JPH0351653B2 - - Google Patents

Info

Publication number
JPH0351653B2
JPH0351653B2 JP1306438A JP30643889A JPH0351653B2 JP H0351653 B2 JPH0351653 B2 JP H0351653B2 JP 1306438 A JP1306438 A JP 1306438A JP 30643889 A JP30643889 A JP 30643889A JP H0351653 B2 JPH0351653 B2 JP H0351653B2
Authority
JP
Japan
Prior art keywords
magnesium hydroxide
magnesium
strain
ray diffraction
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1306438A
Other languages
Japanese (ja)
Other versions
JPH02199019A (en
Inventor
Shigeo Myata
Masataka Kuroda
Akira Okada
Yoshifumi Okada
Mitsuo Takasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KH Neochem Co Ltd
Original Assignee
Kyowa Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Kagaku Kogyo KK filed Critical Kyowa Kagaku Kogyo KK
Priority to JP30643889A priority Critical patent/JPH02199019A/en
Publication of JPH02199019A publication Critical patent/JPH02199019A/en
Publication of JPH0351653B2 publication Critical patent/JPH0351653B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は従来公知の水酸化マグネシウムMg
(OH)2とは異なるX線回折構造を有し、例えば、
熱可塑性合成樹脂配合用難燃剤、水性塗料用難燃
剤、ケイ素鋼用焼鈍分離剤用酸化マグネシウムの
前駆物などの用途に、従来公知の水酸化マグネシ
ウムに比して著るしく優れた作用効果を示す新規
構造を有する合成水酸化マグネシウムに関する。 更に詳しくは、本発明は、下記式 Mg(OH)2 で表わされ、X線回折法における<101>方向の
歪が3.0×10-3以下で、該方向の結晶粒子径が800
Åを超え、且つBET法比表面積が20m2/g未満
であるが1m2/gを越えることを特徴とする合成
水酸化マグネシウムに関する。 水酸化マグネシウムは古くから知られており、
広い利用分野で使用されている。例えば、熱可塑
性合成樹脂に配合して該樹脂に難燃性を賦与する
のにも利用される。そして、利用し得る難燃効果
を賦与し得る量で熱可塑性合成樹脂に配合する
と、該樹脂の物理的性質とくに耐衝撃性や伸びの
悪化を伴い、且つまたこの組成物から成形品を成
形する際の樹脂流れを低下せしめて成形適性を悪
くし且つ成形能率を低下させる。更に又、得られ
る成形品にフラツシユ模様を生じて成形品外観を
悪くするなどの不都合がある。 本発明者等は、上述の如き不利益乃至欠陥の生
ずる原因について研究を進めた。その結果、この
ような不利益乃至欠陥は、水酸化マグネシウムが
本来有するその構造的特徴に由来するものである
ことを発見した。とくに、水酸化マグネシウムの
有する構造上の歪、更には結晶粒子径が、上述の
如き不利益乃至欠陥を生ずる重要な因子であるこ
とを発見した。 従来公知の水酸化マグネシウムは、良く知られ
ているように、その構造上の歪が大きく、X線回
折法における<101>方向の歪は最小でも約3.6×
10-3であつて、約10×10-3にも達している。更
に、その結晶粒子径は小さく、最大でも800Åで
100〜800Åの範囲内にあり、また、そのBET比
表面積は大きく、最小でも20m2/gで20〜100
m2/gの範囲内にある。上記構造上の歪が大きい
ことは、水酸化マグネシウムは結晶子表面の極性
の大きいことを意味し、しかも、水を媒界として
結晶子が二次凝集しやすい構造となつていること
を示している。このため、容易に二次凝集を生じ
て10〜100μに凝集し、且つこの二次凝集のため
に、凝集体中には水酸化マグネシウムの乾燥後に
おいても無視できない量の水分子及び空気が捕捉
されて残留する。従来公知の水酸化マグネシウム
は、上述の如き歪の大きな構造的特徴を有するた
め、熱可塑性合成樹脂、とくに疎水性もしくは無
極性の大きい樹脂類、たとえばポリオレフインの
如き樹脂類との親和性が悪く、その上、結晶子の
二次凝集が強いため樹脂に対する分散性が極めて
悪いものと推測され、事実、前述したように水酸
化マグネシウム配合樹脂組成物は成形適性が悪く
成形能率が低下する。また、樹脂類との親和性の
悪さは、樹脂と水酸化マグネシウム粒子との界面
間〓を発生しやすく、物理的性質とくに衝撃強度
や伸びの低下を招来するし、樹脂への均一分散を
困難にする。さらに、結晶子の二次凝集に伴う水
分子及び空気の存在が、成形時にこれらが放出さ
れるためと推測されるが、フラツシユ模様の発生
の如き成形品外観の悪化を生ずる。又さらに、結
晶子の二次凝集は嵩高性を与える結果となり、樹
脂の押出成形に際して円滑な押出し操作が行い難
く、樹脂中への均一分散を悪化する等の副次的な
欠陥を生ずる原因となる。 本発明者等は、以上詳述した従来公知の水酸化
マグネシウムが有する構造的特徴に由来する不利
益乃至欠陥を克服すべく研究を進めた。その結
果、従来未知の水酸化マグネシウムが本来有した
前記構造的特徴と明瞭に区別される新規な構造的
特徴を有する水酸化マグネシウムを提供できるこ
と、及びこの新規構造を有する水酸化マグネシウ
ムは従来公知の水酸化マグネシウムが示す上記諸
不利益乃至欠陥を克服できる優れた性質を有する
ことを発見した。更に、この新規構造を持つ従来
未知の水酸化マグネシウムが、従来行われたこと
のない但しきわめて容易な手段で工業的に有利に
製造できることを発見した。 従つて、本発明の目的は優れた改善性質を有し
且つ新規構造を有する水酸化マグネシウムを提供
するにある。 本発明の他の目的は、このような新規構造を有
する水酸化マグネシウムを工業的に有利に製造で
きる製法を提供するにある。 本発明の第三の目的は、上記新規構造を有する
水酸化マグネシウムを提供するのに有用な中間体
及びその製法を提供するにある。 本発明の第四の目的は、上記新規構造を有する
水酸化マグネシウムの利用を提供するにある。 本発明の上記諸目的及び更に多くの他の目的及
び利点は、以下の記載から一層明らかとなるであ
ろう。 本発明の水酸化マグネシウムはMg(OH)2で表
わされ且つX線回折法における<101>方向の歪
が3.0×10-3以下である。従来の水酸化マグネシ
ウムはMg(OH)2で表わされるが、上記歪が3.6×
10-3以上であるのに対して、上記歪が3.0×10-3
以下であることにおいて本発明水酸化マグネシウ
ムは区別できる。本発明の水酸化マグネシウムの
X線回折法における<101>方向の歪は、例えば
3.0×10-3以下〜0.1×10-3以上の範囲にあるのが
普通である。本発明の水酸化マグネシウムのX線
回折法における<101>方向の結晶粒子径は、800
Åを超える。従来の水酸化マグネシウムの該粒子
径が100〜800Åであるのに比して、この結晶粒子
径においても本発明の水酸化マグネシウムは特徴
的構造を示す。本発明の水酸化マグネシウムの上
記結晶粒子径は、例えば800Åを超え、50000Å以
下にあるのが普通である。従来の水酸化マグネシ
ウムのBET法比表面積は20〜100m2/gであるの
に対して、本発明の水酸化マグネシウムはBET
法比表面積が20m2/g未満であるが、1m2/gを
越えるものであつて、この比表面積においても特
徴的である。又、前述したように、従来の水酸化
マグネシウムは容易に二次凝集を生じて10〜
100μの平均二次粒子径(二次凝集粒子を含む平
均粒子径)を有する粒子となるのに対して、本発
明の水酸化マグネシウムは二次凝集を生じ難く、
凝集を生じた場合でもその平均二次粒子径は5μ
以下たとえば0.5〜2μ程度である。 本発明の新規構造を有する水酸化マグネシウム
の最適改善性質を示すものは、上記特徴を兼備す
る。すなわち、X線回折法における<101>方向
の歪が3.0×10-3以下で且つ該方向の結晶粒子径
が800Åを超え、且つBET法比表面積が20m2/g
未満であるが1m2/gを越えるものである。 上述の新規構造を有する水酸化マグネシウム
は、Mg(OH)2で表わされる従来の水酸化マグネ
シウム或いはMg(OH)Clで表わされる従来のマ
グネシウムヒドロキシクロライドのいずれとも異
なる下記式 Mg(OH)2−xAx・mH2O 但し式中、AはCl又はNO3、xは0<x<0.2
の数を示す、mは0〜6の数 で表わされる塩基性塩化−もしくは硝酸−マグネ
シウムを、水性媒体中において、加圧条件下に加
熱することによつて得ることができる。 更に、上記式で表わすことのできる塩基性塩化
−もしくは硝酸−マグネシウムは、塩化マグネシ
ウムもしくは硝酸マグネシウムとアルカリ性物質
とを、水性媒体中において、該塩化マグネシウム
もしくは硝酸マグネシウムに対して、調節された
量、とくに0.5〜0.95当量の割合のアルカリ性物
質を反応させることにより生成せしめることがで
きる。 本発明のX線回折法における<101>方向の歪
が3.0×10-3以下で且つ該方向の結晶粒子径が800
Åを越える、通常約2000Åを超える水酸化マグネ
シウムの製造に用いる上記Mg(OH)2−xAx・
mH2O[但し、AはCl又はNO3、0<x<0.2、好
ましくは0.02≦x<0.2、mは0〜6の数]の製
造に際しては、アルカリ性物質の[OH]と塩化
マグネシウムもしくは硝酸マグネシウムの
[Mg2+]とが上記当量関係、すなわち2
[OH]/[Mg2+]=0.5〜0.95の関係を満足する
ように反応を行うほかに、クロルイオンが充分に
存在する条件下に反応を行うことが好ましい。こ
のために、塩化マグネシウムのほかに例えば塩化
カルシウムを共存させた混合水溶液にアルカリ性
物質たとえば水酸化カルシウムを、上記当量関係
を満足する調節された量で加えて反応を行うこと
が好ましい結果を与える。常法に従つて、Mg
(OH)2が形成される条件を採用すると、続いて、
水性媒体中において加圧条件下に加熱しても、本
発明の前記新規構造を有する水酸化マグネシウム
を形成することはできない。上記塩化マグネシウ
ムに代えて硝酸マグネシウムを用いるほかは同様
にして塩基性硝酸マグネシウムを製造でき、本発
明の新規Mg(OH)2の製造に同様に利用できる。 上記塩基塩化−もしくは硝酸−マグネシウム
Mg(OH)2−xAx・mH2O[但し、AはCl又は
NO3、mは0〜6の数、0<x<0.2]形成反応
は、例えば温度約0〜約50℃、好ましくは約10〜
約30℃程度で行うのがよい。反応は塩化マグネシ
ウムもしくは硝酸マグネシウムとアルカリ性物質
とが充分接触できる条件下に、水性媒体中で行え
ばよく、例えば、撹拌条件下に、塩化マグネシウ
ム、硝酸マグネシウム、或は塩化マグネシウムと
塩化カルシウムの水溶液に、水酸化カルシウムを
上記当量関係を満足するように添加して行うこと
ができる。上記アルカリ性物質の例としては、水
酸化カルシウムのほかに、例えば、アンモニア、
水酸化アルカリ金属、酸化マグネシウムなどを挙
げることができる。 本発明のX線回折法における<101>方向の歪
が3.0×10-3以下である水酸化マグネシウムは、
上述の如き手段で形成される塩基性塩化マグネシ
ウム又は塩基性硝酸マグネシウムMg(OH)2
xAx・mH2O[但しAはCl又はNO3、mは0〜6
の数、0<x<0.2]を、水性媒体中で、加圧条
件下、好ましくは約5Kg/cm2以上、例えば約5〜
約30Kg/cm2の加圧条件下に、加熱することにより
製造することができる。この際、該塩基性塩化マ
グネシウム形成反応生成物系から、該塩基性塩化
マグネシウムを単離する必要はなく、該反応生成
物系をそのまま加圧条件下に加熱して行なうこと
ができ、且つこのようにすることが好ましい。 この好適態様は工業的実施にとくに適してお
り、その理由は、該Mg(OH)2−xAx・mH2Oは
比較的不安定な化合物であるが、反応母液中では
比較的安定であるためで、更に、単離操作を省略
できる利点も得られる。 通常の水酸化マグネシウムやマグネシウムヒド
ロキシクロライドを水性媒体中で、アルカリの存
在下又は不存在下に同様に加圧条件下に加熱して
も本発明の新規構造を有する水酸化マグネシウム
を形成することはできない。上記塩基性塩化−も
しくは硝酸−マグネシウムMg(OH)2−xAx・
mH2O[但し、A、x、mは前記したと同じ]は、
他の手段で形成されたものであつても差支えな
い。上記加圧条件下の水性媒体中での加熱処理
は、例えば約150〜約250℃程度の温度で行うこと
ができる。 本発明の新規構造を有する水酸化マグネシウム
