject positioning part to both eyes of the subject, and with both eyes through the mirror the external indication to enable collimation, the measuring body and the between of the eye were alternatively arranged lenses known values between the mirror and the external index ophthalmic
Measuring device, the diopter of the known lens
Ratio for comparing the value with the measurement result from the measurement body
A comparison operation unit .

【0009】[0009]

【作用】比較演算部は、測定本体部による被検眼の眼屈
折力測定結果と既知レンズのディオプター値とを比較
し、両者の値の大小の判別を行い、測定結果が小の場合
はそのまま測定を続行し、測定結果が大の場合は再測定
等の表示を行う。
The operation of the comparison unit is caused by the bending of the subject's eye by the measurement main unit.
Comparison of bending force measurement result with diopter value of known lens
Then, the magnitude of both values is determined, and if the measurement result is small, the measurement is continued as it is, and if the measurement result is large, a display such as re-measurement is performed.

【0010】[0010]

【実施例】以下、図面を参照しつつ本発明の一実施例を
説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0011】測定装置本体は、例えば従来より公知のい
ろいろな眼屈折力測定装置を使用することが可能である
ことは勿論であるが、本実施例では特願平2-214811号に
示されたものを用いたものとして説明する。
As the measuring device body, for example, various conventionally known eye refractive power measuring devices can be used, but in the present embodiment, it is disclosed in Japanese Patent Application No. 2-214811. The description will be made assuming that the above is used.

【0012】1は測定光源像を被検眼3の眼底7に投影
する為の投影系であり、2は眼底7により反射された光
束10を受光する為の受光系であり、投影系1及び受光
系2は被検眼3に対向して配置される。
Reference numeral 1 denotes a projection system for projecting a measurement light source image onto the fundus 7 of the eye 3 to be inspected. Reference numeral 2 denotes a light receiving system for receiving the light beam 10 reflected by the fundus 7. The system 2 is arranged to face the subject's eye 3.

【0013】前記投影系1は投影系の光軸と直交し且後
述する遮光部材12のエッジと直交する所要長さのスリ
ット状光源部4a,4b,4c,4dを有し、且該遮光
部材12は矩形形状の孔のある部材であり、該孔の4辺
をエッジ稜線15a,15b,15c,15dとしたも
ので、測定光源4も該稜線15a,15b,15c,1
5dに対応したスリット状光源部4a,4b,4c,4
dが設けられている。更に、該測定光源4からの光束1
1を被検眼3に向けて反射させる為のハーフミラー5か
ら成り、該投影系1は測定光源4からの光束11を瞳孔
6を通して眼底7上に測定光源4の像を形成する様に投
影する。
The projection system 1 has slit-shaped light sources 4a, 4b, 4c, 4d each having a required length perpendicular to the optical axis of the projection system and perpendicular to an edge of a light shielding member 12, which will be described later. Reference numeral 12 denotes a member having a rectangular hole, and four sides of the hole are edge ridge lines 15a, 15b, 15c, and 15d, and the measurement light source 4 also has the ridge lines 15a, 15b, 15c, 1
5d corresponding to the slit-shaped light sources 4a, 4b, 4c, 4
d is provided. Further, the light flux 1 from the measurement light source 4
The projection system 1 projects a light beam 11 from the measurement light source 4 through the pupil 6 onto the fundus 7 so as to form an image of the measurement light source 4. .

【0014】前記受光系2は、対物レンズ8及び受光素
子9から成り、眼底7からの光束10はハーフミラー5
を透過して受光素子9上に導かれる。
The light receiving system 2 comprises an objective lens 8 and a light receiving element 9, and a light beam 10 from the fundus 7 is a half mirror 5.
And is guided onto the light receiving element 9.

【0015】受光素子9は、エリアCCD、撮像管等で
あり、受光素子9の受光面9aは対物レンズ8に関して
被検眼3の瞳孔6と略共役位置に配置される。
The light receiving element 9 is an area CCD, an image pickup tube or the like, and the light receiving surface 9a of the light receiving element 9 is arranged at a position substantially conjugate with the pupil 6 of the eye 3 with respect to the objective lens 8.

