JPH0351658B2 - - Google Patents

Info

Publication number
JPH0351658B2
JPH0351658B2 JP59142800A JP14280084A JPH0351658B2 JP H0351658 B2 JPH0351658 B2 JP H0351658B2 JP 59142800 A JP59142800 A JP 59142800A JP 14280084 A JP14280084 A JP 14280084A JP H0351658 B2 JPH0351658 B2 JP H0351658B2
Authority
JP
Japan
Prior art keywords
tin
oxide
fibers
increases
stannic oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59142800A
Other languages
Japanese (ja)
Other versions
JPS6128017A (en
Inventor
Kenji Uchida
Hidenori Sakauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP14280084A priority Critical patent/JPS6128017A/en
Priority to US06/647,656 priority patent/US4623424A/en
Publication of JPS6128017A publication Critical patent/JPS6128017A/en
Priority to US06/885,441 priority patent/US4725331A/en
Publication of JPH0351658B2 publication Critical patent/JPH0351658B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は導電性酸化第二錫繊維の製造法に関す
る。更に詳しくは酸化第一錫を原料として、導電
性酸化第二錫繊維を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing conductive tin oxide fibers. More specifically, the present invention relates to a method for producing conductive tin oxide fibers using stannous oxide as a raw material.

酸化第二錫は酸、アルカリに対して非常に耐久
性を有し、また熱に対しても安定である。これを
繊維にすることができれば、耐薬品性、耐熱性の
繊維として優れたものとなし得、またこれは電気
導伝性繊維としての応用も期待できる。
Stannic oxide is extremely durable against acids and alkalis, and is also stable against heat. If this can be made into fiber, it can be made into a fiber with excellent chemical resistance and heat resistance, and it can also be expected to be used as an electrically conductive fiber.

従来技術 従来、酸化第二錫の均一径の繊維を多量に製造
する方法は知られていない。
Prior Art Conventionally, there is no known method for producing a large amount of stannic oxide fibers of uniform diameter.

発明の目的 本発明の目的は酸化第二錫の均一径の導電性繊
維を多量に製造する方法を提供するにある。
OBJECTS OF THE INVENTION An object of the present invention is to provide a method for producing a large amount of conductive fibers of uniform diameter made of tin oxide.

発明の構成 本発明者らはさきに酸化第二錫に銅を加えた混
合物を不活性ガス雰囲気下で溶融し、該溶融物か
ら酸化錫を蒸発させ、蒸発物を低温部に導いて析
出成長させると、酸化第二錫繊維が得られること
を発明した(特願昭58−164764号)。更に研究を
重ねた結果、前記方法における銅に代え、錫また
は錫の融点を増減させる錫合金を使用しても、同
様にして酸化第二錫繊維が製造し得られることを
究明し得た。そして酸化錫原料として酸化第一錫
を使用すると、溶融の際酸化第二錫と錫となり、
生成した錫は溶媒の1部として作用し、かつ、導
電性を増加させる金属またはその金属酸化物を混
溶しておくとこれらを含んだ酸化錫が蒸発され、
該蒸発物を低温部に導くと導電性のよい酸化第二
錫繊維が得られることが分つた。この知見に基い
て本発明を完成した。
Structure of the Invention The present inventors first melted a mixture of tin oxide and copper in an inert gas atmosphere, evaporated tin oxide from the melt, and guided the evaporated product to a low temperature section to cause precipitation. He invented that by doing so, stannic oxide fibers could be obtained (Japanese Patent Application No. 164764/1983). As a result of further research, it was found that stannic oxide fibers can be produced in the same manner even if tin or a tin alloy that increases or decreases the melting point of tin is used in place of copper in the above method. When stannous oxide is used as a raw material for tin oxide, it becomes stannic oxide and tin during melting.
The produced tin acts as a part of the solvent, and when a metal or its metal oxide that increases conductivity is mixed in, the tin oxide containing these is evaporated.
It has been found that by introducing the evaporated material to a low temperature section, a highly conductive stannic oxide fiber can be obtained. The present invention was completed based on this knowledge.