は、既述の通り、従来の水酸化マグネシウムと対
比して、X線回折法における<101>方向の歪が
顕著に小さく、該方向における結晶粒子径が大き
く且つBET法比表面積が異常に小さい。これら
の特徴的構造に由来して、結晶子の表面極性が極
めて小で殆んど無くなり、二次凝集の生起が生じ
難く、非嵩高性で且つ格子欠陥濃度が低い。この
ため、従来公知の水酸化マグネシウムが熱可塑性
樹脂に配合された際に生じた既述の樹脂との親和
性の悪さ、成形性の悪さ、成形品表面の悪さ、な
どの諸不利益乃至欠陥が克服され、更に得られた
成形品の物理的強度の低下という欠陥も回避され
る。 本発明に於て、X線回折における<101>方向
の歪、該方向における結晶粒子径及びBET法比
表面積とは、以下の測定により決定された値を指
す。 <101>方向の歪及び結晶粒子径の測定法:− 次の関係式により、横軸にsinθ/λ、縦軸に βcosθ/λをプロツトし、切片の逆数から結晶粒子 径(ε)と、勾配に1/2を乗じて歪(η)を求め
る。 βcosθ/λ=1/ε+2ηsinθ/λ ただし、λ:使用したX線の波長、Cu−Kα線
で1.542Å θ:ブラツク角 β:真の半価巾、単位:ラジアン、 上記βは以下の方法により求める。 (101)面と(202)面の回折プロフイルを、X線
源として、35KV、15mAの条件で発生させたCu
−Kα線を用いて測定する。測定条件はゴニオス
ピード1/4°/分、チヤートスピード10mm/分、
スリツト巾をダイバージエンススリツト、レシー
ビングスリツト、スキヤタリングスリツトの順で
(101)面については1°−0.3mm−1°、(202)につい
ては2°−0.3mm−2°の条件で測定する。得られたプ
ロフイルにつき、バツクグランドから回折ピーク
までの高さの1/2における巾(B0)を測定する。
第1図に示す2θに対するKα1,Kα2のスプリツト
巾(δ)の関係から(101)、(202)面の2θに対す
るδを読みとる。次いで、上記B0及びδの値に
基いて、第2図に示すδ/B0とB/B0の関係か
らBを求める。高純度シリコン(純度99.999%)
について、スリツト巾1/2°−0.3mm−1/2°で各
回折プロフイルを測定し、半価巾(b)を求める。こ
れを2θに対してプロツトし、bと2θの関係を示す
グラフを作る。(101)、(202)面の2θに相当する
bからb/Bを求め第3図に示す。b/Bとβ/
Bの関係からβを求める。 BET法比表面積:− 窒素吸着法により、3点プロツト法で求める。
ただし、N2の分子吸着断面積は、16.2Å2として
計算する。また、各測定試料は予め100℃で30分
真空で排気処理した後、窒素の吸着テストを行
う。 その存在が確認され、ASTMに登録されてい
る公知の塩基性塩化マグネシウムは、以下に示す
化合物である。
The present invention utilizes the conventionally known magnesium hydroxide Mg
(OH) has a different X-ray diffraction structure from 2 , e.g.
It has significantly superior effects compared to conventionally known magnesium hydroxide for applications such as flame retardants for blending thermoplastic synthetic resins, flame retardants for water-based paints, and magnesium oxide precursors for annealing separators for silicon steel. The present invention relates to a synthetic magnesium hydroxide having a novel structure shown in FIG. More specifically, the present invention provides crystal grains that are represented by the following formula Mg(OH) 2 , have a strain in the <101> direction in X-ray diffraction of 3.0×10 -3 or less, and have a crystal particle diameter of 800
The present invention relates to a synthetic magnesium hydroxide having a BET specific surface area of less than 20 m 2 /g but more than 1 m 2 /g. Magnesium hydroxide has been known for a long time.
Used in a wide range of fields. For example, it is also used to impart flame retardancy to thermoplastic synthetic resins by blending them into the resins. If it is blended into a thermoplastic synthetic resin in an amount sufficient to impart a usable flame retardant effect, the physical properties of the resin, particularly impact resistance and elongation, may deteriorate, and molded articles may not be formed from this composition. This reduces resin flow during molding, impairs molding suitability, and lowers molding efficiency. Furthermore, there are other disadvantages such as a flash pattern appearing on the resulting molded product, which impairs the appearance of the molded product. The inventors of the present invention have conducted research into the causes of the above-mentioned disadvantages and defects. As a result, it was discovered that such disadvantages or defects originate from the inherent structural characteristics of magnesium hydroxide. In particular, it has been discovered that the structural distortion of magnesium hydroxide and furthermore the crystal particle size are important factors that cause the disadvantages or defects mentioned above. As is well known, conventionally known magnesium hydroxide has a large structural strain, and the minimum strain in the <101> direction in X-ray diffraction is approximately 3.6×.
10 -3 , reaching approximately 10×10 -3 . Furthermore, its crystal grain size is small, at most 800 Å.
It is within the range of 100 to 800 Å, and its BET specific surface area is large, with a minimum of 20 m 2 /g and 20 to 100 Å.
It is within the range of m 2 /g. The large structural strain described above means that magnesium hydroxide has a highly polar crystallite surface, and also indicates that the crystallites have a structure that facilitates secondary aggregation using water as a medium. There is. For this reason, secondary aggregation easily occurs and aggregates to a size of 10 to 100μ, and due to this secondary aggregation, a non-negligible amount of water molecules and air are trapped in the aggregate even after drying of magnesium hydroxide. and remain. Conventionally known magnesium hydroxide has the above-mentioned structural feature of large distortion, so it has poor affinity with thermoplastic synthetic resins, especially resins with high hydrophobicity or non-polarity, such as resins such as polyolefins. Moreover, it is assumed that the dispersibility in the resin is extremely poor due to the strong secondary agglomeration of crystallites, and in fact, as mentioned above, resin compositions containing magnesium hydroxide have poor moldability and reduce molding efficiency. In addition, poor affinity with resins tends to cause interfacial separation between the resin and magnesium hydroxide particles, leading to a decrease in physical properties, especially impact strength and elongation, and making it difficult to uniformly disperse the particles into the resin. Make it. Furthermore, the presence of water molecules and air associated with secondary aggregation of crystallites, presumably because these are released during molding, causes deterioration in the appearance of the molded product, such as the occurrence of flash patterns. Furthermore, secondary aggregation of crystallites results in bulkiness, making it difficult to perform a smooth extrusion operation during extrusion molding of the resin, and causing secondary defects such as worsening of uniform dispersion in the resin. Become. The present inventors conducted research to overcome the disadvantages or defects derived from the structural characteristics of conventionally known magnesium hydroxide as detailed above. As