【0016】前記受光系2の光路内には、被検眼3の眼
屈折力が基準ディオプター値の場合に測定光像が形成
される位置に、前述の遮光部材12が光軸と垂直な平面
内に配置される。
[0016] The In the optical path of the light receiving system 2, a position eye refractive power of the eye 3 the measurement light source image in the case of the reference diopter value is formed, the aforementioned light-shielding member 12 is perpendicular to the optical axis plane Is placed within.

【0017】光源部4a,4b,4c,4dのうち同一
経線上のものを除き2つを選択し、1箇所ずつ点灯さ
せ、エッジ稜線に対して直角方向、平行な方向について
光量分布、光量分布の傾斜角度を求め、演算を行う。
尚、光源部4a,4b,4c,4dを全て順次点灯させ
て測定を行い、更に同一経線上の測定結果について平均
化すれば、まつ毛の影響、水晶体の濁り等による影響を
ほぼ取り除くことが可能となり、測定制度の向上がはか
れる。
Two of the light source sections 4a, 4b, 4c, 4d are selected except for those on the same meridian, and are lit one by one, and the light quantity distribution and the light quantity distribution in the direction perpendicular and parallel to the edge ridge line. The inclination angle of is calculated, and the calculation is performed.
If the light sources 4a, 4b, 4c, and 4d are all turned on sequentially for measurement, and the measurement results on the same meridian are averaged, the effects of eyelashes and the effects of turbidity of the crystalline lens can be almost eliminated. This will improve the measurement system.

【0018】又、前記受光素子9には演算器13が接続
され、該演算器13は受光素子9の受光状態を各稜線で
のデータをメモリーし、更に演算し、その結果を表示器
14に出力する様になっている。
An arithmetic unit 13 is connected to the light receiving element 9. The arithmetic unit 13 stores the data of the light receiving state of the light receiving element 9 at each ridge line, further calculates the result, and displays the result on the display 14. It is designed to output.

【0019】屈折力、更には乱視の測定は、特願平2-21
4811号に示される様に、例えば2経線及び該2経線の各
々に対して直交する方向の光量分布を測定することで求
められる。
Measurement of refractive power and further astigmatism is described in Japanese Patent Application No. Hei.
As shown in No. 4811, for example, it is obtained by measuring two meridians and a light quantity distribution in a direction orthogonal to each of the two meridians.

【0020】その演算を行うには、瞳像の光量分布は特
願平2-214811号によれば、下式で表される。
According to Japanese Patent Application No. 2-214811, the light quantity distribution of the pupil image is calculated by the following equation.

【0021】[0021]

【数1】fs(xp’,yp’) ={I0 +(a1 cos θ+a2 sin θ)xp’ +(a1 sin θ+a3 cos θ)yp’}/I0 xp’,yp’は瞳上の任意の点 I0 はスリット状ターゲットの長さ 但し、Fs (xp ′, yp ′) = {I 0 + (a 1 cos θ + a 2 sin θ) xp ′ + (a 1 sin θ + a 3 cos θ) yp ′} / I 0 xp ′, yp ′ Any point I 0 on the pupil is the length of the slit target,

【0022】[0022]

【数2】 a1 =L{(1/l2 −1/l1 ) sin2θA }/2 a2 =L{2/L−(1/l1 +1/l2 ) +(1/l1 −1/l2 ) cos2θA }/2 a3 =L{2/L−(1/l1 +1/l2 ) −(1/l1 −1/l2 ) cos2θA }/2 1/l1 は球面度数S 1/l1 −1/l2 は円柱度数C θA は乱視軸角度A よって、A 1 = L {(1 / l 2 −1 / l 1 ) sin2θ A } / 2 a 2 = L {2 / L- (1 / l 1 + 1 / l 2 ) + (1 / l 1) −1 / l 2 ) cos2θ A } / 2 a 3 = L {2 / L− (1 / l 1 + 1 / l 2 ) − (1 / l 1 −1 / l 2 ) cos2θ A } / 2 1 / l 1 is a spherical power S 1 / l 1 −1 / l 2 is a cylindrical power C θ A is an astigmatic axis angle A.