本発明の要旨は 酸化第一錫と、導電性を増加させるアンチモ
ン、バナジウムまたはインジウムあるいはその金
属酸化物を混合したものを、あるいは更に、錫も
しくは錫の融点を増減させる錫合金とを混合した
ものを、不活性ガス雰囲気下または錫、錫合金が
酸化されない酸素分圧のガス雰囲気下で、混合溶
融し、該溶融物から前記導電性を増加させる金属
またはその金属酸化物を含んだ酸化錫を蒸発さ
せ、蒸発物を低温部に導き酸化第二錫繊維を析出
成長させることを特徴とする酸化第二錫繊維の製
造法にある。
The gist of the present invention is a mixture of stannous oxide and antimony, vanadium, or indium, or their metal oxides that increase conductivity, or a mixture of tin or a tin alloy that increases or decreases the melting point of tin. are mixed and melted in an inert gas atmosphere or in a gas atmosphere with an oxygen partial pressure that does not oxidize tin and tin alloys, and from the melt, tin oxide containing the metal or its metal oxide that increases the conductivity is mixed and melted. A method for producing stannic oxide fibers, which is characterized by evaporating the stannic oxide fibers and guiding the evaporated material to a low temperature section to precipitate and grow stannic oxide fibers.

本発明の方法においては酸化第一錫に必ずしも
錫または錫の融点を増減させる錫合金を加える必
要はないが、溶融物中の酸化錫量の割合が多くな
ると、製造装置の炉芯管や容器が損傷され易くな
るので、溶融物中の酸化錫量は1/4程度の割合で
あることが適当であるから、錫または錫合金を加
えることが好ましい。
In the method of the present invention, it is not necessary to add tin or a tin alloy that increases or decreases the melting point of tin to the stannous oxide, but if the proportion of tin oxide in the melt increases, It is preferable to add tin or a tin alloy, since the amount of tin oxide in the melt should be approximately 1/4 since the tin oxide is likely to be damaged.

導電性を増加させる金属または金属酸化物とし
ては、アンチモン、バナジウム、インジウム、そ
れらの酸化物が挙げられる。混合する錫の融点を
増減させる錫合金としては、例えば銅、亜鉛の錫
合金を挙げることができるが、本発明において錫
合金とは、錫が70%以上であり、したがつて、混
合する金属の量は30%以下である。
Metals or metal oxides that increase electrical conductivity include antimony, vanadium, indium, and oxides thereof. Examples of tin alloys that increase or decrease the melting point of tin to be mixed include tin alloys of copper and zinc; however, in the present invention, tin alloys are those containing 70% or more of tin; The amount of is less than 30%.

酸化第一錫と錫または錫の融点を増減させた錫
合金と導電性を増加させる金属またはその金属酸
化物とを、耐熱性容器に入れ、この容器を加熱炉
内で、不活性ガス雰囲気下または錫、錫合金が酸
化されない酸素分圧のガス雰囲気下で、加熱溶融
させる。そして酸化錫が蒸発する温度以上に昇温
させて酸化錫を蒸発させ、この蒸発物を低温部、
例えば溶融物の温度より50〜500℃低い温度の部
分に導き、1日以上連続してその状態を維持する
と、低温部に酸化第二錫繊維が析出成長する。こ
の低温部は耐熱性容器を加熱する加熱炉内に設け
てもよい。この場合、低温部の形成は、その部分
に低温ガスを吹付けたり、あるいは水等の冷却剤
を通することによつても行うことができる。酸化
錫の蒸発温度は錫または錫合金の蒸発量に応じて
調整する。また溶融物の融点は錫合金の金属の種
類及び量によつて調整することができる。
Stannous oxide, tin or a tin alloy with increased or decreased melting point of tin, and a metal that increases conductivity or its metal oxide are placed in a heat-resistant container, and the container is heated in a heating furnace under an inert gas atmosphere. Alternatively, tin and tin alloys are heated and melted in a gas atmosphere with an oxygen partial pressure that does not oxidize. Then, the temperature is raised above the temperature at which tin oxide evaporates to evaporate the tin oxide, and this evaporated material is transferred to the low temperature section.
For example, if the material is introduced into a region where the temperature is 50 to 500° C. lower than the temperature of the melt and maintained in that state for one day or more, stannic oxide fibers will precipitate and grow in the low temperature region. This low-temperature section may be provided in a heating furnace that heats the heat-resistant container. In this case, the formation of the low-temperature section can also be performed by spraying low-temperature gas or passing a coolant such as water through the section. The evaporation temperature of tin oxide is adjusted depending on the amount of evaporation of tin or tin alloy. Further, the melting point of the molten material can be adjusted by the type and amount of metal in the tin alloy.