a result, it is possible to provide magnesium hydroxide having novel structural features that are clearly distinguishable from the above-mentioned structural features inherent to previously unknown magnesium hydroxide, and that magnesium hydroxide having this new structure is different from conventionally known magnesium hydroxide. It has been discovered that magnesium hydroxide has excellent properties that can overcome the disadvantages and defects described above. Furthermore, it has been discovered that this previously unknown magnesium hydroxide having a new structure can be industrially and advantageously produced by a method that has never been used before, but is extremely easy. Therefore, an object of the present invention is to provide magnesium hydroxide having excellent improved properties and a novel structure. Another object of the present invention is to provide an industrially advantageous manufacturing method for producing magnesium hydroxide having such a novel structure. A third object of the present invention is to provide an intermediate useful for providing magnesium hydroxide having the above-mentioned novel structure and a method for producing the same. A fourth object of the present invention is to provide use of magnesium hydroxide having the above-mentioned novel structure. The above objects and many other objects and advantages of the present invention will become more apparent from the following description. The magnesium hydroxide of the present invention is represented by Mg(OH) 2 and has a strain in the <101> direction as determined by X-ray diffraction of 3.0×10 −3 or less. Conventional magnesium hydroxide is expressed as Mg(OH) 2 , but the above strain is 3.6×
10 -3 or more, while the above distortion is 3.0×10 -3
The magnesium hydroxide of the present invention can be distinguished from the following. The strain in the <101> direction in the X-ray diffraction method of magnesium hydroxide of the present invention is, for example,
It is usually in the range of 3.0×10 -3 or less to 0.1×10 -3 or more. The crystal particle diameter in the <101> direction in the X-ray diffraction method of magnesium hydroxide of the present invention is 800
More than Å. While the particle size of conventional magnesium hydroxide is 100 to 800 Å, the magnesium hydroxide of the present invention exhibits a characteristic structure even with this crystal particle size. The crystal particle size of the magnesium hydroxide of the present invention is typically greater than 800 Å and less than 50000 Å, for example. While the BET specific surface area of conventional magnesium hydroxide is 20 to 100 m 2 /g, the magnesium hydroxide of the present invention has a BET specific surface area of 20 to 100 m 2 /g.
Although the specific surface area is less than 20 m 2 /g, it exceeds 1 m 2 /g, and this specific surface area is also characteristic. In addition, as mentioned above, conventional magnesium hydroxide easily causes secondary aggregation and
Whereas the particles have an average secondary particle size (average particle size including secondary agglomerated particles) of 100μ, the magnesium hydroxide of the present invention does not easily cause secondary agglomeration,
Even if agglomeration occurs, the average secondary particle size is 5μ
For example, it is about 0.5 to 2μ. The magnesium hydroxide with the novel structure of the present invention exhibiting optimally improved properties combines the above characteristics. That is, the strain in the <101> direction in the X-ray diffraction method is 3.0 × 10 -3 or less, the crystal grain size in this direction exceeds 800 Å, and the BET specific surface area is 20 m 2 /g.
However, it exceeds 1 m 2 /g. Magnesium hydroxide having the above-mentioned novel structure has the following formula Mg(OH) 2 − which is different from either the conventional magnesium hydroxide represented by Mg(OH) 2 or the conventional magnesium hydroxychloride represented by Mg(OH)Cl. xAx・mH 2 O In the formula, A is Cl or NO 3 and x is 0<x<0.2
It can be obtained by heating basic magnesium chloride or nitrate, where m is a number from 0 to 6, in an aqueous medium under pressurized conditions. Furthermore, the basic magnesium chloride or nitrate which can be represented by the above formula is prepared by combining magnesium chloride or magnesium nitrate and an alkaline substance in an aqueous medium in a controlled amount relative to the magnesium chloride or magnesium nitrate; In particular, it can be produced by reacting an alkaline substance in an amount of 0.5 to 0.95 equivalents. The strain in the <101> direction in the X-ray diffraction method of the present invention is 3.0×10 -3 or less, and the crystal grain size in this direction is 800
The above Mg(OH) 2 −xAx・
When producing mH 2 O [where A is Cl or NO 3 , 0<x<0.2, preferably 0.02≦x<0.2, m is a number from 0 to 6], an alkaline substance [OH] and magnesium chloride or Magnesium nitrate and [Mg 2+ ] meet the above equivalence relationship, that is, 2
In addition to carrying out the reaction so as to satisfy the relationship of [OH]/[Mg 2+ ]=0.5 to 0.95, it is preferable to carry out the reaction under conditions where chloride ions are sufficiently present. For this purpose, it is preferable to carry out the reaction by adding an alkaline substance, such as calcium hydroxide, in a controlled amount that satisfies the above equivalence relationship to a mixed aqueous solution containing, for example, calcium chloride in addition to magnesium chloride. According to conventional methods, Mg
Adopting the conditions under which (OH) 2 is formed, then,
Even by heating under pressurized conditions in an aqueous medium, it is not possible to form magnesium hydroxide having the novel structure of the present invention. Basic magnesium nitrate can be produced in the same manner except that magnesium nitrate is used in place of the above magnesium chloride, and can be similarly utilized in the production of the novel Mg(OH) 2 of the present invention. The above base magnesium chloride or nitrate