【0023】[0023]

【数3】a1 =(LC sin2A)/2 a2 =L{2/L−(2S+C)+C cos2A}/2 a3 =L{2/L−(2S+C)−C cos2A}/2 として表され、a1 ,a2 ,a3 が求められると上式に
より、既知の2経線及び該2経線の各々に対して直交す
る方向の光量分布を測定すれば、球面度数S、乱視度数
C、乱視軸Aを算出することができ、乱視眼の状態を測
定することができる。
Equation 3] a 1 = Table as (LC sin2A) / 2 a 2 = L {2 / L- (2S + C) + C cos2A} / 2 a 3 = L {2 / L- (2S + C) -C cos2A} / 2 When a 1 , a 2 , and a 3 are obtained, a known two meridians and a light quantity distribution in a direction orthogonal to each of the two meridians are measured by the above equation, and the spherical power S, the astigmatic power C, The astigmatic axis A can be calculated, and the state of the astigmatic eye can be measured.

【0024】尚、特願平2-214811号及び上式から明らか
な様に、屈折力の演算に瞳孔径は関与しない。又、同様
に2経線及び該2経線の各々に対して直交する方向の光
量分布を測定する場合も、計算式から明らかな様に、あ
る角度の組み合わせの場合、例えば0°と90°の組み
合わせの場合は、いずれかの3データを使用すれば可能
である。
As is apparent from Japanese Patent Application No. 2-214811 and the above equation, the pupil diameter is not involved in the calculation of the refractive power. Similarly, when measuring the two meridians and the light quantity distribution in the direction orthogonal to each of the two meridians, as is clear from the calculation formula, in the case of a certain angle combination, for example, a combination of 0 ° and 90 ° In the case of (1), it is possible to use any three data.

【0025】この場合、両眼同時に観察或は照準・測定
する為、受光素子9を1つで受けようとすると、被検者
の瞳孔間距離もあり、おのずと受光面上での倍率は限ら
れたものとなってしまう。精度良く測定しようとする
と、倍率を上げて測定することも考えられるが、前述の
ことから限度がある。この為、被検者の瞳と略共役位置
の受光位置に受光素子、例えば個々のCCD等のエリア
センサの受光範囲を、両眼の各々の略アライメント範
囲、或は照準しやすい程度の余裕を持った範囲に相当す
る様な倍率とし、その位置に受光素子を2ケ置く。この
場合、両方の受光素子からの信号を処理・演算する時、
共通の処理系・メモリを使っても良いし、別々の処理系
・メモリを使用しても良い。或はいずれかを共通にして
も良い。いずれの場合でも、受光位置での倍率を受光素
子でけられることなく、倍率を高くして測定精度を向上
させて測定することが可能となる。又、従来通り、受光
素子1ケでも良いことは言うまでもない。
In this case, in order to observe or aim and measure both eyes at the same time, if one tries to receive the light receiving element 9 with one, there is a distance between the pupils of the subject, and the magnification on the light receiving surface is naturally limited. It will be. In order to measure with high accuracy, it may be possible to increase the magnification, but there is a limit from the above. For this reason, a light receiving element, for example, a light receiving range of an area sensor such as an individual CCD or the like is provided at a light receiving position substantially conjugate with the subject's pupil, a substantially alignment range of each of the two eyes, or a margin that allows easy aiming. The magnification is set to correspond to the range held, and two light receiving elements are placed at that position. In this case, when processing and calculating signals from both light receiving elements,
A common processing system / memory may be used, or separate processing systems / memory may be used. Alternatively, one of them may be common. In any case, the magnification at the light receiving position cannot be reduced by the light receiving element, and the measurement can be performed while increasing the magnification to improve the measurement accuracy. Needless to say, one light-receiving element may be used as in the related art.

