JPH0623043B2 - Manufacturing method of aqueous vanadium oxide - Google Patents

Manufacturing method of aqueous vanadium oxide

Info

Publication number
JPH0623043B2
JPH0623043B2 JP17073885A JP17073885A JPH0623043B2 JP H0623043 B2 JPH0623043 B2 JP H0623043B2 JP 17073885 A JP17073885 A JP 17073885A JP 17073885 A JP17073885 A JP 17073885A JP H0623043 B2 JPH0623043 B2 JP H0623043B2
Authority
JP
Japan
Prior art keywords
vanadium oxide
aqueous
distilled water
manufacturing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17073885A
Other languages
Japanese (ja)
Other versions
JPS6230619A (en
Inventor
好 北井
浩 新垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Chemical Co Ltd
Original Assignee
Shinko Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Chemical Co Ltd filed Critical Shinko Chemical Co Ltd
Priority to JP17073885A priority Critical patent/JPH0623043B2/en
Publication of JPS6230619A publication Critical patent/JPS6230619A/en
Publication of JPH0623043B2 publication Critical patent/JPH0623043B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 〔利用される技術分野〕 この発明はV2O5から水性帯電防止組成物、触媒エレクト
ロクロミツクな表示素子の組成物などを製造する方法に
関する。
TECHNICAL FIELD The present invention relates to a method for producing an aqueous antistatic composition, a composition for a catalytic electrochromic display element, or the like from V 2 O 5 .

〔従来技術及び問題点〕[Prior art and problems]

従来V2O5単独又はV2O5を80%以上含有し、他にM0O3
びNa5P3O10を含むものをV2O5の融点を100℃上廻る温
度まで加熱し、これを水中に注加して無定形V2O5からな
る水性帯電防止組成物を得る方法が特公昭57−295
02号特許公報によつて知られている。
Conventional V 2 O 5 alone or containing 80% or more of V 2 O 5 and additionally containing M 0 O 3 and Na 5 P 3 O 10 is heated to a temperature above the melting point of V 2 O 5 by 100 ° C. , A method of pouring this into water to obtain an aqueous antistatic composition comprising amorphous V 2 O 5 is disclosed in Japanese Examined Patent Publication No. 57-295.
No. 02 patent publication.

ところがこの公知の方法では同公報注に記載されている
ように25g/に希釈し、これを支持体1m2当り20
mgの割合でポリエチレンフタレートよりなる支持体に塗
布した場合、表面抵抗(GΩ)が最も小さい値はV2O5
1100℃で溶融させた酸化物を用いた場合であつて
も、V2O5が10g/のとき表面抵抗は0.1GΩに過
ぎない。
However, in this known method, it was diluted to 25 g / m as described in the same note, and this was diluted to 20 g / m 2 of the support.
when applied to a support made of polyethylene terephthalate at a ratio of mg, even smallest value surface resistance (G [Omega]) is an alien in the case of using the oxide is melted V 2 O 5 at 1100 ℃, V 2 O When 5 is 10 g /, the surface resistance is only 0.1 GΩ.

つまり、帯電防止効果を奏する主たる要素は水性酸化物
中に含まれるV4+によるものと考えられるが前記公知の
特公昭57−29502号公報記載のものを出願人会社
において追試したところV4+は1.3%に過ぎず、他は
導電性に殆んど関係のないV5+であつた。
In other words, it is considered that the main element having the antistatic effect is due to V 4+ contained in the aqueous oxide, but when the applicant company additionally tested the one described in the above-mentioned Japanese Patent Publication No. 57-29502, V 4+ Was only 1.3%, and the others were V 5+ having almost no relation to conductivity.

また前記公知の方法においては最も効果的な溶融温度が
高く、取扱いがむつかしく、エネルギーも多く必要とな
る。
Further, in the known method, the most effective melting temperature is high, the handling is difficult, and much energy is required.