Mg(OH) 2 −xAx・mH 2 O [However, A is Cl or
NO 3 , m is a number from 0 to 6, 0<x<0.2] formation reaction is performed at a temperature of, for example, about 0 to about 50°C, preferably about
It is best to do this at a temperature of about 30℃. The reaction may be carried out in an aqueous medium under conditions that allow sufficient contact between magnesium chloride or magnesium nitrate and an alkaline substance. For example, the reaction may be carried out in an aqueous medium of magnesium chloride, magnesium nitrate, or magnesium chloride and calcium chloride under stirring conditions. This can be carried out by adding calcium hydroxide so as to satisfy the above equivalence relationship. Examples of the above-mentioned alkaline substances include, in addition to calcium hydroxide, ammonia,
Examples include alkali metal hydroxide and magnesium oxide. Magnesium hydroxide having a strain in the <101> direction of 3.0×10 -3 or less in the X-ray diffraction method of the present invention is
Basic magnesium chloride or basic magnesium nitrate Mg(OH) 2 − formed by means as described above.
xAx・mH 2 O [However, A is Cl or NO 3 , m is 0 to 6
0<x<0.2] in an aqueous medium under pressurized conditions, preferably at least about 5 Kg/ cm2 , e.
It can be produced by heating under pressurized conditions of about 30 kg/cm 2 . At this time, it is not necessary to isolate the basic magnesium chloride from the basic magnesium chloride-forming reaction product system, and the reaction product system can be heated as it is under pressurized conditions. It is preferable to do so. This preferred embodiment is particularly suitable for industrial implementation, since the Mg(OH) 2 −xAx·mH 2 O is a relatively unstable compound, but is relatively stable in the reaction mother liquor. Furthermore, there is an additional advantage that the isolation operation can be omitted. Even if ordinary magnesium hydroxide or magnesium hydroxychloride is heated under pressurized conditions in the presence or absence of an alkali in an aqueous medium, magnesium hydroxide having the novel structure of the present invention cannot be formed. Can not. Above basic chloride- or nitric acid-magnesium Mg(OH) 2 −xAx・
mH 2 O [A, x, m are the same as above] is
It may be formed by other means. The heat treatment in an aqueous medium under the above-mentioned pressurized conditions can be performed at a temperature of about 150 to about 250°C, for example. As mentioned above, the magnesium hydroxide having the new structure of the present invention has significantly smaller strain in the <101> direction in X-ray diffraction compared to conventional magnesium hydroxide, and has a crystal particle size in this direction. It is large and has an abnormally small BET specific surface area. Due to these characteristic structures, the surface polarity of the crystallites is extremely small and almost disappears, secondary aggregation hardly occurs, non-bulky, and the concentration of lattice defects is low. For this reason, various disadvantages and defects such as poor affinity with the previously mentioned resins, poor moldability, and poor molded product surfaces occur when conventionally known magnesium hydroxide is blended with thermoplastic resins. is overcome, and furthermore the defect of a reduction in the physical strength of the molded article obtained is also avoided. In the present invention, the strain in the <101> direction in X-ray diffraction, the crystal grain size in this direction, and the BET method specific surface area refer to values determined by the following measurements. Method for measuring strain in <101> direction and crystal grain size: - Using the following relational expression, plot sinθ/λ on the horizontal axis and βcosθ/λ on the vertical axis, and calculate the crystal grain size (ε) from the reciprocal of the intercept. Find the strain (η) by multiplying the slope by 1/2. βcosθ/λ=1/ε+2ηsinθ/λ Where, λ: Wavelength of X-ray used, 1.542Å for Cu-Kα ray θ: Black angle β: True half-value width, unit: radian The above β is calculated by the following method. demand. The diffraction profiles of the (101) and (202) planes of Cu were generated using an X-ray source of 35 KV and 15 mA.
-Measure using Kα radiation. The measurement conditions were gonio speed 1/4°/min, chart speed 10mm/min,
The slit width is 1°-0.3mm-1° for the (101) plane and 2°-0.3mm-2° for the (202) plane in the order of divergence slit, receiving slit, and scattering slit. Measure. For the obtained profile, the width (B 0 ) at 1/2 of the height from the background to the diffraction peak is measured.
From the relationship of the split widths (δ) of Kα 1 and Kα 2 with respect to 2θ shown in FIG. 1, the δ with respect to 2θ of the (101) and (202) planes can be read. Next, based on the above values of B 0 and δ, B is determined from the relationship between δ/B 0 and B/B 0 shown in FIG. High purity silicon (99.999% purity)
, measure each diffraction profile with a slit width of 1/2° - 0.3 mm - 1/2° and find the half value width (b). Plot this against 2θ and create a graph showing the relationship between b and 2θ. b/B is calculated from b corresponding to 2θ of the (101) and (202) planes and is shown in FIG. b/B and β/
Find β from the relationship B. BET method specific surface area: - Determined using the 3-point plot method using the nitrogen adsorption method.
However, the molecular adsorption cross section of N 2 is calculated as 16.2 Å 2 . In addition, each measurement sample is subjected to a nitrogen adsorption test after being vacuum treated at 100°C for 30 minutes. Known basic magnesium chloride whose existence has been confirmed and registered with ASTM is the compound shown below.