【0026】表示器に表示する際は、表示器上に両方の
受光素子上の像を、或はメモリされた像を合成して表示
するか、別々の表示器に表示させる。この場合、表示さ
れた部分以外の場所は、例えばアライメント範囲外の部
分は、黒のみの表示とする様な処理を行い、必要箇所に
測定結果等の文字を表示させる(図2参照)。
When displaying on the display, the images on both light receiving elements, the stored images are combined and displayed on the display, or displayed on separate displays. In this case, a process other than the displayed portion, such as a portion outside the alignment range, is performed so that only black is displayed, and characters such as a measurement result are displayed at a necessary portion (see FIG. 2).

【0027】図1に於いて本装置の要部について説明す
る。
Referring to FIG. 1, the main part of the present apparatus will be described.

【0028】本体部16を以上の様に構成し、本体部前
方に被検者の顔を安定させる為、被検者位置決め部17
を配置し、被検者の顔を安定させて、固視目標18、或
は視力表等の視標を見てもらい測定を行う。
The main body 16 is configured as described above, and the subject positioning section 17 is provided in front of the main body to stabilize the face of the subject.
Is placed, the face of the subject is stabilized, and the target is observed by the fixation target 18 or an optotype such as a visual acuity chart.

【0029】この時に、被検者位置決め部17(顎受額
当部等)の、例えば支柱22に支持枠を介して赤外光透
過で可視光反射のミラー19を配置し、その上部に例え
ば支柱22に保持する為の支持枠を介して、更に全反射
ミラー、或は赤外光透過で可視光反射のミラー20等を
配置して、測定本体外部の固視目標18を見る様にす
る。この時に、赤外光透過で可視光反射のミラー19
と、全反射ミラー20等の間に、例えば支柱に保持する
為の支持枠を介して、既知の値のレンズ21を配置す
る。この時、全反射ミラー20等を使用せずに、直接上
部の固視目標を見る様にしても良い。いずれのミラーも
両眼に対応し、余裕のある幅にしても良い。更に、レン
ズ21も、両眼に対応し、余裕のある幅にしても良い
し、片眼ずつの被検眼に対応する様な別々のレンズでも
良い。
At this time, a mirror 19 for transmitting infrared light and reflecting visible light is arranged on a column 22, for example, of a subject positioning portion 17 (a chin receiving portion, etc.) via a support frame, and a mirror 19, for example, is provided above the mirror. A total reflection mirror or a mirror 20 that reflects visible light and transmits infrared light is disposed via a support frame for holding the support 22 so that the fixation target 18 outside the measurement main body can be seen. . At this time, the mirror 19 that transmits infrared light and reflects visible light is used.
And a lens 21 having a known value is disposed between the total reflection mirror 20 and the like, for example, via a support frame to be held on a support. At this time, the upper fixation target may be directly viewed without using the total reflection mirror 20 or the like. Either mirror may correspond to both eyes and may have a sufficient width. Further, the lens 21 may have a marginal width corresponding to both eyes, or may be a separate lens corresponding to the subject's eye for each eye.

【0030】測定に当たっては、被検者は被検者位置決
め部17(顎受額当部)に顔を載せてもらい、両眼視し
てより自然視に近い状態で、ミラーと既知の値のレンズ
21を通して固視目標18を見てもらう様にする。この
状態で、検者は測定本体部16を動かし、赤外光透過で
可視光反射のミラー19を通して、被検眼と測定本体部
16の位置合わせを行って測定を行う。この時の測定本
体部は従来より公知である、単眼測定のものであって
も、両眼測定のものであってもいずれでも良い。単眼測
定の場合は、ミラー・レンズも単眼用であっても良いこ
とは勿論である。
In the measurement, the subject places the face on the subject positioning section 17 (the chin support section), and when the binocular vision is closer to natural vision, the subject and the mirror are compared with a known value. The fixation target 18 is seen through the lens 21. In this state, the examiner moves the measurement main body 16 and performs measurement by aligning the subject's eye with the measurement main body 16 through the mirror 19 that transmits infrared light and reflects visible light. The measurement main body at this time may be of a conventionally known type of a monocular measurement or a type of a binocular measurement. In the case of monocular measurement, it goes without saying that the mirror lens may be for a single eye.