実施例 1 99.99%の酸化第一錫15gと99.99%の錫100g
と導電性を増加させる金属酸化物としての五酸化
アンチモン5gを混合し、この混合物をアルミナ
製ボートに入れ、該ボートを雰囲気ガスを制御で
きるように炉芯管中に入れて、これを横型電気炉
内に設置した。その設置位置は炉芯管の3:2の
分割点をボート位置とし、この点が電気炉内の温
度分布の最高温度部となるように固定し、前記分
割点から短い炉芯管の端部の方から窒素ガスを毎
分0.8〜1.0流し、毎時50℃の昇温速さで1050℃
まで昇温させて溶融し、酸化錫を蒸発させた。こ
の状態で4日間保持することにより、炉芯管の他
端の内壁に酸化第二錫繊維が析出成長した。5日
後室温まで徐冷して酸化第二錫繊維を取出した。
Example 1 15 g of 99.99% stannous oxide and 100 g of 99.99% tin oxide
and 5 g of antimony pentoxide as a metal oxide that increases electrical conductivity, this mixture is placed in an alumina boat, the boat is placed in a furnace core tube so that the atmospheric gas can be controlled, and this is placed in a horizontal electric It was installed inside the furnace. The installation position is the 3:2 split point of the furnace core tube as the boat position, fixed so that this point becomes the highest temperature part of the temperature distribution in the electric furnace, and the end of the furnace core tube that is short from the dividing point. Flow nitrogen gas from 0.8 to 1.0 per minute to 1050°C at a heating rate of 50°C per hour.
The tin oxide was evaporated. By maintaining this state for 4 days, stannic oxide fibers were precipitated and grown on the inner wall of the other end of the furnace core tube. After 5 days, the mixture was slowly cooled to room temperature and the stannic oxide fibers were taken out.

得られた酸化第二錫繊維は直径1μm程度で、
長さは約3mmのものであつた。その導電性は
100Ω・cmであつた。
The obtained stannic oxide fibers have a diameter of about 1 μm,
The length was approximately 3 mm. Its conductivity is
It was 100Ω・cm.

実施例 2 錫に代えて錫−銅合金を使用し、同様にして同
じ酸化第二錫繊維が得られた。
Example 2 The same stannic oxide fiber was obtained in the same manner using a tin-copper alloy instead of tin.

実施例 3 99.99%の酸化第一錫100gと導電性を増加させ
る金属酸化物としての五酸化アンチモン5g混合
し、実施例1と同様の要領及び条件にて酸化第二
錫繊維を得た。
Example 3 100 g of 99.99% stannous oxide and 5 g of antimony pentoxide as a metal oxide that increases conductivity were mixed to obtain a stannic oxide fiber in the same manner and under the same conditions as in Example 1.

得られた酸化第二錫繊維は導電性が107Ω・cm
のものであつた。
The obtained stannic oxide fiber has a conductivity of 107Ω・cm
It was from.

発明の効果 本発明の方法によると、従来多量生産し得なか
つた導電性酸化第二錫繊維を容易に製造すること
ができる優れた効果を奏し得られる。
Effects of the Invention According to the method of the present invention, an excellent effect can be achieved in that conductive tin oxide fibers, which could not be produced in large quantities conventionally, can be easily manufactured.

Claims (1)