【表】 上記した通り、公知の塩基性塩化マグネシウム
中、本発明の塩基性塩化マグネシウムに最も類似
した化合物は、xが最小の1/5(=0.2)である
ASTMNo.12−123及びNo.7−409の公知化合物で
ある。 上記公知化合物のX線回折データ(ASTMの
記載による)及び同一方法で測定された本発明の
新規塩基性塩化マグネシウムのX線回折データ
を、以下に示す。 ASTMNo.12−123:−
[Table] As mentioned above, among the known basic magnesium chlorides, the compound most similar to the basic magnesium chloride of the present invention has x of the minimum 1/5 (=0.2)
These are known compounds of ASTM No. 12-123 and No. 7-409. The X-ray diffraction data of the above-mentioned known compound (as described by ASTM) and the X-ray diffraction data of the novel basic magnesium chloride of the present invention measured by the same method are shown below. ASTM No.12-123:-

【表】 ASTMNo.7−409:−【table】 ASTM No.7-409:-

【表】【table】

【表】 本発明塩基性塩化マグネシウム:−【table】 Basic magnesium chloride of the present invention:-

【表】 上記X線回折データーから、本発明のMg
(OH)2−xClx・mH2O(但しx及びmは前記した
と同じ)は公知化合物と異なる構造を有する化合
物であることが明瞭である。 更に、本発明中間体である新規化合物塩基性硝
酸マグネシウムMg(OH)2−x(NO3)x・mH2O
(但しx及びmは前記したと同じ)についての第
1表と同様なデーターを下表に示す。塩基性硝酸
マグネシウムの存在は、ASTMに記述がない。
[Table] From the above X-ray diffraction data, Mg of the present invention
It is clear that (OH) 2 -xClx·mH 2 O (where x and m are the same as above) is a compound having a structure different from that of known compounds. Furthermore, a new compound basic magnesium nitrate Mg(OH) 2 −x(NO 3 )x·mH 2 O which is an intermediate of the present invention
(However, x and m are the same as above) The same data as in Table 1 are shown in the table below. The presence of basic magnesium nitrate is not described in ASTM.