【0031】又、より自然視に近い状態で見ている様に
する為、両眼で固視目標18を見させ、前測定による被
検者の屈折力に合わせ、遠点、或は雲霧位置に固視目標
18を光学的に移動させた場合、その位置に合わせ、被
検者が無限遠を見ている状態、即ち平行視している様に
輻輳角を約0°、或は輻輳による調節等が問題とならな
い角度となる様に変える必要があり、この場合は、輻輳
調節プリズムをレンズ付近に左右眼別々に配置し、測定
部本体と、固視目標の位置に合わせ調整を行う。
Further, in order to make the observer look closer to natural vision, the user looks at the fixation target 18 with both eyes, adjusts to the refracting power of the subject by the pre-measurement, and sets the far point or the cloud position. When the fixation target 18 is moved optically, the convergence angle is set to about 0 ° as if the subject is looking at infinity, that is, parallel viewing, It is necessary to change the angle so that adjustment or the like does not cause a problem. In this case, the convergence adjusting prism is arranged separately for the left and right eyes near the lens, and adjustment is performed in accordance with the position of the measurement unit main body and the fixation target.

【0032】尚、外部の固視目標を見させる場合は、測
定部本体と固視目標が設置された時のみ輻輳角が約0
°、或は輻輳による調節等が問題とならない角度となる
様に輻輳調節プリズムを調整すれば良い。或は、輻輳調
節プリズムの代わりに、反射ミラーを左右眼別々に設け
て各々その傾斜を調節することにより行えば良い。
When an external fixation target is viewed, the convergence angle is approximately 0 only when the measurement unit main body and the fixation target are set.
The convergence adjusting prism may be adjusted so that the angle does not cause a problem in adjustment by convergence or the like. Alternatively, in place of the convergence adjusting prism, reflecting mirrors may be provided separately for the left and right eyes, and their inclinations may be adjusted.

【0033】受光素子9からの光分布により被検眼の眼
力を演算器13で演算するが、この演算器13には
既知のレンズ21のディオプター値を設定入力してあ
り、演算器13では眼屈折力を演算すると共に、更に前
記ディオプター値と、演算して得られた被検眼のディオ
プター値とを比較し、両者のディオプター値の大小を判
断し、その結果を更に表示器14に表示する。
[0033] While computing the eye <br/> refraction power of the eye by light distribution from the light receiving element 9 by the calculator 13, this calculator 13 has been set and input the diopter value of the known lens 21 The arithmetic unit 13 calculates the refractive power of the eye, further compares the diopter value with the diopter value of the eye to be obtained by the calculation, determines the magnitude of both diopter values, and further displays the result. Is displayed on the container 14.

【0034】この様な配置で測定すると、既知の値のレ
ンズ21よりマイナスの屈折力を持つ被検者は、固視目
標を雲霧して見る様になるので従来と同じ様な測定が可
能となる。プラス側の屈折力を持つ被検者は既知のディ
オプターとの差の量だけ調節して見ることになり、略既
知のディオプターに近い数値となって出てくる。或は調
節力がその差より小さい場合とか、強度の遠視等の場合
は、既知の値より大きな値となって出てくる(図4参
照)。
When measurement is performed in such an arrangement, a subject having a refractive power more negative than that of the lens 21 having a known value will look at the fixation target in a cloudy state. Become. A subject having a refractive power on the positive side adjusts the amount by the amount of difference from the known diopter and sees the value, which is almost a value close to the known diopter. Alternatively, if the accommodation power is smaller than the difference or if the intensity is hyperopia, the value becomes larger than the known value (see FIG. 4).