〔解決しようとする問題点〕[Problems to be solved]

この発明は、従来法においては表面抵抗の高いものしか
得られなかつた欠点を改善することであり溶融温度を低
く、かつ表面抵抗値の低いものを得ることを目的とす
る。
It is an object of the present invention to improve the drawback that only a high surface resistance can be obtained in the conventional method, to obtain a low melting temperature and a low surface resistance value.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、V25にV613、VO2、V23などV2
5よりも酸素の少ないバナジウム低級酸化物を一種以
上重量比で20%を越える範囲で添加して、V25の融
点以上1200℃以下の温度に加熱してこれらを溶融
し、この溶融物を蒸溜水、アセトン10%乃至33%加
の蒸溜水のうちの一種に素早く流し込み急冷することを
特徴とする水性酸化バナジウムの製法とする。
The present invention, V 6 O 13 to V 2 O 5, VO 2, V 2 O 3 , etc. V 2
One or more vanadium lower oxides containing less oxygen than O 5 are added in a range of more than 20% by weight, and these are melted by heating them to a temperature not lower than the melting point of V 2 O 5 and not higher than 1200 ° C. A method for producing an aqueous vanadium oxide is characterized in that the product is rapidly poured into distilled water or one kind of distilled water containing 10% to 33% of acetone to be rapidly cooled.

〔製造方法〕〔Production method〕

今この発明の方法を具体的に説明する。 Now, the method of the present invention will be specifically described.

先ず磁器製のるつぼに雰囲気ガスとして、空気、窒素ガ
ス又は不活性ガス下においてこれをV2O5の融点以上に加
熱し、これ溶融する。
First, the porcelain crucible is heated as an atmospheric gas under air, nitrogen gas or an inert gas to a temperature not lower than the melting point of V 2 O 5 to melt it.

次にこのV2O5よりも低級なバナジウム酸化物例えばV
O2、V2O3、V6O13などのうちの一種又は2種以上を先のV
2O5の重量の20%を越える重量例えば25%〜45%
になるように添加し、これらも共に溶融する。
Next, vanadium oxide lower than V 2 O 5 such as V
O 2, V 2 O 3, V 6 O 13 V one or two or more previous among such
20% by weight of 2 O 5 such as 25% to 45%
So that they also melt together.

而して、これらが充分に溶融して均質に混合された状態
となったところで蒸留水中に流し込み、急冷却してV4+
を含む水性酸化バナジウムを製造する。
Then, when these are sufficiently melted and are in a homogeneously mixed state, they are poured into distilled water and rapidly cooled to V 4+.
An aqueous vanadium oxide containing is produced.

前記蒸溜水は溶融物に対し、充分な量であることが望ま
しく、冷却後の水温が100℃よりも充分に低いことが
好ましい。蒸溜水にアセトンを1/10乃至1/3(1
0%乃至33%)含有させた水を用いる方法もこの発明
の範囲に属する。
The distilled water is preferably in a sufficient amount with respect to the melt, and the water temperature after cooling is preferably sufficiently lower than 100 ° C. Acetone is added to distilled water at 1/10 to 1/3 (1
A method using water containing 0% to 33%) also belongs to the scope of the present invention.

このようなこの発明の方法において製造された物をV濃
度1%に薄めて、100μmの厚さにセラミツク板の上
に塗布乾燥させたところ、前記のバナジウム低級酸化物
の種類にもよるが21乃至74kΩ/cm2の表面抵抗値は
従来法のV2O5を80%以上含有するものを原料として使
用したものより1オーダ少ない値となり、帯電防止剤と
して優れた効果が発揮でき、また化学反応の触媒として
もその効果が充分に期待できる。
The product produced by the method of the present invention was diluted to a V concentration of 1%, and was applied and dried on a ceramic plate to a thickness of 100 μm. It depends on the kind of the vanadium lower oxide mentioned above. The surface resistance value of 74 to 74 kΩ / cm 2 is 1 order less than that of the conventional method containing 80% or more of V 2 O 5 as a raw material, which is effective as an antistatic agent. The effect can be expected sufficiently as a reaction catalyst.

また製造されたものゝうちV4+は約5.6乃至27%の
高比率で含まれており、従来法におけるV4+の含有率は
せいぜい1.3%であつた。よつて帯電防止剤として抜
群の効果が奏せられる。
In addition, the V 4+ produced was contained in a high ratio of about 5.6 to 27%, and the V 4+ content in the conventional method was at most 1.3%. Therefore, it has an excellent effect as an antistatic agent.

またこの発明の方法は溶融バナジウムの温度は690乃
至1200℃好ましくは800℃前後(750〜110
0℃)でよく、V2O5が蒸気となつて蒸発する量も少な
く、原料が有効利用される。
In the method of the present invention, the temperature of the molten vanadium is 690 to 1200 ° C, preferably around 800 ° C (750 to 110 ° C).
(0 ° C.) is sufficient, and the amount of V 2 O 5 that evaporates as vapor is small, and the raw materials are effectively used.