【表】 実施例 1 1.5mol/の塩化マグネシウム水溶液(液温
15℃)5を約10の反応容器に入れ、ケミスタ
ーラーで充分に撹拌しておく。これに、10mol/
のアンモニア水(液温15℃)を塩化マグネシウ
ムに対し、0.9当量に相当する1.35を約10分間
で全量加える。得られたサスペンジヨンの1部を
直ちに減圧ろ過後、水、続いてアセトンで十分洗
浄した。室温で約2時間乾燥して、X線回折と化
学分析を行つた。X線回折の結果、本物質は、本
発明の塩基性塩化マグネシウムと同定された。化
学分析の結果、本物質の組成はMg(OH)1.903
Cl0.097・mH2Oであることが示された。なお、結
晶水は、DTA(示差熱分析)、TGA(熱重量分析)
法より確認された。反応後、直ちに残り大部のサ
スペンジヨンを容量20のオートクレーブに入
れ、180℃で8時間水熱処理した。オートクレー
ブで処理するまでの反応終了時からの時間を約2
時間で行つた。これは上記不安定な物質が分解さ
れない間に水熱処理をするためである。水熱処理
後、減圧ろ過、水洗し、乾燥する。この様にして
得られた物質は、X線回折により水酸化マグネシ
ウムであることが確認された。本物質の<101>
方向の歪は、0.970×10-3、<101>方向の結晶粒
子径は4200Å、BETは6.7m2/gであつた。 実施例 2 実施例1において、アンモニア水を塩化マグネ
シウムに対して、0.7当量に相当する1.05を約
7分間で全量加える以外は、実施例1と同様の操
作を行つた。得られたサスペンジヨンの1部を直
ちに減圧ろ過後、水、続いてアセトンで十分洗浄
して、X線回折を行うとともに、化学分析を行つ
た。その結果、本物質は第1表に示す新規物質で
あることが確認された。化学分析の結果、本物質
の組成はMg(OH)1.892Cl0.108・mH2Oであること
が示された。一方、反応生成液を反応終了後直ち
に容量10のオートクレーブに入れ、170℃で8
時間水熱処理した。処理後、減圧ろ過、水洗、乾
燥した。この様にして得られた水酸化マグネシウ
ムの<101>方向の歪は1.20×10-3、<101>方向
の結晶粒子径は5260Å、BETは4.2m2/gであつ
た。 実施例 3 実施例1において、アンモニア水を塩化マグネ
シウムに対し、0.95当量に相当する1.425を約
10分で全量加える以外は、実施例1と同様の操作
を行つた。反応液の1部を除いて、全量を容量10
のオートクレーブにて、直ちに移して、200℃
で4時間水熱処理した。 反応液の1部は、反応後直ちに減圧ろ過、水洗
した後、アセトンで洗浄後、X線回折と化学分析
を行つた。X線回折の結果、本物質は、第1表に
示す新規物質であることが確認された。化学分析
の結果、本物質の組成はMg(OH)1.931Cl0.069
mH2Oであることが示された。また、水熱処理物
は、減圧、ろ過、水洗後乾燥した。この様にして
得られた水酸化マグネシウムの<101>方向の歪
は2.05×10-3、<101>方向の結晶粒子径は、2840
Å、BETは8.9m2/gであつた。 実施例 4 塩化マグネシウムと塩化カルシウムの混合水溶
液(海水からイオン交換脂膜法により、塩化ナト
リウムを製造するプロセスで製られる副生物)
(Mg2+=1.58mol/、Ca2+=0.765mol/)10
と、塩化マグネシウムの0.8当量に相当する
1.54mol/の水酸化カルシウム水溶液8.2をそ
れぞれ30℃に保つ。容量2のオーバーフロー付
き反応槽に予め1の水を入れ、ケミスターラー
で撹拌し、液温を30℃に制御する。この反応槽
に、定量ポンプで、塩化マグネシウムと塩化カル
シウムの混合水溶液をそれぞれ100ml/min、85
ml/minの供給速度で定量ポンプにより供給し、
反応を行なわしめる。反応終了後、得られたサス
ペンジヨン16で容量30のオートクレーブに直
ちに移し、145℃で8時間水熱処理を行つた。ま
た、反応生成液の残部は、減圧、ろ過、水とアセ
トンで洗浄後室温で4時間乾燥してX線回折と化
学分析を行つた。本物質は、X線回折の結果、第
1表に示す新規物質であることが確認された。化
学分析の結果本物質の組成はMg(OH)1.909
Cl0.091・mH2Oであることが示された。水熱処理
物は減圧ろ過、水洗後、乾燥した。この様にして
得られた水酸化マグネシウムの<101>方向の歪
は、1.80×10-3、<101>方向の結晶粒子径は、
2250Å、BETは12.7m2/gであつた。 実施例 5 2mol/の硝酸マグネシウム(液温15℃)2
を約5の反応容器に入れ、ケミスターラーで
充分に撹拌しておく。これに4mol/のアンモ
ニア水(液温15℃)を硝酸マグネシウムに対し、
0.9当量に相当する1.8を約20分間で全量加え
る。得られたサスペンジヨン2を直ちに、容量
5のオートクレーブで170℃で4時間水熱処理
した。残り1.8を反応終了後直ちに減圧ろ過後
アセトンで十分洗浄し、X線回折と化学分析を行
つた。本物質は、X線回折の結果第2表に示す新
規物質であることが確認された。化学分析の結
果、本物質の組成はMg(OH)1.827(NO30.173
mH2Oであることが示された。水熱処理物は減
圧、ろ過、水洗後乾燥した。この様にして得られ
た水酸化マグネシウムの<101>方向の歪は2.40
×10-3、結晶粒子径は、4200Å、BETは9.6m2
gであつた。 比較例 1 1.5mol/の塩化マグネシウム2を40℃に
保つて、十分撹拌しているところへ、1.5mol/
の水酸化カルシウム水溶液を塩化マグネシウム
に対し当量に相当する2を約60分で全量加え
る。得られた反応液を減圧ろ過、水洗した。脱水
物を80℃で10時間乾燥した物は、X線回折の結果
水酸化マグネシウムであつた。また、水洗物を6
の水に懸濁させて、10容のオートクレーブを
使つて250℃で8時間水熱処理した。水熱処理物
を減圧ろ過、水洗し、乾燥した。この物質の<
101>方向の歪は3.70×10-3、<101>方向の結晶
粒子径は568Å、BETは32m2/gであつた。ま
た、水熱処理前の物質は、<101>方向の歪は4.76
×10-3、<101>方向の結晶粒子径は549Å、BET
は21m2/gであつた。 比較例 2 1.5mol/の塩化マグネシウム4と
2.0mol/の水酸化カルシウム4をそれぞれ
20℃に保つ。容量オーバーフロー付き1.5の反
応槽に水を500ml入れ、十分に撹拌しておく。そ
こに、定量ポンプで、それぞれ40ml/minの速度
で供給する。塩化マグネシウムに対するアルカリ
の供給は当量にする。約100分後、反応終了し、
得られた懸濁液の1部を減圧ろ過、水洗しアセト
ンで洗浄した。この物質は、X線回折の結果、水
酸化マグネシウムであつた。また、残り大部の懸
濁液を反応後直ちに10容のオートクレーブに
て、170℃で8時間水熱処理した。水熱処理物を
減圧ろ過、水洗し、乾燥した。この物質は、<101
>方向の歪が3.70×10-3、<101>方向の結晶粒子
径が647Å、BETは26m2/gであつた。また、水
熱処理前の物質は、<101>方向の歪が4.83×
10-3、<101>方向の結晶粒子径が476Å、BET31
m2/gであつた。 参考例 1 実施例2で得られた<101>方向の歪が1.20×
10-3、<101>方向の結晶粒子径が5260Å、BET
が4.2m2/gの水酸化マグネシウム2.2Kgを150℃
で3時間再乾燥し、1.8Kgのポリプロピレン
(MI6.0、密度0.91)とヘンシエルミキサーで混合
した後、樹脂温度約230℃で押出機を通し溶融混
練した。得られた樹脂組成物を射出成型し、板状
体とした。ASTM規格、UL規格に従つて、物性
と難燃性を測定し評価した。得られた結果は、第
3表の通りである。 参考例 2 実施例2で得られた水酸化マグネシウム2.2Kg
を10×10-3mol/のステアリン酸ソーダ水溶液
10中に入れ、80℃で2時間撹拌下に維持し、水
酸化マグネシウムの表面をステアリン酸でコーテ
イングする。これを、減圧ろ過、水洗後、乾燥
し、参考例1と同様の処理を行つた。その結果を
第3表に示す。 参考例 4 比較例1で得られた<101>方向の歪が4.76×
10-3、<101>方向の結晶粒子径が549Å、BET21
m2/gの水酸化マグネシウム2.2Kgを参考例1で
用いた水酸化マグネシウムのかわりに用いた結果
を第3表に示す。 参考例 4 比較例2で得られた<101>方向の歪が3.70×
10-3、<101>方向の結晶粒子径が647Å、BET26
m2/gの水酸化マグネシウムを参考例1で用いた
水酸化マグネシウムのかわりを用いた結果を第3
表に示す。 参考例 5 参考例1で用いたポリプロピレン単独を成型し
た場合の結果を第3表に示す。
[Table] Example 1 1.5 mol/magnesium chloride aqueous solution (liquid temperature
15℃) into a reaction container of about 10, and stir thoroughly with a Chemister stirrer. Add 10mol/
of ammonia water (liquid temperature 15°C) to magnesium chloride, add the entire amount of 1.35 equivalent to 0.9 equivalent over about 10 minutes. A portion of the obtained suspension was immediately filtered under reduced pressure and thoroughly washed with water and then with acetone. After drying at room temperature for about 2 hours, X-ray diffraction and chemical analysis were performed. As a result of X-ray diffraction, this substance was identified as basic magnesium chloride of the present invention. As a result of chemical analysis, the composition of this substance is Mg(OH) 1.903
It was shown that Cl 0.097 ·mH 2 O. In addition, crystal water can be measured by DTA (differential thermal analysis) or TGA (thermogravimetric analysis).
Confirmed by law. Immediately after the reaction, most of the remaining suspension was placed in a 20 capacity autoclave and hydrothermally treated at 180°C for 8 hours. Approximately 2 hours from the end of the reaction until processing in the autoclave
I got there in time. This is because the hydrothermal treatment is performed while the unstable substances are not decomposed. After hydrothermal treatment, filter under reduced pressure, wash with water, and dry. The substance thus obtained was confirmed to be magnesium hydroxide by X-ray diffraction. <101> of this substance
The strain in the direction was 0.970×10 −3 , the crystal grain size in the <101> direction was 4200 Å, and the BET was 6.7 m 2 /g. Example 2 The same operation as in Example 1 was carried out except that 1.05 equivalent of aqueous ammonia was added to magnesium chloride in a total amount of 0.7 equivalent over about 7 minutes. A portion of the resulting suspension was immediately filtered under reduced pressure, thoroughly washed with water and then with acetone, and subjected to X-ray diffraction and chemical analysis. As a result, this substance was confirmed to be a new substance shown in Table 1. Chemical analysis showed that the composition of this substance was Mg(OH) 1.892 Cl 0.108 ·mH 2 O. On the other hand, immediately after the reaction was completed, the reaction product solution was put into an autoclave with a capacity of 10, and heated to 170℃ for 8 hours.
Hydrothermally treated for hours. After treatment, it was filtered under reduced pressure, washed with water, and dried. The thus obtained magnesium hydroxide had a strain in the <101> direction of 1.20×10 -3 , a crystal grain size in the <101> direction of 5260 Å, and a BET of 4.2 m 2 /g. Example 3 In Example 1, 1.425 equivalent to 0.95 equivalent of ammonia water was added to magnesium chloride.
The same operation as in Example 1 was performed except that the entire amount was added in 10 minutes. Excluding one part of the reaction solution, reduce the total volume to 10
Immediately transfer to an autoclave at 200°C.
Hydrothermal treatment was carried out for 4 hours. Immediately after the reaction, a portion of the reaction solution was filtered under reduced pressure, washed with water, washed with acetone, and then subjected to X-ray diffraction and chemical analysis. As a result of X-ray diffraction, this substance was confirmed to be a new substance shown in Table 1. As a result of chemical analysis, the composition of this substance is Mg(OH) 1.931 Cl 0.069 .