【0035】例えば、通常眼鏡レンズはレンズを眼前1
2mmに置くことが一般的であるので、既知のレンズ21
を眼前12mmに置いた時に+2.5ディオプターに相当
する様な値とした場合、被検者が遠用視した時に、網膜
に像を結ばせる為に付加すべきレンズの屈折力は、被検
者が遠用視した時の真の値が、+1ディオプターとか、
マイナスディオプターの被検者の場合は略その値で出て
くるが、+7ディオプターの被検者の場合は、調節力が
あり、固視目標18をはっきり見ている場合は、+2.
5ディオプター付近の数値となって測定される。又、同
じ+7ディオプターでも調節力が、例えば3ディオプタ
ーしかなかったり、調節が充分に行えない被検者の場合
は、+4ディオプター付近の数値となって測定される
か、+2.5ディオプター以上の数値となって測定され
る。
For example, a spectacle lens usually has a lens
Since it is common to place the lens at 2 mm, the known lens 21
Is set to a value equivalent to +2.5 diopters when the lens is placed 12 mm in front of the eyes, the refractive power of the lens to be added to form an image on the retina when the subject is farsighted is determined by The true value when a person is farsighted is +1 diopter,
In the case of a subject of minus diopter, the value appears approximately at that value. However, in the case of a subject of +7 diopter, if the subject has accommodation power and the fixation target 18 is clearly seen, then +2.
It is measured as a value near 5 diopters. In addition, in the case of a subject having the same +7 diopter but having only 3 diopters or insufficient adjustment, for example, the subject is measured as a numerical value near +4 diopter or a numerical value of +2.5 diopter or more. It is measured as

【0036】この様な場合、予め定めた屈折値、例えば
+2.5ディオプターとか+1ディオプターを越える様
な測定結果が出た場合は、それ以上の遠視があることも
考えられ、調節麻痺剤等を使用して測定をしたり、他の
方法を使って再度測定すれば良い。
In such a case, if a measurement result that exceeds a predetermined refraction value, for example, +2.5 diopter or +1 diopter is obtained, it is possible that hyperopia is greater than that. Use it to make measurements or use another method to measure again.

【0037】或は、更に集団検診等でスクリーニングを
行う場合、予め定めた屈折力(±両方向)、左右の屈折
力の差及び円柱度数の範囲等を測定器の中に記憶させて
おき、その範囲を越えている場合は、何等かの注意マー
クを表示器に表示、或はプリントアウトした時に表示す
る様にし、或は表示器に表示させると同時にプリントア
ウトしても良い。このマークが表示された場合は、何等
かの異常があるとして別に精密検査を行う様にすること
もできる。予め定めた範囲については、後から変えるこ
とも可能である。
Alternatively, when screening is further performed by a group examination or the like, a predetermined refractive power (± both directions), a difference between left and right refractive powers, a range of cylindrical power, and the like are stored in a measuring instrument. If it exceeds the range, some caution mark may be displayed on the display unit or displayed when printed out, or may be displayed on the display unit and printed out at the same time. When this mark is displayed, it may be determined that there is some abnormality, and a separate detailed inspection may be performed. The predetermined range can be changed later.

【0038】この様にすれば、両眼視してより自然視に
近い状態で見ながら、前測定や前測定の結果に基づき、
被検者の遠点、或は更に遠くに固視目標を提示させる様
に動かす為の雲霧機構の必要なしに、又、その被検者の
前測定に合わせてテストレンズを掛けさせることなし
に、既知の値のレンズ21を配設するだけで、既知の値
のレンズ21よりマイナス側の被検者の場合は、雲霧機
構を設けた場合と同様の測定が可能であり、既知のレン
ズ21よりプラス側の被検者の場合は、既知の値のレン
ズと略同じ値付近かそれ以上のディオプターとして測定
されるので、遠視の発見が可能となり、更にある一定以
上の屈折異常があるかどうかを見る様なスクリーニング
を行うことが可能となる。
[0038] In this way, while observing with binocular vision in a state closer to natural vision, based on the pre-measurement and the result of the pre-measurement,
Without the need for a fogging mechanism to move the subject to present the fixation target at the far point or farther away, and without having to hang the test lens in time for the subject's pre-measurement In the case of a subject on the minus side of the known value lens 21 only by disposing the known value lens 21, the same measurement as in the case where the cloud fog mechanism is provided is possible. In the case of the subject on the more positive side, it is measured as a diopter near or above the same value as a lens of a known value, so that hyperopia can be found, and whether there is a certain degree of refractive error or more It is possible to carry out a screening such as seeing