この方法により製造された水性酸化バナジウムはその濃
度によつて、下記のような外見を呈する。
The aqueous vanadium oxide produced by this method exhibits the following appearance depending on its concentration.

実験例1 V2O540gを磁器製つるぼに入れ、電気炉内で30分間
800℃に保ち、V2O5が完全に溶融した後、V6O13 15
gを添加し、これらが溶融して完全な混合状態となつた
ところで、ほゞ800℃を維持させた状態で素早く1
の蒸溜水中に流し込み、水性酸化バナジウム中のV4+
次の試験方法により測定したところV4+を5.6%含有
していた。
Experimental Example 1 40 g of V 2 O 5 was placed in a porcelain crucible, kept at 800 ° C. for 30 minutes in an electric furnace, and V 2 O 5 was completely melted, and then V 6 O 13 15
g was added, and when these were melted to a completely mixed state, quickly 1 while maintaining about 800 ° C.
When it was poured into the distilled water of Example 1 and V 4+ in the aqueous vanadium oxide was measured by the following test method, it contained 5.6% of V 4+ .

4+の含有量測定法の一例を次に示す。An example of the method for measuring the content of V 4+ is shown below.

水性酸化バナジウムを一定量分取し、(1+1)H2SO4
20mlを加え、ゆるやかに加温分解する。それを1/10
NKMnO溶液で滴定し、V4+の量を求める。この
後、この溶液を1/10N硫酸第一鉄アンモニウム溶液で
滴定し、Vの全量を求める。このV4+をVの全量で割り
4+の含有率(%)を求める。
An aliquot of aqueous vanadium oxide was collected, and (1 + 1) H 2 SO 4
Add 20 ml and slowly heat decomposition. 1/10 it
Titrate with NKMnO 4 solution to determine the amount of V 4+ . Then, this solution is titrated with a 1 / 10N ferrous ammonium sulfate solution to determine the total amount of V. This V 4+ is divided by the total amount of V to obtain the V 4+ content (%).

以上のように構成したこの実験例の方法により製造され
たものを、V濃度1%に希釈し、100μmの厚さでセ
ラミツク板上に塗布し乾燥させたところ表面抵抗74k
Ω/cm2を示した。
The product manufactured by the method of this experimental example configured as described above was diluted to a V concentration of 1%, applied on a ceramic plate with a thickness of 100 μm, and dried to obtain a surface resistance of 74 k.
Ω / cm 2 was shown.

実験例2乃至5 同様の実験を後から添加するバナジウム低級酸化物の種
類と量及び加熱温度を変え、製造されたものは表2に示
す通りである。なお、実施例中2は窒素ガス中で溶融し
たもので、残りは空気中で行った。対照実験とし、V2O5
のみのものを800℃にて加熱し、蒸留水1中に注入
したものを示した これらの実験結果は表2に示した通りである。
Experimental Examples 2 to 5 The same experiment was conducted by changing the kind and amount of vanadium lower oxide to be added later and the heating temperature, and those produced are shown in Table 2. In the examples, 2 was melted in nitrogen gas, and the rest was performed in air. As a control experiment, V 2 O 5
The results of these experiments are shown in Table 2 below.

以上の結果からも明らかなように、公知の方法により製
造されたものより、V4+の含有率が約4〜20倍の高含
有率であり、表面抵抗21〜71kΩ/cm2と対照実験と
比較しても明らかなように、その値は1/8.5〜1/3
0と極めて少なく、顕著な効果を奏する。
As is clear from the above results, the content of V 4+ is about 4 to 20 times higher than that produced by the known method, and the surface resistance is 21 to 71 kΩ / cm 2 and the control experiment. As is clear from comparison with, the value is 1 / 8.5 to 1/3
It is extremely small as 0 and has a remarkable effect.

上記の各実験において、表面抵抗の測定法としては、各
実験によりセラミツク板上に形成された被膜面に幅10
mmの銅板を対、1cmの間隔をおいて圧着し、その間の抵
抗をそれぞれ測定した。
In each of the above-mentioned experiments, the surface resistance was measured by a width of 10 on the coating surface formed on the ceramic plate in each experiment.
mm copper plates were paired and pressure-bonded at an interval of 1 cm, and the resistance therebetween was measured.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】V25にV613、VO2、V23などV2
5よりも酸素の少ないバナジウム低級酸化物を一種以
上重量比で20%を越える範囲で添加して、V25の融
点以上1200℃以下の温度に加熱してこれらを溶融
し、この溶融物を蒸溜水、アセトン10%乃至33%加
の蒸溜水のうちの一種に素早く流し込み急冷することを
特徴とする水性酸化バナジウムの製法。
1. A V 6 O 13 to V 2 O 5, VO 2, V 2 O 3 , etc. V 2
One or more vanadium lower oxides containing less oxygen than O 5 are added in a range of more than 20% by weight, and these are melted by heating them to a temperature not lower than the melting point of V 2 O 5 and not higher than 1200 ° C. A process for producing an aqueous vanadium oxide, which comprises rapidly pouring a substance into distilled water or one of distilled water containing 10% to 33% of acetone and quenching.
JP17073885A 1985-08-02 1985-08-02 Manufacturing method of aqueous vanadium oxide Expired - Lifetime JPH0623043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17073885A JPH0623043B2 (en) 1985-08-02 1985-08-02 Manufacturing method of aqueous vanadium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17073885A JPH0623043B2 (en) 1985-08-02 1985-08-02 Manufacturing method of aqueous vanadium oxide

Publications (2)

Publication Number Publication Date
JPS6230619A JPS6230619A (en) 1987-02-09
JPH0623043B2 true JPH0623043B2 (en) 1994-03-30

Family

ID=15910467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17073885A Expired - Lifetime JPH0623043B2 (en) 1985-08-02 1985-08-02 Manufacturing method of aqueous vanadium oxide

Country Status (1)

Country Link
JP (1) JPH0623043B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2876079B2 (en) * 1989-07-21 1999-03-31 富士写真フイルム株式会社 Silver halide color photographic materials
JPH07112934B2 (en) * 1990-09-26 1995-12-06 株式会社日立製作所 Magnetic head, its bonded glass, and magnetic recording / reproducing apparatus
FR2681852B1 (en) * 1991-09-27 1993-12-17 Kodak Pathe PROCESS FOR THE CONTINUOUS PREPARATION OF VANADIUM PENTOXIDE GELS AND APPARATUS FOR IMPLEMENTING THE PROCESS.
US5637368A (en) * 1992-06-04 1997-06-10 Minnesota Mining And Manufacturing Company Adhesive tape having antistatic properties
CN112546748B (en) * 2020-11-18 2023-04-07 西安热工研究院有限公司 Preparation method of low-temperature denitration filter material based on water quenching method

Also Published As

Publication number Publication date
JPS6230619A (en) 1987-02-09

Similar Documents

Publication Publication Date Title
DE69706747T2 (en) Process for the production of a lithium ion-conducting solid electrolyte
JPS5871614A (en) Metallic powder for electronic material and method of producing same
JPH0623043B2 (en) Manufacturing method of aqueous vanadium oxide
Straumanis et al. The lithium tungsten bronzes1
Ivanov-Schitz et al. Li3Fe2 (PO4) 3 solid electrolyte prepared by ultrasonic spray pyrolysis
El-Damrawi PbCl2 conducting glasses with mixed glass formers
JPS60122797A (en) Production of aluminum nitride single crystal
Niwa et al. Studies on diffusion in molten metals
Tezuka et al. Preparation of proton conductive composites with CsHSO4/CsH2PO4 and phosphosilicate gel
JP2021167268A5 (en)
Langen et al. Thermodynamic investigations of liquid (Li, Cd) alloys
Bansal et al. Study of barium borate glasses containing V2O5 and Fe2O3 using Mössbauer spectroscopy
JPS586603Y2 (en) Complex amorphous metal manufacturing equipment
MURTHY et al. Constitution of Mixed‐Alkali Phosphate Glasses: Constitution of Lithium‐Rubidium Phosphate Glasses
JPS63303049A (en) Fiber-reinforced vitreous thermal spraying material
DE2458672C3 (en) Catalyst for ammonia dissaciation
JPS6280248A (en) Production of amorphous alloy
JPS60161337A (en) Manufacture of tin oxide fiber
JPS6054997A (en) Production of tin oxide fiber
JPS59205479A (en) Method for applying tensile stress to steel plate
JPH0351657B2 (en)
Bansal et al. Study of amorphous vanadates using mössbauer spectroscopy
US662548A (en) Process of manufacturing metallic silicium.
Liptay et al. Thermal investigation of the manufacture of active substance for lead storage batteries
US1286256A (en) Manufacture of acetic acid from acetic aldehyde.

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term