It was shown that mH 2 O. Moreover, the hydrothermally treated product was dried under reduced pressure, filtered, washed with water, and then dried. The strain in the <101> direction of the magnesium hydroxide thus obtained is 2.05×10 -3 , and the crystal particle size in the <101> direction is 2840
Å, BET was 8.9 m 2 /g. Example 4 Mixed aqueous solution of magnesium chloride and calcium chloride (a by-product produced in the process of producing sodium chloride from seawater by the ion exchange fat membrane method)
(Mg 2+ = 1.58 mol/, Ca 2+ = 0.765 mol/) 10
and equivalent to 0.8 equivalents of magnesium chloride
1.54 mol/calcium hydroxide aqueous solution 8.2 each is kept at 30°C. Pour 1 water in advance into a reaction tank with a capacity of 2 and equipped with an overflow, stir with a Chemister stirrer, and control the liquid temperature at 30°C. A mixed aqueous solution of magnesium chloride and calcium chloride was added to this reaction tank using a metering pump at 100 ml/min, 85 mL/min, respectively.
Supplied by a metering pump at a supply rate of ml/min,
Let the reaction take place. After the reaction was completed, the resulting suspension 16 was immediately transferred to an autoclave with a capacity of 30 and subjected to hydrothermal treatment at 145°C for 8 hours. The remainder of the reaction product solution was subjected to X-ray diffraction and chemical analysis after being vacuumed, filtered, washed with water and acetone, and dried at room temperature for 4 hours. As a result of X-ray diffraction, this substance was confirmed to be a new substance shown in Table 1. As a result of chemical analysis, the composition of this substance is Mg(OH) 1.909
It was shown that Cl 0.091 ·mH 2 O. The hydrothermally treated product was filtered under reduced pressure, washed with water, and then dried. The strain in the <101> direction of the magnesium hydroxide thus obtained is 1.80×10 -3 , and the crystal particle size in the <101> direction is:
2250 Å, BET was 12.7 m 2 /g. Example 5 2 mol/magnesium nitrate (liquid temperature 15°C) 2
Place the mixture in a reaction container of about 5 mL and stir thoroughly with a Chemister stirrer. To this, add 4 mol/aqueous ammonia (liquid temperature 15℃) to magnesium nitrate.
Add the entire amount of 1.8 equivalent to 0.9 over about 20 minutes. The resulting suspension 2 was immediately subjected to hydrothermal treatment at 170° C. for 4 hours in an autoclave with a capacity of 5. Immediately after the reaction was completed, the remaining 1.8 was filtered under reduced pressure, thoroughly washed with acetone, and subjected to X-ray diffraction and chemical analysis. This substance was confirmed to be a new substance shown in Table 2 as a result of X-ray diffraction. As a result of chemical analysis, the composition of this substance is Mg(OH) 1.827 (NO 3 ) 0.173 .
It was shown that mH 2 O. The hydrothermally treated product was subjected to reduced pressure, filtered, washed with water, and then dried. The strain in the <101> direction of the magnesium hydroxide obtained in this way is 2.40.
×10 -3 , crystal grain size is 4200Å, BET is 9.6m 2 /
It was hot at g. Comparative Example 1 1.5 mol/magnesium chloride 2 was kept at 40°C and stirred thoroughly.
Add the entire amount of calcium hydroxide aqueous solution equivalent to 2 equivalents to magnesium chloride in about 60 minutes. The resulting reaction solution was filtered under reduced pressure and washed with water. The dehydrated product was dried at 80°C for 10 hours and was found to be magnesium hydroxide by X-ray diffraction. Also, wash the dishes with water for 6 minutes.
of water and hydrothermally treated at 250°C for 8 hours using a 10 volume autoclave. The hydrothermally treated product was filtered under reduced pressure, washed with water, and dried. of this substance
The strain in the <101> direction was 3.70×10 -3 , the crystal grain size in the <101> direction was 568 Å, and the BET was 32 m 2 /g. In addition, the material before hydrothermal treatment has a strain of 4.76 in the <101> direction.
×10 -3 , crystal grain size in <101> direction is 549 Å, BET
was 21 m 2 /g. Comparative example 2 1.5 mol/magnesium chloride 4 and
2.0 mol/calcium hydroxide 4 each
Keep at 20℃. Pour 500 ml of water into a 1.5-sized reaction tank with a capacity overflow and stir thoroughly. A metering pump is used to supply each sample at a rate of 40 ml/min. The supply of alkali is equivalent to that of magnesium chloride. After about 100 minutes, the reaction was completed,
A portion of the resulting suspension was filtered under reduced pressure, washed with water, and washed with acetone. As a result of X-ray diffraction, this material was found to be magnesium hydroxide. Immediately after the reaction, most of the remaining suspension was hydrothermally treated at 170°C for 8 hours in a 10 volume autoclave. The hydrothermally treated product was filtered under reduced pressure, washed with water, and dried. This substance is <101
The strain in the <101> direction was 3.70×10 -3 , the crystal grain size in the <101> direction was 647 Å, and the BET was 26 m 2 /g. In addition, the material before hydrothermal treatment has a strain of 4.83× in the <101> direction.
10 -3 , crystal grain size in <101> direction is 476 Å, BET31
m 2 /g. Reference example 1 The strain in the <101> direction obtained in Example 2 is 1.20×
10 -3 , crystal grain size in <101> direction is 5260 Å, BET
2.2Kg of magnesium hydroxide with 4.2m 2 /g at 150℃
The mixture was re-dried for 3 hours, mixed with 1.8 kg of polypropylene (MI 6.0, density 0.91) using a Henschel mixer, and then melt-kneaded through an extruder at a resin temperature of about 230°C. The obtained resin composition was injection molded to form a plate-shaped body. Physical properties and flame retardancy were measured and evaluated in accordance with ASTM and UL standards. The results obtained are shown in Table 3. Reference example 2 Magnesium hydroxide obtained in Example 2 2.2Kg
10×10 -3 mol/sodium stearate aqueous solution
10 and maintained under stirring at 80° C. for 2 hours to coat the surface of the magnesium hydroxide with stearic acid. This was filtered under reduced pressure, washed with water, dried, and treated in the same manner as in Reference Example 1. The results are shown in Table 3. Reference Example 4 The strain in the <101> direction obtained in Comparative Example 1 was 4.76×
10 -3 , crystal grain size in <101> direction is 549 Å, BET21
Table 3 shows the results when 2.2 kg of m 2 /g magnesium hydroxide was used in place of the magnesium hydroxide used in Reference Example 1. Reference Example 4 The strain in the <101> direction obtained in Comparative Example 2 is 3.70×
10 -3 , crystal grain size in <101> direction is 647 Å, BET26
The results of using m 2 /g of magnesium hydroxide in place of the magnesium hydroxide used in Reference Example 1 are shown in the third example.
Shown in the table. Reference Example 5 Table 3 shows the results when the polypropylene used in Reference Example 1 was molded alone.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は、本発明において、X線回折
における<101>方向の歪及び結晶粒子径を測定
決定する方法を説明するためのグラフである。
FIGS. 1 to 3 are graphs for explaining a method for measuring and determining strain in the <101> direction and crystal grain size in X-ray diffraction in the present invention.

Claims (1)

【特許請求の範囲】 1 下記式 Mg(OH)2 で表わされ、X線回折法における<101>方向の
歪が3.0×10-3以下で、<101>方向の結晶粒子径
が800Åを超え、且つBET法比表面積が20m2/g
未満であるが1m2/gを越えることを特徴とする
合成水酸化マグネシウム。
[Claims] 1 Represented by the following formula Mg(OH) 2 , the strain in the <101> direction in X-ray diffraction is 3.0×10 -3 or less, and the crystal grain size in the <101> direction is 800 Å. Exceeding and BET method specific surface area of 20m 2 /g
Synthetic magnesium hydroxide characterized in that it has an area of less than 1 m 2 /g but more than 1 m 2 /g.
JP30643889A 1989-11-28 1989-11-28 Synthetic magnesium hydroxide having novel structure Granted JPH02199019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30643889A JPH02199019A (en) 1989-11-28 1989-11-28 Synthetic magnesium hydroxide having novel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30643889A JPH02199019A (en) 1989-11-28 1989-11-28 Synthetic magnesium hydroxide having novel structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3191976A Division JPS52115799A (en) 1975-05-30 1976-03-25 Magnesiumhydroxide having novel structure intermediate thereof and process for preparing same

Publications (2)

Publication Number Publication Date
JPH02199019A JPH02199019A (en) 1990-08-07
JPH0351653B2 true JPH0351653B2 (en) 1991-08-07

Family

ID=17957011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30643889A Granted JPH02199019A (en) 1989-11-28 1989-11-28 Synthetic magnesium hydroxide having novel structure

Country Status (1)

Country Link
JP (1) JPH02199019A (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.AM.CERAM.SOC=1975 *

Also Published As

Publication number Publication date
JPH02199019A (en) 1990-08-07

Similar Documents

Publication Publication Date Title
CA2564630C (en) Organic acid anion containing aluminum salt hydroxide particles, production method thereof, and use thereof
KR101228880B1 (en) Hydrotalcite with extremely low content of sodium, process for preparing it and synthetic resin composition comprising it
JP5128882B2 (en) Magnesium hydroxide fine particles and method for producing the same
JP2004225052A (en) Thermal-degradation inhibitor
RU2163564C2 (en) Complex metal hydroxide, method of preparing complex metal hydroxides, and flame-retardation substance for high-molecular compounds prepared by this method involving that hydroxide
US7405359B2 (en) Mg-Al-based hydrotalcite-type particles, chlorine-containing resin composition and process for producing the particles
JPWO2006109847A1 (en) Alnite type compound particles, production method thereof and use thereof
KR20140138613A (en) Method for manufacturing hydrotalcite particles
JP4775950B2 (en) Resin composition and molded article containing calcium hydroxide
EP3187483B1 (en) Novel magnesium hydroxide-based solid solution, and resin composition and precursor for highly active magnesium oxide which include same
JP4785134B2 (en) Acid acceptor with improved electrical insulation, composition containing the same and molded article thereof
KR102491799B1 (en) Particulate hydrotalcite, its production method, its resin composition, and its suspension
JPS6348809B2 (en)
CN1972865A (en) High form factor crystallized zirconium phosphate, method for the preparation thereof and use thereof in a macromolecular material
JP5394380B2 (en) Flame retardant resin composition
EP2682369B1 (en) Fibrous basic magnesium sulfate powder and method for producing same
US5476642A (en) Magnesium hydroxide and process for production thereof
KR100996716B1 (en) Magnesium hydroxide-melamine complex particle and flame retardant compositions including the same
TWI460130B (en) Process for the production of a storage-stable barium sulphate having good dispersibility
JPH0345012B2 (en)
JP6593942B2 (en) Fine particle composite metal hydroxide, fired product thereof, production method thereof and resin composition thereof
JPH0351653B2 (en)
KR101426604B1 (en) The method of preparing layered double hydroxide that a reactive inserpion-substance between layer was added
JP7239492B2 (en) Hydrotalcite particles, method for producing the same, and resin stabilizer and resin composition comprising the same
CN109775733B (en) Preparation method of nano molybdenum oxide hybrid magnesium hydroxide flame retardant