【0039】尚、既知のレンズ21は配設するだけでな
く、別の既知のレンズに可変したり、固定の固視目標を
本体内部に置く場合、レンズの位置を被検者と被検者位
置決め部17(顎受額当部)に取付けた赤外光透過で可
視光反射のミラー19の間に配置しても良い。この時に
は、測定光のレンズによる反射が本体測定部に戻らない
様に傾けると良い。レンズを傾けることによる誤差は補
正すれば良い。又、この場合は、レンズの屈折力も付加
されているので補正を行う。
When the known lens 21 is not only disposed but also changed to another known lens, or when a fixed fixation target is placed inside the main body, the position of the lens is changed between the subject and the subject. It may be arranged between the mirrors 19 transmitting infrared light and reflecting visible light, which are attached to the positioning part 17 (the chin receiving part). At this time, it is preferable to incline so that the reflection of the measurement light by the lens does not return to the main body measurement unit. An error caused by tilting the lens may be corrected. In this case, correction is performed because the refractive power of the lens is also added.

【0040】[0040]

【発明の効果】以上述べた如く本発明によれば、両眼視
して、より自然視に近い状態で見ながら、前測定や、前
測定の結果に基づき被検者の遠点、或は更に遠くに固視
目標を提示させる様に動かす為の雲霧機構なしに、又、
その被検者の前測定に合わせてテストレンズ等を掛けさ
せることなしに、遠視の発見を可能となり、更にある一
定値以上の屈折異常があるかどうかスクリーニングを行
うことが可能となり、又比較演算部が、被検眼の眼屈折
力測定結果と既知レンズのディオプター値とを比較し、
両者の値の大小の判別を行い、測定結果が小の場合はそ
のまま測定を続行し、測定結果が大の場合は再測定等の
表示を行うので、測定が簡単になり且つ無駄な作業がな
くなる。
As described above, according to the present invention, a binocular vision and a near-natural vision are used, and a pre-measurement is performed. Without a fog mechanism to move to present the fixation target further away,
Its without causing over the test lenses and the like in accordance with the measurement before the subject, it is possible to discover hyperopia, Ri Do and can be screened whether there is ametropia above a certain value, further there also The comparison operation unit determines the refraction of the eye to be examined.
Compare the force measurement result with the diopter value of the known lens,
The magnitude of both values is determined, and if the measurement result is small,
Continue measurement, and if the measurement result is large,
Because the display is displayed, measurement is simplified and no unnecessary work is performed.
It becomes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す基本構成図である。FIG. 1 is a basic configuration diagram showing one embodiment of the present invention.

【図2】被検眼の撮像状態を示す説明図である。FIG. 2 is an explanatory diagram illustrating an imaging state of an eye to be inspected.

【図3】同前実施例の説明図である。FIG. 3 is an explanatory diagram of the previous embodiment.

【図4】同前実施例に於ける被検眼の眼屈折力と既知レ
ンズのディオプター値との関係を示す説明図である。
FIG. 4 is an explanatory diagram showing a relationship between an eye refractive power of an eye to be inspected and a diopter value of a known lens in the same embodiment.

【図5】同前実施例に用いられた測定本体部の基本構成
図である。
FIG. 5 is a basic configuration diagram of a measurement main body used in the previous embodiment.

【図6】図5のA−A矢視図である。6 is a view as viewed in the direction of arrows AA in FIG. 5;

【図7】図5のB−B矢視図である。FIG. 7 is a view taken in the direction of arrows BB in FIG. 5;

【符号の説明】[Explanation of symbols]

13 演算器 16 測定本体部 17 被検者位置決め部 18 固視目標 19 ミラー 21 レンズ Reference Signs List 13 arithmetic unit 16 measurement main unit 17 subject positioning unit 18 fixation target 19 mirror 21 lens