【特許請求の範囲】 1 酸化第一錫と、導電性を増加させるアンチモ
ン、バナジウムまたはインジウムあるいはその金
属酸化物とを混合したものを、不活性ガス雰囲気
下で、混合溶融し、該溶融物から酸化錫を蒸発さ
せ、蒸発物を低温部に導き酸化第二錫繊維を析出
成長させることを特徴とする導電性酸化第二錫繊
維の製造法。 2 酸化第一錫と、導電性を増加させるアンチモ
ン、バナジウムまたはインジウムあるいはその金
属酸化物と、錫もしくは錫の融点を増減させる錫
合金とを混合したものを、不活性ガス雰囲気下ま
たは錫、錫合金が酸化されない酸素分圧のガス雰
囲気下で、混合溶融し、該溶融物から酸化錫を蒸
発させ、蒸発物を低温部に導き酸化第二錫繊維を
析出成長させることを特徴とする導電性酸化第二
錫繊維の製造法。
[Claims] 1. A mixture of stannous oxide and antimony, vanadium, indium, or a metal oxide thereof that increases conductivity is mixed and melted in an inert gas atmosphere, and from the melt. A method for producing conductive stannic oxide fibers, which comprises evaporating tin oxide and guiding the evaporated material to a low temperature section to precipitate and grow stannic oxide fibers. 2. A mixture of stannous oxide, antimony, vanadium, or indium, or its metal oxide, which increases conductivity, and tin or a tin alloy, which increases or decreases the melting point of tin, is mixed in an inert gas atmosphere or with tin, tin, etc. Conductivity characterized by mixing and melting the alloy in a gas atmosphere with an oxygen partial pressure that does not oxidize it, evaporating tin oxide from the melt, and guiding the evaporated product to a low-temperature part to precipitate and grow stannic oxide fibers. Method for producing stannic oxide fiber.
JP14280084A 1983-09-07 1984-07-10 Production of electrically conductive stannic oxide fiber Granted JPS6128017A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14280084A JPS6128017A (en) 1984-07-10 1984-07-10 Production of electrically conductive stannic oxide fiber
US06/647,656 US4623424A (en) 1983-09-07 1984-09-06 Process for producing tin oxide fibers
US06/885,441 US4725331A (en) 1983-09-07 1986-07-14 Process for producing tin oxide fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14280084A JPS6128017A (en) 1984-07-10 1984-07-10 Production of electrically conductive stannic oxide fiber

Publications (2)

Publication Number Publication Date
JPS6128017A JPS6128017A (en) 1986-02-07
JPH0351658B2 true JPH0351658B2 (en) 1991-08-07

Family

ID=15323921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14280084A Granted JPS6128017A (en) 1983-09-07 1984-07-10 Production of electrically conductive stannic oxide fiber

Country Status (1)

Country Link
JP (1) JPS6128017A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2845655B2 (en) * 1992-02-06 1999-01-13 株式会社トクヤマ Method for producing spinning solution and tin oxide fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161337A (en) * 1984-02-01 1985-08-23 Natl Inst For Res In Inorg Mater Manufacture of tin oxide fiber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455240A (en) * 1987-08-26 1989-03-02 Sumitomo Bakelite Co Laminated sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161337A (en) * 1984-02-01 1985-08-23 Natl Inst For Res In Inorg Mater Manufacture of tin oxide fiber

Also Published As

Publication number Publication date
JPS6128017A (en) 1986-02-07

Similar Documents

Publication Publication Date Title
GB1174498A (en) A Superconductor and Its Manufacturing Method.
US4725331A (en) Process for producing tin oxide fibers
JPH0351658B2 (en)
JPH0234919B2 (en)
JPH0261415B2 (en)
JPH0351657B2 (en)
JPS6054997A (en) Production of tin oxide fiber
JP4039813B2 (en) Equipment for handling glass melts
GB1284068A (en) Improvements in or relating to the drawing of crystalline bodies
JP4284191B2 (en) Manufacturing method of R-iron alloy
US3578496A (en) Method of improving the superconductivity of niobium-tin layers precipitated on a carrier
CN111394591B (en) Slag system for electroslag remelting high-temperature alloy and use method
JPS63257125A (en) Manufacture of superconductive wire
JPH0623043B2 (en) Manufacturing method of aqueous vanadium oxide
US4113978A (en) Evaporation source for vacuum deposition
US1308907A (en) Manufacture of molybdenum-tungsten alloy
JPH05299156A (en) High-melting point metal heater and its manufacture
CN110527867A (en) A kind of low tin-copper alloy and preparation method thereof that anaerobic is copper-based
JPH059184B2 (en)
CN115198134A (en) Core-spun yarn for manufacturing copper-chromium-zirconium alloy and preparation method and application thereof
RU2156822C1 (en) Process of production of high-quality copper by vacuum arc melting
JPS58107467A (en) Metallic electric resistance material
JPH0714818B2 (en) Superconducting fibrous crystal and method for producing the same
JPS54142584A (en) Preparation of compound superconductive wire or coil
JPS6051699A (en) Manufacture of tin oxide single crystal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term