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被検眼の眼屈折力を測定する為の測定本
体部を有し、被検者の両眼に赤外光透過で可視光反射の
ミラーを被検者位置決め部に固定し、前記ミラーを介し
て両眼にて外部指標を視準可能とし、前記測定本体部と
被検眼の間とは別に、前記ミラーと外部指標の間に既知
の値のレンズを配置した眼科用測定装置に於いて、前記
既知のレンズのディオプター値と前記測定本体部からの
測定結果とを比較する為の比較演算部を有することを特
徴とする眼科用測定装置。
1. A measuring book for measuring an eye refractive power of an eye to be examined.
Having a body part , fixing a mirror of infrared light transmission and visible light reflection to the subject positioning portion to both eyes of the subject, enabling collimation of an external index with both eyes via the mirror, Apart from between the eye to be examined and the measuring body, in the ophthalmic measuring apparatus arranged lenses known values between the mirror and the external indicators, the
The known diopter value of the lens and the
An ophthalmologic measuring device comprising a comparison operation unit for comparing a measurement result .
JP03270334A 1991-09-21 1991-09-21 Ophthalmic measurement device Expired - Fee Related JP3114819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03270334A JP3114819B2 (en) 1991-09-21 1991-09-21 Ophthalmic measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03270334A JP3114819B2 (en) 1991-09-21 1991-09-21 Ophthalmic measurement device

Publications (2)

Publication Number Publication Date
JPH0576496A JPH0576496A (en) 1993-03-30
JP3114819B2 true JP3114819B2 (en) 2000-12-04

Family

ID=17484812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03270334A Expired - Fee Related JP3114819B2 (en) 1991-09-21 1991-09-21 Ophthalmic measurement device

Country Status (1)

Country Link
JP (1) JP3114819B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2805039B2 (en) * 1994-06-01 1998-09-30 工業技術院長 Eye refractive power measuring device
JP3287798B2 (en) 1997-12-17 2002-06-04 レンゴー株式会社 Method for producing spherical cellulose fine particles
JP4179606B2 (en) * 2003-06-09 2008-11-12 株式会社コーナン・メディカル Photorefractor
JP2014018422A (en) 2012-07-18 2014-02-03 Topcon Corp Subjective optometer
JP2014083193A (en) * 2012-10-23 2014-05-12 Konan Medical Inc Ophthalmic examination apparatus
KR101525352B1 (en) 2014-04-25 2015-06-03 한정우 Retinoscope
US10524655B2 (en) 2017-09-27 2020-01-07 International Business Machines Corporation Ophthalmoscope using natural pupil dilation

Also Published As

Publication number Publication date
JPH0576496A (en) 1993-03-30

Similar Documents

Publication Publication Date Title
ES2861259T3 (en) Eyeglass prescription method and system
US6761454B2 (en) Apparatus and method for determining objective refraction using wavefront sensing
US7490940B2 (en) Method for determining objective refraction using wavefront sensing
US3524702A (en) Apparatus for objectively and automatically refracting the eye
KR100729889B1 (en) Optometric device
US8684526B2 (en) Compact binocular adaptive optics phoropter
CN102333476B (en) Method and device for determining location of eye fulcrum
JP2001095760A (en) Optical characteristic measuring apparatus for eyes
JP3387551B2 (en) Optometry device
CN105496351A (en) Binocular optometry device and method
CN110367924B (en) Subjective and objective integrated precise optometry device and optometry method
Howard et al. The measurement of eye torsion
EP3903663A1 (en) Refractive property measurement device, measurement tool, and refractive property measurement method
JP3114819B2 (en) Ophthalmic measurement device
CN113616152A (en) Ophthalmological instrument for measuring the optical quality of an eye
US4283126A (en) Method and apparatus for eye refraction determination
US4976535A (en) Endothelvorsatz
JPH09253049A (en) Ophthalmometer
US5532772A (en) Ophthalmic apparatus with positioning control
US3588234A (en) Optical device for moving a luminous target across the eyes
JPH0315446B2 (en)
JPS6155375B2 (en)
RU50794U1 (en) ABERROMETER WITH EYE GUIDING SYSTEM
JP3884864B2 (en) Eye refractometer
JPH0554326B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees