JPH0351602A - Operation support apparatus - Google Patents

Operation support apparatus

Info

Publication number
JPH0351602A
JPH0351602A JP18602389A JP18602389A JPH0351602A JP H0351602 A JPH0351602 A JP H0351602A JP 18602389 A JP18602389 A JP 18602389A JP 18602389 A JP18602389 A JP 18602389A JP H0351602 A JPH0351602 A JP H0351602A
Authority
JP
Japan
Prior art keywords
value
steam
temperature
calculation means
thermal stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18602389A
Other languages
Japanese (ja)
Other versions
JP2851868B2 (en
Inventor
Yukio Miyama
幸穂 深山
Hiroshi Oshima
拓 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP18602389A priority Critical patent/JP2851868B2/en
Publication of JPH0351602A publication Critical patent/JPH0351602A/en
Application granted granted Critical
Publication of JP2851868B2 publication Critical patent/JP2851868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To improve reliabilities without requiring skill by predicting future values of thermal stress of a heat exchanger outlet header and a gas-water separator by respectively appliying heat transfer rates corrected by the use of temperature distribution in thickness directions to obtain heating-up rates, pressure-rising rates and command values thereof respectively at the present time in an operation support apparatus of a steam generator etc. CONSTITUTION:On receipt steam temperature present value signals 17 and valve-opening signals at the present time 10, 13, 18, a first arithmetic means 27 outputs steam temperature future value prediction signals 37. Based on these signals 37, arithmetic means 28, 30 successively predict quantities of heat transfer and thermal stress, whereby an arithmetic means 31 outputs heating-up rate limiting value signals 41 to an optimum control variable computing means 32. The means 32 determines deviations between heating-up target temperature signals 38 and the signals 17 to output, based on the deviations, excessive steam, discharge valve actuation signals 10, fuel flow control valve actuation signals 13 and excessive steam feed valve actuation signals 18 within the range of the signals 41. In this manner, reliability can be improved without requiring skill.

Description

【発明の詳細な説明】 〔産業上の利用分野) 本発明は蒸気発生設備などにおける運転支援装置に係り
、特に設備の高信頼性を維持しつつ、頻繁な蒸気温度、
圧力変化を伴う運用に好適な運転支援装置に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an operation support device for steam generation equipment, etc., and in particular, to maintain high reliability of the equipment while frequently controlling steam temperature,
The present invention relates to a driving support device suitable for operations involving pressure changes.

〔従来の技術〕[Conventional technology]

第3図は本発明の対象たる蒸気発生設備の熱交換部位と
、従来技術に基づく計装システムの一例を示す。
FIG. 3 shows an example of a heat exchange part of a steam generation facility to which the present invention is applied and an instrumentation system based on the prior art.

被過熱蒸気1は熱交換器入口ヘッダ4を経て熱交換器伝
熱管5に導かれる。該伝熱管5は燃料供給ライン11か
らの燃料を燃料流調弁12により加減して、パーナ14
に与えて得られた火炎l5により加熱されており、該伝
熱管5の通過蒸気は過熱された後、熱交換器出口ヘッダ
6を経て過熱蒸気供給ライン23に送られる.このとき
、かかる蒸気発生設備が発生する供給ライン23の過熱
蒸気量は過熱蒸気供給弁9の開度により調節され、その
際の余剰蒸気は余剰蒸気排出弁2により排出される。ま
た、かかる設備の発生蒸気温度は温度検出器7による計
測値に基づき、該伝熱管5の通過蒸気流量に応じてパー
ナ14に供給する燃料量を加減して調整する。
The steam to be superheated 1 is led to the heat exchanger heat exchanger tubes 5 via the heat exchanger inlet header 4 . The heat transfer tube 5 regulates the fuel from the fuel supply line 11 with a fuel flow control valve 12,
The steam passing through the heat exchanger tubes 5 is superheated and then sent to the superheated steam supply line 23 via the heat exchanger outlet header 6. At this time, the amount of superheated steam in the supply line 23 generated by the steam generation equipment is adjusted by the opening degree of the superheated steam supply valve 9, and the surplus steam at this time is discharged by the surplus steam discharge valve 2. Further, the temperature of the steam generated in this equipment is adjusted based on the measured value by the temperature detector 7 by adjusting the amount of fuel supplied to the parner 14 according to the flow rate of steam passing through the heat transfer tube 5.

この蒸気発生設備において、過熱蒸気供給ライン23に
おける蒸気温度、流量を頻繁に変化させる必要がある場
合は、設備信頼性の面で注意を要する。すなわち、蒸気
温度を意識的に変化させる場合はもちろんのこと、蒸気
流量を変化させる場合であっても蒸気流量の変化に対応
して、該伝熱管5における熱交換量変化をぴったり調節
できなければ蒸気温度変動を生じ、設備を構成する容器
に熱応力を発生する。そして該熱応力に伴う疲労損傷及
びクリープ損傷により、ついには容器の亀裂発生,噴破
といった事態を招く恐れがある。
In this steam generation equipment, if it is necessary to frequently change the steam temperature and flow rate in the superheated steam supply line 23, care must be taken in terms of equipment reliability. In other words, not only when changing the steam temperature intentionally, but also when changing the steam flow rate, it is necessary to precisely adjust the change in the amount of heat exchange in the heat transfer tubes 5 in response to the change in the steam flow rate. This causes steam temperature fluctuations and thermal stress in the containers that make up the equipment. Fatigue damage and creep damage caused by the thermal stress may eventually lead to cracking and explosion of the container.

このような危惧に対処するため、従来技術においても熱
交換器出口ヘッダ6の熱応力の監視が行なわれている。
In order to deal with such concerns, the thermal stress of the heat exchanger outlet header 6 is also monitored in the prior art.

これは、かかるヘッダは厚肉であって、本質的にメタル
温度分布に起因する熱応力が顕著に発生し、かつ、万が
一の亀裂発生等の事態に陥った際に、伝熱管5に比して
特に交替が困難である点、及び熱交換部位の出口は熱収
支のアンバランスが累積して蒸気温度の変動が最も大き
くなりやすい等の観点から、過熱蒸気を発生する設備に
おける熱応力の代表監視点としてふさわしいからである
This is because such a header is thick-walled and generates significant thermal stress essentially due to the metal temperature distribution, and in the unlikely event that cracks occur, it will This is a representative example of thermal stress in equipment that generates superheated steam. This is because it is suitable as a monitoring point.

従来技術に基づく熱応力監視の実施は、例えば宮垣.程
塚:ボイラ熱応力監視装置:日立評論第65巻6号P3
91(昭58−6)に紹介されているが、その熱応力の
算出法は以下の考え方に要約できる。
Implementations of thermal stress monitoring based on prior art techniques are described, for example, by Miyagaki. Hodozuka: Boiler thermal stress monitoring device: Hitachi Review Vol. 65, No. 6, P3
91 (Sho 58-6), the method for calculating thermal stress can be summarized as follows.

一般にヘッダ等の円筒容器の温度分布は、肉厚に対して
筒部の長さは十分に長いため、軸対象一次元の熱伝導方
程式を解けば良いことが知られており、該方程式は下弐
に示される。
In general, it is known that the temperature distribution of a cylindrical container such as a header can be determined by solving an axially symmetric one-dimensional heat conduction equation, since the length of the cylindrical portion is sufficiently long relative to the wall thickness. Shown in 2.

・・・・・・・・・(1) C K= ・・・・・・・・・(2) μ ρ ここに、以下の記号を与える。・・・・・・・・・(1) C K= ・・・・・・・・・(2) μ ρ Here, the following symbols are given.

L二時間経過(sec) ρ:メタル密度(kg/m!) θ:メタル温度〔゜C〕 k:メタル温度伝導度(m”/sec)『:円筒容器半
径方向の距離(m) C:メタル熱伝導率(kcal /m− sec・”C
)μ:メタル比熱(kcal/kg ・”C )微分方
程式(1)を解く際の境界条件の与え方の相違に係り、
3種類の実施例を示すことができるが、これについては
後述する。
L Two hours elapsed (sec) ρ: Metal density (kg/m!) θ: Metal temperature [°C] k: Metal temperature conductivity (m"/sec) ': Distance in the radial direction of the cylindrical container (m) C: Metal thermal conductivity (kcal/m-sec・”C
) μ: Specific heat of metal (kcal/kg ・”C) Regarding the difference in how to give the boundary conditions when solving the differential equation (1),
Three types of embodiments can be shown, which will be described later.

微分方程式(1)を解くと、rの関数θ(r, t)と
して時刻tにおけるメタル温度分布を得ることができる
が、容器の平均温度はrの値により、同一温度θ(r,
t)近傍の体積が相違するため、これを考慮して求める
必要がある。かくなる平均メタル温度0は、体積平均温
度と呼ばれ次式で与えられる。
By solving the differential equation (1), the metal temperature distribution at time t can be obtained as a function of r, θ(r, t), but the average temperature of the container is the same temperature θ(r, t), depending on the value of r.
t) Since the volumes in the vicinity are different, it is necessary to take this into consideration when calculating. This average metal temperature 0 is called the volume average temperature and is given by the following equation.

rm ここに、 添字a, ・・・・・・・・・(7) bはそれぞれ円筒容器の内外 面を示す。従ってθ.=θ(rs,t),θ5一θ(r
b,L)である。
rm Here, subscripts a, ...... (7) b indicate the inner and outer surfaces of the cylindrical container, respectively. Therefore θ. = θ (rs, t), θ5 - θ (r
b, L).

円筒容器においては一般に内面の熱応力が最も厳しくな
ることが知られているが、これは以下のように算出でき
る。
It is generally known that the thermal stress on the inner surface of a cylindrical container is the most severe, and this can be calculated as follows.

σ、,=0             ・・・・・・・
・・(8)ここに以下の記号を与える。
σ,,=0 ・・・・・・・・・
...(8) Give the following symbol here.

μ:メタル線膨張係数(1/”C) η;メタルヤング率(kg/mm” )ν:メタルポア
ソン比 σt:内面熱応力(kg/rrrm”)また、添字r,
s,zは順に半径,円周,軸方向の戒分てあることを示
す。
μ: Metal linear expansion coefficient (1/”C) η: Metal Young’s modulus (kg/mm”) ν: Metal Poisson’s ratio σt: Internal thermal stress (kg/rrrm”) Also, subscript r,
s and z indicate the radial, circumferential, and axial directions, respectively.

さらに、圧力容器においては内圧応力を考慮しなければ
ならないが、これらは下弐に示される。
Furthermore, in a pressure vessel, internal pressure stresses must be taken into account, and these are shown in Figure 2 below.

lυυ ・・・・・・・・・(11) ?こに、以下の記号を与える。lυυ ・・・・・・・・・(11) ? The following symbol is given here.

σ.:内面内圧応力(kg/mm”) P,:容器内流体圧力(kg/cm”)熱交換器ヘッダ
、気水分離器等は円筒容器の側面に伝熱管や連絡管が接
続されており、その先端はノズルとみなすことができる
。公知のように、円筒容器の内面にかかるノズル上の穴
が存在する場合、その穴のコーナ一部は特に応力値が高
くなるが、その値はノズル状の穴の存在しない容器の内
面の応力値に応力集中定数を乗じて評価すれば良いから
、ノズル状の穴のコーナ一部の応力は以下に求められる
σ. : Internal internal pressure stress (kg/mm") P, : Fluid pressure inside the container (kg/cm") Heat exchanger headers, steam separators, etc. have heat transfer tubes and communication pipes connected to the side of the cylindrical container. Its tip can be considered a nozzle. As is known, when there is a nozzle-like hole on the inner surface of a cylindrical container, the stress value is particularly high at a part of the corner of the hole, but this value is lower than the stress on the inner surface of the container without the nozzle-like hole. Since the stress can be evaluated by multiplying the value by the stress concentration constant, the stress at a part of the corner of the nozzle-shaped hole can be obtained as follows.

σ,=K,σ■ σ,=Ktlσ.+K■σp. σ8=K.σ,,+K.,σ■ ここに 、以下の記号を与える。σ,=K,σ■ σ,=Ktlσ. +K■σp. σ8=K. σ,,+K. ,σ■ Here, the following symbols are given.

σ:ノズルコーナ一部分合計応力(kg/mm2)・・
・・・・・・・(12) ・・・・・・・・・(l3) ・・・・・・・・・(14) Kt:熱応力集中係数 Kp:内圧応力集中係数 以上のように算出したノズルコーナ一部は、かかる容器
において、最も応力値が厳しい箇所であるため、該箇所
を対象に発生応力に係る損傷の評価を行なえば良い。公
知のように被労損傷は主応力差の三或分のうち絶対値最
大の値、クリープ損傷は相当応力値がそれぞれ支配する
が、これらの諸量は下式で求められる。
σ: Partial total stress of nozzle corner (kg/mm2)...
・・・・・・・・・(12) ・・・・・・・・・(l3) ・・・・・・・・・(14) Kt: Thermal stress concentration coefficient Kp: Internal pressure stress concentration coefficient As shown above Since the calculated part of the nozzle corner is the part of the container where the stress value is the most severe, it is sufficient to evaluate damage related to the generated stress in this part. As is well known, induced damage is determined by the maximum absolute value among the three parts of the principal stress difference, and creep damage is determined by the equivalent stress value, and these quantities are determined by the following formulas.

σ,2=σ3−σ2         ・・・・・・・
・・(15)σ2r=σ2−σ,         ・
・・・・・・・・(16)σ,,=σ,一σ,    
     ・・・・・・・・・(17)・・・・・・・
・・ (18) ここに、下弐の記号を定義する。
σ,2=σ3−σ2 ・・・・・・・・・
...(15)σ2r=σ2−σ, ・
・・・・・・・・・(16)σ,,=σ,−σ,
・・・・・・・・・(17)・・・・・・・
... (18) Here, define the symbol for lower two.

δsz:主応力差(周一軸威分)   (kg/mm2
)δzr:主応力差(軸一半径或分)  (kg/mm
”)δrs:主応力差(半径一周或分)  (kg/m
m”)δeg:相当応力        (kg/mm
”)以上に述べた諸式の適用にあたり、前述したように
(1)式の境界条件の与え方に係り、実施例が種々存在
し、それぞれ特徴を有し、第3図に示す構造は以下タイ
プ1と呼ぶ典型的な構戒である。
δsz: Principal stress difference (circumferential uniaxial force) (kg/mm2
) δzr: Principal stress difference (axis - radius) (kg/mm
”) δrs: Principal stress difference (one round of radius) (kg/m
m”) δeg: Equivalent stress (kg/mm
”) In applying the above-mentioned equations, as mentioned above, there are various examples regarding how to give the boundary conditions of equation (1), each with its own characteristics, and the structure shown in Figure 3 is as follows. This is a typical structure called Type 1.

タイプIを詳述した後、以下タイプ■と呼ぶ第4図、以
下タイプ■と呼ぶ第5図について説明することとする。
After describing Type I in detail, FIG. 4, hereinafter referred to as Type ■, and FIG. 5, hereinafter referred to as Type ■, will be explained.

タイプ■においては以下の考え方に従う。第3図におい
てヘツダ6の外面は保温材20に囲まれているため、外
面から熱の出入りは無いと仮定する。従がって、メタル
の温度傾配を用いて外面単位面積あたりの熱移動量を表
わせるから、下式を得る。
Type ■ follows the concept below. In FIG. 3, since the outer surface of the header 6 is surrounded by the heat insulating material 20, it is assumed that no heat enters or exits from the outer surface. Therefore, since the amount of heat transfer per unit area of the outer surface can be expressed using the temperature gradient of the metal, the following equation is obtained.

同様に、内面における熱移動量は、内面と内部の流体間
の熱伝達量に等しいから、単位面積について下弐を得る
Similarly, since the amount of heat transfer on the inner surface is equal to the amount of heat transfer between the inner surface and the fluid inside, we obtain the following for unit area.

ここに、次の記号を定義する。Here, the following symbols are defined.

α:メタル一流体間熱伝達率〔kcaI/Illz・s
ec.゜cθf:平均流体温度〔゜C〕 タイプ1においては、時々刻々θrを与えつつ、(1)
式を(1 9), (2 0)式と組合わせて解く。
α: Heat transfer coefficient between metal and fluid [kcaI/Illz・s
ec.゜cθf: Average fluid temperature [゜C] In type 1, while giving θr momentarily, (1)
Solve the equation by combining it with equations (19) and (20).

具体的には温度検出手段7により得た流体温度信号l7
をθrとして、第2の演算手段107で(20)式の右
辺を算出し、既に右辺の値を仮定した(19)式の境界
条件と共に、(1)式を解く第3の演算手段109に与
えることによる。
Specifically, the fluid temperature signal l7 obtained by the temperature detection means 7
As θr, the second calculation means 107 calculates the right-hand side of equation (20), and together with the boundary condition of equation (19), which already assumes the value of the right-hand side, the third calculation means 109 solves equation (1). By giving.

第2の演算千段107に取り扱う(2o)式中の熱伝達
率αの値は熱応力値の算出精度を支配する重要パラメー
タであるが、従来技術においては以下のように求める。
The value of the heat transfer coefficient α in equation (2o) handled in the second calculation stage 107 is an important parameter that governs the calculation accuracy of the thermal stress value, and in the conventional technology, it is determined as follows.

〕 ・・・・・・・・・ (2l) Uf  Din Re= (22) ζf Gf uf= (23) n πD1・ Pf 4 ここに、以下の記号を定義する。] ・・・・・・・・・(2l) Uf Din Re= (22) ζf Gf uf= (23) n πD1・Pf 4 Here, the following symbols are defined.

λf:内部流体熱伝導率(Kcal/m−sec−’C
)Din:代表寸法(流路内径)[m] Nuf:内部流体ヌセルト数 Ref;内部流体レイノルズ数 Prf:プラントル数 ur:内部流体流速(m/sec) ζf:内部流体動粘性係数(m”/sec)Gf:内部
流体総質量流量( Kg / S )n:サーキット数 π:円周率 Pr:内部流体密度(kg/m’) (21)式はMcAdamsの式と呼ばれており、詳細
は適当な参考文献(例えば:Giedt;横堀,久我訳
:基礎伝熱工学:丸善)を参照されたい。諸式中n,D
inはヘツダ6の構造から、Gfは蒸気発生設備の運転
状態から求められ、λ’+Prf,ζf,Pfは内部流
体の温度,圧力,乾き度を知れば例えば日本機械学会発
行の蒸気表を用いて知ることができる。これら諸量に基
づき式(21〉〜(23)に係る全変数の値を算出でき
る。
λf: Internal fluid thermal conductivity (Kcal/m-sec-'C
) Din: Representative dimension (channel inner diameter) [m] Nuf: Internal fluid Nusselt number Ref; Internal fluid Reynolds number Prf: Prandtl number ur: Internal fluid flow velocity (m/sec) ζf: Internal fluid dynamic viscosity coefficient (m”/ sec) Gf: Total internal fluid mass flow rate (Kg/S) n: Number of circuits π: Pi ratio Pr: Internal fluid density (kg/m') Equation (21) is called the McAdams equation, and the details are Please refer to appropriate references (for example: Giedt; Translated by Yokobori, Kuga: Basic Heat Transfer Engineering: Maruzen). In the formulas, n, D
in is determined from the structure of the header 6, Gf is determined from the operating state of the steam generation equipment, and λ'+Prf, ζf, Pf can be determined using the steam table published by the Japan Society of Mechanical Engineers, if the temperature, pressure, and dryness of the internal fluid are known. You can know. Based on these quantities, the values of all variables related to equations (21> to (23)) can be calculated.

以上の考え方に従がい、タイプ■の実施例においては熱
応力現在値信号110を算出し、温度計測手段7による
流体温度信号17を画面編集手段111により、運転員
が把握しやすい画面に構成してディスプレイ26に表示
している。運転員はディスプレイ26を監視して、熱応
力値が規定値を越えないように信号設定器101,10
2,及び103を操作する。
In accordance with the above idea, in the embodiment of type (2), the thermal stress current value signal 110 is calculated, and the fluid temperature signal 17 from the temperature measuring means 7 is configured by the screen editing means 111 into a screen that is easy for the operator to understand. is displayed on the display 26. The operator monitors the display 26 and sets the signal setting devices 101 and 10 so that the thermal stress value does not exceed the specified value.
2, and 103.

なお、図中の3は余剰蒸気排出ライン、104は過熱蒸
気供給駆動信号、105は燃料流調弁駆動信号、106
は余剰蒸気排出駆動信号、10Bは伝熱量現在値信号、
112はディスプレイ駆動信号である. 第4図にタイプ■の実施例を示す。大部分の装置構成及
び演算の考え方はタイプ■と同様であるから、両者の相
違点に関してのみ説明する。なお、第3図と第4図にお
いて、同一の作用を演じる構戒要素には同一の部品番号
を付した。
In addition, 3 in the figure is an excess steam discharge line, 104 is a superheated steam supply drive signal, 105 is a fuel flow control valve drive signal, and 106
is the surplus steam discharge drive signal, 10B is the current value signal of the amount of heat transfer,
112 is a display drive signal. FIG. 4 shows an embodiment of type (2). Since most of the device configuration and the concept of calculation are the same as type (2), only the differences between the two will be explained. In addition, in FIG. 3 and FIG. 4, the same part numbers are given to the structural elements that perform the same function.

タイブ■の最大の特徴はメタル温度検出器8を用いて、
外表面温度θ.を与える信号l6を得ていることである
。タイプ■においては(19)式の保温材20に係るヘ
ッダ外面断熱の条件を仮定することなく、直接に実測の
θ,を(1)式の境界条件として温度分布を解く方法に
基づいており、ことに保温材20が不十分な厚さであっ
て、ヘッド6の外面より、かなりの熱量が大気へ放散し
ているケースではタイプ■に比して有効な精度向上が期
待できる。
The biggest feature of Type■ is that it uses a metal temperature detector 8,
Outer surface temperature θ. This means that a signal l6 is obtained that gives the following. Type ■ is based on a method of directly solving the temperature distribution using the actually measured θ, as the boundary condition of equation (1), without assuming the condition of the header outer surface insulation related to the heat insulating material 20 of equation (19). In particular, in the case where the heat insulating material 20 is insufficiently thick and a considerable amount of heat is dissipated into the atmosphere from the outer surface of the head 6, an effective improvement in accuracy can be expected compared to type (2).

しかしながら、通常の蒸気発生装置においては、熱損失
防止,接触時の安全の両観点から、十分な厚さの保温が
施行されるのが通常であり、タイプHにおいてもタイプ
Iと同様に(20)式に係るαの妥当性が熱応力算出精
度を支配する最も重要な因子であることに変わりはない
However, in normal steam generators, a sufficiently thick insulator is usually implemented from the viewpoint of both heat loss prevention and safety during contact, and type H as well as type I (20 ) remains the most important factor governing the thermal stress calculation accuracy.

第5図にタイプ■の実施例を示す。大部分の装置構成及
び演算の考え方はタイプI,タイプ■と同様であるから
、相違点のみ説明する。また同一作用を演じる構成要素
には第3図と第4図における部品番号と同一としてある
FIG. 5 shows an embodiment of type (2). Since most of the device configuration and the concept of calculation are the same as Type I and Type II, only the differences will be explained. Components that perform the same function are given the same part numbers as in FIGS. 3 and 4.

タイプ■の最大の特徴はメタル温度検出器118を用い
て、内表面温度θ.とみなし得る内表面近傍のメタル温
度信号119を得ており、このθ.の値を直接に境界条
件として(1)式を解くことにより、αを含む(20)
式を不要とすることができる点にある。
The biggest feature of Type ■ is that it uses a metal temperature detector 118 to measure the inner surface temperature θ. A metal temperature signal 119 near the inner surface that can be considered as θ. (20) including α by solving equation (1) directly using the value of as a boundary condition.
The advantage is that no formula is required.

確かにαの算出は基本的に実験式である(21)式に依
存せざるを得ない状況にあるため、本質的に誤差を含み
やすいαを用いないタイプ■の演算手法はメリットを有
する。しかしながら、後述する熱応力将来値予測演算へ
の発展に難点があるほか、ヘツダ6の厚肉部において一
般に内表面近傍は温度傾配が急であるため、内表面の近
傍で計測しても、相表面の温度の真僅に対し誤差が生じ
やすい問題がある。
It is true that the calculation of α basically has to rely on equation (21), which is an experimental formula, so the calculation method of type (2), which does not use α, which is inherently prone to errors, has an advantage. However, in addition to the difficulty in developing calculations for predicting future thermal stress values, which will be described later, the temperature gradient is generally steep near the inner surface of the thick part of the header 6, so even if measurements are taken near the inner surface, There is a problem in that errors tend to occur due to the exact temperature of the phase surface.

以上、熱交換器出口ヘッダを例に、従来技術による計装
技術を説明したが、蒸気発生装置においては気水分離器
あるいは蒸気ドラムも同様に厚肉であり、万一の亀裂発
生の際に取り替えが困難であって、熱応力に係る疲労損
傷.クリープ損傷には最大限の留意を要する部位である
。かかる部位においては、その内部の流体は気水混合物
であるため、流体温度と一意に飽和圧力が対応するから
、圧力値あるいは圧力変化率で管理することが常套であ
る。これは一般に圧力が温度よりも計測,制御とも容易
であることによる。
The conventional instrumentation technology has been explained above using a heat exchanger outlet header as an example. However, in a steam generator, the steam separator or steam drum is also thick-walled, so in the event of a crack, Fatigue damage caused by thermal stress that is difficult to replace. This is the area that requires the utmost care for creep damage. In such parts, since the fluid inside is a mixture of air and water, the saturation pressure uniquely corresponds to the fluid temperature, so it is common practice to manage the pressure using the pressure value or the rate of pressure change. This is because pressure is generally easier to measure and control than temperature.

第6図は、蒸気発生設備の気水分離部位と、従来技術に
基づく計装システムの一例を示す。給水ライン5lから
供給された水は、蒸発管52中で火炎63からの熱を受
けて蒸気を発生し、気水温合物となり。気水混合物はノ
ズル54より気水分離器53の内壁に沿って旋回流を形
或するように、内面接線方向に吹きこまれる。この際、
比重が大なる液相分は遠心力により気水分離器内面に押
しつけられ旋回しつつ落下し、ドレン出口56より排出
される。比重の小さい気相は遠心力の作用が小さいため
、気水分離器の中心部に集まり、蒸気供給弁57を経て
蒸気供給ライン58に送られる.当該設備における蒸気
圧力は蒸気供給弁57による蒸気抜き出し量に応じて、
燃料流調整弁64を調節し、蒸気管52内の蒸発量を加
減することにより行う。
FIG. 6 shows an example of a steam/water separation section of a steam generation facility and an instrumentation system based on the prior art. The water supplied from the water supply line 5l receives heat from the flame 63 in the evaporation tube 52 and generates steam, becoming a mixture of air and water. The steam/water mixture is blown into the steam/water separator 53 from the nozzle 54 along the inner wall of the steam/water separator 53 in a direction along the inner surface so as to form a swirling flow. On this occasion,
The liquid phase having a large specific gravity is pressed against the inner surface of the steam/water separator by centrifugal force, falls while rotating, and is discharged from the drain outlet 56. Since the gas phase with low specific gravity is less affected by centrifugal force, it gathers in the center of the steam-water separator and is sent to the steam supply line 58 via the steam supply valve 57. The steam pressure in the equipment depends on the amount of steam extracted by the steam supply valve 57.
This is done by adjusting the fuel flow regulating valve 64 to adjust the amount of evaporation in the steam pipe 52.

従来技術における計装システムは蒸気圧力検出器59に
よって得た蒸気圧力信号82から、蒸気における圧力と
飽和温度の関数形を内蔵する演算手段78により蒸気飽
和温度信号67を求める。
In the prior art instrumentation system, a steam saturation temperature signal 67 is determined from a steam pressure signal 82 obtained by a steam pressure detector 59 using an arithmetic means 78 that incorporates a functional form of steam pressure and saturation temperature.

以降の横戒は熱交換出口ヘッダに係る従来技術による計
装システムである第3図と同様である。当該装置におい
ては熱応力現在値信号158を受け、圧力計測手段59
による流体圧力信号82を画面編集手段159により、
運転員が把握しやすい画面に構成してディスプレイ75
に表示する。運転員はディスプレイ75を監視して、熱
応力値が規定値を越えないように信号設定器151及び
152を操作する。
The following steps are similar to those shown in FIG. 3, which is a prior art instrumentation system for a heat exchange outlet header. In this device, the thermal stress current value signal 158 is received, and the pressure measuring means 59
The screen editing means 159 converts the fluid pressure signal 82 by
Display 75 is configured to be easy for operators to grasp.
to be displayed. The operator monitors the display 75 and operates the signal setters 151 and 152 so that the thermal stress value does not exceed a specified value.

なお、図中の153は蒸気供給弁駆動信号、154は燃
料流調弁駆動信号、155は第2の演算手段、156は
伝熱量現在値信号、157は第3の演算手段、160は
ディスプレイ駆動信号である。
In the figure, 153 is a steam supply valve drive signal, 154 is a fuel flow control valve drive signal, 155 is a second calculation means, 156 is a heat transfer current value signal, 157 is a third calculation means, and 160 is a display drive. It's a signal.

第6図の装置は熱応力演算手法において、第3図の装置
と同様に前述したタイプ■に属するが、第6図中の気水
分離器53の熱応力算出法に係り、第4図の装置と同様
のタイブ■、第5図の装置と同様のタイプ■の手法を適
用することも当然可能である。気水分離器53のタイプ
■及びタイプ■の構戒に関する例は第6図に基づき、第
3図、第4図及び第5図の相互間の相違点を考慮すれば
、構成、特徴等が容易に類推できるので説明は省略する
The device shown in FIG. 6 belongs to the above-mentioned type (2) in terms of thermal stress calculation method, like the device shown in FIG. Of course, it is also possible to apply the method of type (2) similar to the device and the method of type (2) similar to the device of FIG. An example of the structure of the type ■ and type ■ of the steam/water separator 53 is based on FIG. 6, and if the differences between FIGS. Since it can be easily inferred, the explanation will be omitted.

以上説明した従来技術の計装システムの共通点は、いず
れも管理対象たる厚肉部位に発生する熱応力の現在値の
みを監視し、その情報に基づいて装置運転員の熟練に期
待して装置の操作を行っていることである。
The common feature of the conventional instrumentation systems explained above is that they all monitor only the current value of thermal stress occurring in the thick-walled parts that are the target of management, and based on that information, they rely on the skill of the equipment operator to control the equipment. This means that the operation is being carried out.

すなわち、熱応力発生は本質的に容器内部の流体温度の
変化が、容器メタルの肉厚方向に遅れて伝わる現像に起
因しており、例えば、燃料投入量増加操作を行なってい
る最中に熱応力値高を知って、燃料投入量増加を中止し
ても一般に熱応力値は、しばらくの期間上昇を続ける。
In other words, the occurrence of thermal stress is essentially caused by the development in which changes in the fluid temperature inside the container are delayed in the direction of the thickness of the container metal. Even if the increase in fuel input amount is stopped after learning of the high stress value, the thermal stress value generally continues to increase for a while.

従がって必然的に、現時点の熱応力値を考慮して、現在
の装置操作に係る熱応力値の見通しを持たなければ、装
置の運用上問題が生じるが、かかる見通しを得るには熟
練を要するのである。
Therefore, problems will inevitably arise in the operation of the equipment if the current thermal stress value is not considered and the thermal stress value related to the current equipment operation is not foreseen. It requires.

さらに、前述したように、従来技術における熱応力現在
値の監視精度についても、容器内面の熱伝達率算出の信
頼性に依存する場合には、ある程度の誤差を想定しなけ
ればならず、これを含んで熱応力の将来値の見通しを得
て、装置を運転することは、はなはだ高度な熟練を要す
る。
Furthermore, as mentioned above, when the accuracy of monitoring the current value of thermal stress in the conventional technology depends on the reliability of calculating the heat transfer coefficient on the inner surface of the container, a certain amount of error must be assumed, and this should be considered. Obtaining an estimate of future values of thermal stresses, including operating the equipment, requires a high degree of skill.

以上の指摘事項は、結論から言えば現時点までの装置運
転状況により熱応力の将来値を予測する機能をもって解
決され、これは基本的には従来技術において熱応力値を
算出する際に用いた演算手段を、適当な境界条件の下で
将来に向けて遂次時間を進めて行う予測シξユレータと
して適用すれば実現できることは既に知られている。
In conclusion, the above-mentioned points can be solved with a function that predicts the future value of thermal stress based on the operating status of the equipment up to the present time. It is already known that this can be achieved by applying the method as a prediction simulator that sequentially advances time into the future under appropriate boundary conditions.

しかしながら、かかる熱応力値の予測は次に述べる問題
点により、未だ実用に供せられていなかった. 1)タイブI及びタイプ■の熱応力算出法においては容
器内面の熱伝達率αが精度を支配するが、αの算出は代
表的な(21)式をはじめ、いずれも内部流体が単相流
、無限長円管等の理想化した仮定の下に行なっており、
遂次時間を進めて、くり返しαを用いなければならない
予測演算では、αに起因する誤差が蓄積して,.妥当な
熱応力評価が不可能な場合が多い。
However, such prediction of thermal stress values has not yet been put to practical use due to the following problems. 1) In the thermal stress calculation methods of type I and type II, the accuracy is controlled by the heat transfer coefficient α of the inner surface of the container, but the calculation of α, including the typical equation (21), assumes that the internal fluid is a single-phase flow. , based on idealized assumptions such as an infinite elliptical tube,
In prediction calculations that require successive time advances and repeated use of α, errors due to α accumulate. Valid thermal stress evaluation is often not possible.

2)タイブ■の熱応力算出法は、前述した誤差の原因と
なるαを用いない反面、境界条件として厚肉容器の内外
面メタル温度が必要となり、これは実側例が利用できる
熱応力現在値の算出に支障はないが、将来値の予測には
適用が難しい。
2) Type ■ thermal stress calculation method does not use α, which causes the error mentioned above, but requires the temperature of the inner and outer metal surfaces of the thick-walled container as a boundary condition. There is no problem in calculating values, but it is difficult to apply to predicting future values.

すなわち、厚肉容器は受動的な部位であり、他の熱交換
部位から供給される内部流体の温度、及び容器からの流
体抜き出し量の影響を受けた結果として、内外面メタル
温度が決定されるという物理的メカニズムを計算に考慮
せずして、厚肉部内外面メタル温度の将来値を高精度に
求めることは不可能である. しかしながら、かかる物理的メカニズムを考慮すれば、
容器内流体と容器内面間の熱移動を計算する必要が生じ
、当該計算にはどうしてもの相当のパラメータが必要で
あるため、実測値,が適用できない予測演算にはタイブ
I,IIと同様な欠点が避けられない。
In other words, the thick-walled container is a passive part, and the internal and external metal temperatures are determined as a result of being influenced by the temperature of the internal fluid supplied from other heat exchange parts and the amount of fluid extracted from the container. Without taking this physical mechanism into account in calculations, it is impossible to accurately determine future values of metal temperatures on the inner and outer surfaces of thick-walled parts. However, if we consider this physical mechanism,
It becomes necessary to calculate the heat transfer between the fluid inside the container and the inside surface of the container, and this calculation requires a considerable number of parameters, so prediction calculations that cannot be applied to actual measured values have the same drawbacks as Types I and II. is unavoidable.

本発明の目的は、従来技術において運転員の熟練に期待
するほかなかった設備の高信頼性を維持しつつ、頻繁な
蒸気温度、圧力変化を行う運用を容易に実現させる観点
において、その最も効果的な手段となる熱応力将来値の
高精度な予測を中心とする運転支援システムを提供する
にあり、具体的には、かかる予測機能実用化のあい路で
ある前述の熱伝達率αに係る誤差の問題を解決すること
に帰着する。
The purpose of the present invention is to provide the most effective method in terms of easily realizing operations that involve frequent changes in steam temperature and pressure while maintaining high reliability of equipment, which in the prior art relied only on the skill of operators. Our goal is to provide a driving support system centered on highly accurate prediction of future values of thermal stress, which will serve as a means of practical use. It comes down to solving the error problem.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達或するため、本発明は下記1)〜7)の手
段を備えたことを特徴とするものである。
In order to achieve the above object, the present invention is characterized by comprising the following means 1) to 7).

1)熱交換器出口ヘッダ内の蒸気温度将来値を予測する
手段、該蒸気温度の将来値を用いて蒸気とヘッダ間の熱
交換量の将来値を予測する手段、該熱交換量の将来値を
用いてヘッダ内面の熱応力を予測する手段、 2)気水分離器に係り、■)項と同様にして流体温度将
来値、熱交換量将来値,気水分離器内面の熱応力将来値
を予測する手段、 3)熱交換器出口ヘッダの熱応力予測値と現時点の昇温
率の関係を表示する手段、 4)気水分離器の熱応力予測値と現時点の昇圧率の関係
を表示する手段、 5)熱交換器出口ヘッダの熱応力予測値に従って、昇温
率指令値を求める手段、 6)気水分離器の熱応力予測値に従って、昇圧率指令値
を求める手段、 7)熱交換器出口ヘッダ、気水分離器それぞれについて
、内部の蒸気または流体との熱交換量現在値を用いて、
当該ヘッダまたは分離器の肉厚方向の温度分布現在値を
算出する手段、当該ヘッダまたは分離器の厚内容器外面
または厚内中のメタル温度を計測する手段、かかる計測
値と温度分布現在値を比較して熱交換量現在値算出に係
る熱伝達率αを補正する手段、及び該補正後の熱伝達率
αを1)〜6)項の熱交換量将来値算出に適用する手段
1) Means for predicting the future value of the steam temperature in the heat exchanger outlet header, means for predicting the future value of the amount of heat exchange between the steam and the header using the future value of the steam temperature, and the future value of the amount of heat exchange. 2) Regarding the steam/water separator, a method for predicting the future value of the fluid temperature, the future value of the heat exchange amount, and the future value of the thermal stress on the interior surface of the steam/water separator in the same manner as in item (■). 3) A means for displaying the relationship between the predicted thermal stress value of the heat exchanger outlet header and the current temperature increase rate; 4) A means for displaying the relationship between the predicted thermal stress value of the steam-water separator and the current pressure increase rate. 5) Means for determining a temperature increase rate command value in accordance with a thermal stress prediction value of a heat exchanger outlet header; 6) Means for determining a pressure increase rate command value in accordance with a steam water separator thermal stress prediction value; 7) Heat Using the current value of heat exchange amount with internal steam or fluid for each exchanger outlet header and steam/water separator,
A means for calculating the current temperature distribution value in the thickness direction of the header or separator, a means for measuring the metal temperature on the outer surface or inside the thickness of the header or separator, and a means for calculating the current value of the temperature distribution in the thickness direction of the header or separator. Means for comparing and correcting the heat transfer coefficient α related to the calculation of the current value of the heat exchange amount, and means for applying the corrected heat transfer coefficient α to the calculation of the future value of the heat exchange amount in items 1) to 6).

〔作用〕[Effect]

前述の手段l)〜7)項の作用は概略以下の通りである
The operations of the above-mentioned means 1) to 7) are roughly as follows.

1),2)項における蒸気温度または流体温度の将来予
測法は、物理モデルによるシミュレーション解析の手法
を用い、ボイラに与えられる操作条件に従って計算すれ
ば良い。具体的には筆者らの研究による手法〔参考文献
:深山はか「ボイラプラント シュミレー夕の開発と応
用」 :火力原子力発電第37巻11号P1189〜P
1199(昭6 1−1 1) )を適用すれば良い。
The method for predicting the future steam temperature or fluid temperature in items 1) and 2) may be calculated using a simulation analysis method using a physical model according to the operating conditions given to the boiler. Specifically, the method based on the authors' research [References: Haka Miyama, "Development and Application of Boiler Plant Simulator": Thermal and Nuclear Power Generation Vol. 37, No. 11, P1189-P
1199 (Sho 6 1-1 1)) may be applied.

蒸気、流体温度将来値から熱応力将来値を求める計算法
は従来技術の説明において熱応力現在値の算出を行なっ
た手法モード■ 〔式(1)〜式(23)に係る説明〕
と同一であって、熱応力現在値より出発して、適当な計
算時間刻み(通常0.1秒〜10秒程度)ごとに予測し
た蒸気、流体温度に基づき、該時点の熱応力値を算出で
きる。かかる演算において、蒸気、流体温度から熱交換
量を求める際のα((2 0)式にて使用〕は7)項の
手段に係り後述する如く補正を行ない、実用上十分な精
度を確保する。
The calculation method for calculating the future value of thermal stress from the future value of steam and fluid temperature is the method mode in which the current value of thermal stress was calculated in the explanation of the conventional technology ■ [Explanation regarding equations (1) to (23)]
Starting from the current value of thermal stress, the thermal stress value at that point is calculated based on the steam and fluid temperature predicted at appropriate calculation time intervals (usually about 0.1 seconds to 10 seconds). can. In such calculations, α (used in equation (20)) when determining the amount of heat exchange from the steam and fluid temperature is corrected as described below according to the means in section 7) to ensure sufficient accuracy for practical use. .

3),4)項に関しては、容器に発生する熱応力値は内
部流体温度変化率の高次遅れ特性となることが知られて
おり、かかる現象の理論的裏付は本発明者らの発明「ボ
イラ制御装置」 (特開昭63−118503号)の明
細書に詳述した通りである。
Regarding items 3) and 4), it is known that the thermal stress value generated in the container is a high-order lag characteristic of the internal fluid temperature change rate, and the theoretical support for this phenomenon is based on the invention of the present inventors. This is as detailed in the specification of "Boiler Control Device" (Japanese Patent Laid-Open No. 118503/1983).

一般に圧力容器の信頼性を維持するには発生熱応力の最
大値を制限しなければならないが、前述の特性により将
来発生する熱応力最大値は現時点の温度変化率に支配さ
れるから、熱交換器出口ヘッダの熱応力将来値を予測し
て、該制御値を越えないために現在の昇温率が妥当かど
うか評価できる。
Generally, in order to maintain the reliability of pressure vessels, the maximum value of thermal stress that occurs must be limited, but due to the above-mentioned characteristics, the maximum value of thermal stress that will occur in the future is controlled by the current rate of temperature change, so heat exchange By predicting the future value of the thermal stress of the outlet header, it is possible to evaluate whether the current temperature increase rate is appropriate so as not to exceed the control value.

同様に気水分離器については内部の流体は飽和領域であ
り飽和温度と圧力は1対1の関係があるため、一般に温
度は計測の容易な圧力を得て、その関数として求められ
る。従って気水分離器の将来の熱応力最大値は現次点の
昇圧率に支配されることになり、熱応力の予測値から現
状の昇圧率の妥当性が評価できる。
Similarly, in a steam/water separator, the internal fluid is in a saturated region and there is a one-to-one relationship between saturation temperature and pressure, so temperature is generally obtained as a function of pressure, which is easy to measure. Therefore, the future maximum thermal stress value of the steam/water separator will be controlled by the current pressure increase rate, and the validity of the current pressure increase rate can be evaluated from the predicted value of thermal stress.

5),6)項については、一般に蒸気発生設備の蒸気条
件(m度及び圧力)を変化させる場合は例えば本発明者
らの発明による「ボイラ制御装置」)特開昭61−24
905号)を用いて適当な昇温率,昇圧率を指令して蒸
気条件を調節すればよいが、その際該昇温率,該昇温圧
率にて将来の熱応力高が予想されるならば、該予測値が
制限値以゛下となるよう、かかる調節により昇温率、昇
圧率指令値の絶対値を低減する作用が実現できる。ここ
に、かかる昇温率、昇圧率指令値は蒸気温度、圧力がそ
れぞれ目標とする値に一致すればOとなり、一般に正に
も負にもなる。
Regarding items 5) and 6), in general, when changing the steam conditions (m degrees and pressure) of steam generation equipment, for example, the "boiler control device" invented by the present inventors) JP-A-61-24
905) to command an appropriate temperature increase rate and pressure increase rate, but in this case, the future thermal stress height is predicted at the temperature increase rate and the temperature increase pressure rate. If so, such adjustment can achieve the effect of reducing the absolute values of the temperature increase rate and pressure increase rate command values so that the predicted value becomes less than the limit value. Here, the temperature increase rate and pressure increase rate command values become O when the steam temperature and pressure respectively match the target values, and generally can be either positive or negative.

7)項については、一口に言えば、流体温度将来値から
熱応力将来値を求める前述の演算手段において、かかる
将来値演算に先立ち流体温度現在値から、当該ヘッダま
たは気水分離器の外面あるいは厚肉中のメタル温度の現
在値を算出する。該メタル温度演算は熱応力値算出の過
程で(1)式を解く際に求められるので、熱応力算出演
算部をそのまま用いることができる。
Regarding item 7), in the above-mentioned calculating means for calculating the future value of thermal stress from the future value of the fluid temperature, the external surface of the header or the steam/water separator or the Calculate the current value of metal temperature in thick wall. Since the metal temperature calculation is obtained when equation (1) is solved in the process of calculating the thermal stress value, the thermal stress calculation calculation section can be used as is.

該メタル温度算出値と対応する実測値を比較して、種々
の運転状態において温度算出値が実測値に比して先行的
な変化(位相が進んでいる)ならば該演算の精度を支配
する前述の熱伝達率α((20)式1は過大であり、逆
に実測値に比して遅れて変化するならばαの過小である
から、かかる傾向に着目してαを遂次補正すれば常に十
分な精度を維持できる。従って7)項の作用によりl)
〜6)項の作用を実用上十分な精度で実現することがで
きる。
Compare the metal temperature calculation value and the corresponding actual measurement value, and if the temperature calculation value has a leading change (advanced in phase) compared to the actual measurement value under various operating conditions, it will control the accuracy of the calculation. The aforementioned heat transfer coefficient α ((20) Equation 1 is too large, and conversely, if it changes with a delay compared to the actual measurement value, α is too small. Therefore, paying attention to this tendency, α should be corrected successively. Therefore, due to the effect of item 7), l)
The effects of items 6) to 6) can be realized with sufficient accuracy for practical use.

〔発明の実施例) 第1図は、本発明の一実施例である熱交換器出口ヘッダ
を監視対象とした運転支援システムである。
[Embodiment of the Invention] FIG. 1 shows an operation support system that monitors a heat exchanger outlet header, which is an embodiment of the present invention.

本システムは従来技術による第3図(モードIの計算法
)、第4図(モード■の計算法)、第5図(モード■の
計算法)それぞれに示した計装システムのいずれにも前
述のように存在した問題点を解決すべく開発された。本
システムの説明にあたり従来技術に係る第3図,第4図
.第5図と同一の部分には同一の符号を付している。
This system is not compatible with any of the instrumentation systems shown in the prior art shown in Figure 3 (Mode I calculation method), Figure 4 (Mode ■ calculation method), and Figure 5 (Mode ■ calculation method). It was developed to solve the problems that existed. To explain this system, Figures 3 and 4 are related to the prior art. The same parts as in FIG. 5 are given the same reference numerals.

図中において、1は被過熱蒸気、2は余剰蒸気排出弁、
3は余剰蒸気排出ライン、4は熱交換器入口ヘッダ、5
は熱交換器伝熱管、6は熱交換器出口ヘッダ、7は蒸気
温度検出器、8はメタル温度検出器、9は過熱蒸気供給
弁、10は余剰蒸気排出弁駆動信号、IIは燃料供給ラ
イン、■2は燃料流調弁、l3は燃料流調弁駆動信号、
l4はバーナ、l5は火炎、16はメタル温度信号、1
7は蒸気温度信号、l8は過熱蒸気供給弁駆動信号、l
9は第2の演算手段、20は保温材、2lは第6の演算
手段、22は第7の演算手段、23は過熱蒸気供給ライ
ン、24は第3の演算手段、25は画面編集手段、26
はディスプレイ、27は第1の演算手段、28は第2の
演算手段、29は状態量補正信号、30は第3の演算手
段、31は第4の演算手段、32は最適操作量演算手段
、33は信号設定器、34は伝熱量現在値信号、35は
メタル温度現在計算値信号、36は演算数値補正信号、
37は蒸気温度予測信号、3日は蒸気温度昇温目標信号
、39は伝熱量予測信号,40は熱応力予測信号、4l
は蒸気温度変化率制限値信号、42は熱応力現在値信号
、43はディスプレイ駆動信号である。
In the figure, 1 is superheated steam, 2 is an excess steam discharge valve,
3 is an excess steam discharge line, 4 is a heat exchanger inlet header, 5 is
is a heat exchanger heat transfer tube, 6 is a heat exchanger outlet header, 7 is a steam temperature detector, 8 is a metal temperature detector, 9 is a superheated steam supply valve, 10 is an excess steam discharge valve drive signal, and II is a fuel supply line , ■2 is the fuel flow control valve, l3 is the fuel flow control valve drive signal,
l4 is the burner, l5 is the flame, 16 is the metal temperature signal, 1
7 is a steam temperature signal, l8 is a superheated steam supply valve drive signal, l
9 is a second calculating means, 20 is a heat insulating material, 2l is a sixth calculating means, 22 is a seventh calculating means, 23 is a superheated steam supply line, 24 is a third calculating means, 25 is a screen editing means, 26
is a display, 27 is a first calculation means, 28 is a second calculation means, 29 is a state quantity correction signal, 30 is a third calculation means, 31 is a fourth calculation means, 32 is an optimum operation amount calculation means, 33 is a signal setting device, 34 is a heat transfer amount current value signal, 35 is a metal temperature current calculated value signal, 36 is an arithmetic value correction signal,
37 is a steam temperature prediction signal, 3rd is a steam temperature increase target signal, 39 is a heat transfer amount prediction signal, 40 is a thermal stress prediction signal, 4l
42 is a steam temperature change rate limit value signal, 42 is a thermal stress current value signal, and 43 is a display drive signal.

第1図のシステムは、蒸気温度現在値信号17、及び現
時点のプラント操作量である弁開度信号10,13.1
8を受けて蒸気温度将来値予測信号37を求める第lの
演算千段27へ入力する。前記予測信号37は計算刻み
巾の間隔で将来予測値を算出するため、将来予測適用時
間幅を計算刻み巾で除した個数だけ出力される。例えば
10分先まで計算刻み巾30秒にて予測すれば20個の
予測信号が出力される。
The system shown in FIG. 1 includes a steam temperature current value signal 17, and valve opening degree signals 10, 13.
8 is received and input to the l-th calculation stage 27 for obtaining a steam temperature future value prediction signal 37. Since future predicted values are calculated at intervals of the calculation step width, the prediction signals 37 are output in the number obtained by dividing the future prediction application time width by the calculation step width. For example, if prediction is made 10 minutes into the future with a calculation step width of 30 seconds, 20 prediction signals will be output.

第2の演算手段28は、蒸気温度将来値予測信号37を
受け対応する各時点における伝熱量予測信号39を求め
る。該演算において熱伝達率αを用いるため、第2の演
算手段28は後述するαの補正信号36をも入力する。
The second calculation means 28 receives the steam temperature future value prediction signal 37 and calculates a heat transfer amount prediction signal 39 at each corresponding time point. Since the heat transfer coefficient α is used in this calculation, the second calculation means 28 also inputs a correction signal 36 for α, which will be described later.

第3の演算手段30は、伝熱量予測信号39を受けて対
応する各時点における熱応力予測信号40を求める。ま
た第4の演算手段31は熱応力予測信号40を受けて、
将来にわたり熱応力値が制限値を超えないための現時点
における昇温率制限値信号41を出力する。
The third calculating means 30 receives the heat transfer amount prediction signal 39 and obtains a thermal stress prediction signal 40 at each corresponding time point. Further, the fourth calculation means 31 receives the thermal stress prediction signal 40, and
A current temperature increase rate limit value signal 41 is output to prevent the thermal stress value from exceeding the limit value in the future.

最適操作量算出手段32は、昇温目標温度信号3日と現
在の蒸気温度信号l7を受け、両信号の偏差に応じて、
昇温率制限値信号4lで与え・られる制限値(絶対値)
以内でプラント操作量である余剰蒸気排出弁駆動信号1
0、燃料流調弁駆動信号l3及び過剰蒸気供給駆動信号
18を算出する。
The optimum operation amount calculation means 32 receives the temperature increase target temperature signal 3 days and the current steam temperature signal l7, and calculates, according to the deviation between the two signals,
Limit value (absolute value) given by heating rate limit value signal 4l
Excess steam discharge valve drive signal 1, which is the plant operation amount within
0, the fuel flow control valve drive signal l3 and the excess steam supply drive signal 18 are calculated.

一方、以上の予測演算の実用的精度を確保するための構
戒として、第2の演算手段l9は蒸気温度現在値信号l
7を用いて、伝熱量現在値信号34を求め、第6の演算
手段21は当該熱交換器出口ヘッダの肉厚方向のメタル
温度分布を算出し、計測点8が存在する位置に対応する
メタル温度現在計算値信号35を算出する。第7の演算
手段22は対応する実測メタル温度信号16と計算値信
号35を受けて、前述の熱伝達率αをはじめ、必要な補
正を行う演算数値補正信号36を算出する。
On the other hand, as a precautionary measure to ensure the practical accuracy of the above prediction calculation, the second calculation means 19 uses a steam temperature current value signal l9.
7 to obtain the current heat transfer value signal 34, and the sixth calculation means 21 calculates the metal temperature distribution in the wall thickness direction of the heat exchanger outlet header, and calculates the metal temperature distribution in the thickness direction of the heat exchanger outlet header, and A temperature current calculated value signal 35 is calculated. The seventh calculating means 22 receives the corresponding measured metal temperature signal 16 and calculated value signal 35, and calculates a calculated value correction signal 36 that performs necessary corrections including the aforementioned heat transfer coefficient α.

熱応力現在値信号42は第3の演算手段24を用い伝熱
量現在値信号34から計算され、熱応力将来値予測信号
40及び蒸気温度現在値信号17と共に画面編集手段2
5を経てディスプレイ26に表示される。
The thermal stress current value signal 42 is calculated from the heat transfer amount current value signal 34 using the third calculation means 24, and is sent to the screen editing means 2 together with the thermal stress future value prediction signal 40 and the steam temperature current value signal 17.
5 and then displayed on the display 26.

第1の演算手段27の作用は、物理モデルによる予測シ
ュミレーションであり、前述したように詳細は参考文献
(火力原子力発電第37巻11号P1189〜P119
9)を参照されたい。
The action of the first calculation means 27 is a predictive simulation based on a physical model, and as mentioned above, details can be found in the reference literature (Thermal and Nuclear Power Generation Vol. 37, No. 11, pages 1189 to 119).
Please refer to 9).

第2の演算手段19及び28は前述の(21)式、(2
2)式、(23〉を算出し、(20〉式に基づく下弐に
て伝熱量を算出する。
The second calculation means 19 and 28 are based on the above-mentioned equation (21), (2
2) Calculate equation (23>), and calculate the amount of heat transfer in the second step based on equation (20>).

・・・・・・・・・(24) α0 =  α・ δ             ・・
・・・・・・・(25)ここに、次の記号を定義する. q:内面軸方向単位長あたりの伝熱量[kcal/m−
sec]α2:補正後の熱伝達率[kcal/m”−s
ec・’C]δ:熱伝達率補正係数〔−〕 このうち熱伝達率補正係数δは、後述する第7の演算手
段により与えられる。
・・・・・・・・・(24) α0 = α・δ ・・
・・・・・・・・・(25) Here, the following symbols are defined. q: Heat transfer amount per unit length in the inner axial direction [kcal/m-
sec] α2: Heat transfer coefficient after correction [kcal/m”-s
ec·'C] δ: Heat transfer coefficient correction coefficient [-] Of these, the heat transfer coefficient correction coefficient δ is given by a seventh calculation means to be described later.

第6の演算千段21は、(1)式及び(2)式を解いて
肉厚方向のメタル温度分布θ(r)を算出すると共に、
第7の演算手段22で用いる計測点に対応するメタル温
度θ,=θ(rp,t)を求める。
The sixth operation stage 21 calculates the metal temperature distribution θ(r) in the thickness direction by solving equations (1) and (2), and
The metal temperature θ,=θ(rp,t) corresponding to the measurement point used by the seventh calculation means 22 is determined.

第3の演算手段24及び30は、第6の演算手段21と
同様に(1),(2)式を解くことに加え、熱応力算出
に係る(7)〜(18)式を算出する。
The third calculation means 24 and 30, in addition to solving equations (1) and (2) similarly to the sixth calculation means 21, calculate equations (7) to (18) related to thermal stress calculation.

以上の諸演算のうち(1)式をデイジタル計算機で解く
場合は、以下の方法によるのが効率的である。(1)式
を中心差分形に展開すると下弐に近似できる。
When solving equation (1) among the above operations using a digital computer, it is efficient to use the following method. Expanding equation (1) into central difference form allows approximation to the following equation.

θ(r+Δr,t+Δ0−θ(r,t)Δむ Δr ・・・・・・・・・(26) ここに以下の記号を定義する。θ(r+Δr, t+Δ0−θ(r,t)Δm Δr ・・・・・・・・・(26) The following symbols are defined here.

r▲=r,+ (Δr)i(i=1. ・・・n) ・
・・(27)tJ=to + (Δt)j (j”1,
 ・・・m)  ”・(2B)θ1,=θ(ri,t7
)      ・・・・・・・・・(29〉n 以上の諸式は熱交換器出口ヘッダ及び気水分離器を円筒
形厚肉容器とみなし、容器を同心円状にn分割し該セク
ション内でメタル温度一定と仮定して導かれている。通
常n=10程度とすれば、実用上十分な精度であること
が知られている。
r▲=r, + (Δr)i (i=1....n) ・
...(27) tJ=to + (Δt)j (j”1,
... m) ”・(2B) θ1, = θ(ri, t7
) ・・・・・・・・・(29〉n) The above formulas assume that the heat exchanger outlet header and the steam/water separator are cylindrical thick-walled containers, and the container is divided concentrically into n sections. It is derived on the assumption that the metal temperature is constant.It is known that if n=10 or so, the accuracy is sufficient for practical use.

Δrは該セクションの厚みであって、Δtは前述した計
算刻み巾である。
Δr is the thickness of the section, and Δt is the calculation step width described above.

(26)式は以下の形に簡略化できる。Equation (26) can be simplified to the following form.

gi  θ 遍−1+j◆I  − 『 .θ 五・ 
五◆重  + θ i・1 j◆首=一g五θ+−+.
)+h五θ目一θ1川j・・・・・・・・・(31) ここに、以下の記号を定義した。
gi θ Ben-1+j◆I − `` . θ 5・
5 ◆ Heavy + θ i・1 j ◆ Neck = 1 g 5 θ + - +.
) + h 5th θ 1 θ 1 river j (31) Here, the following symbols are defined.

1 1 1 ■ Δr 2r▲ ?31)式においてft,gt+htは定数であるから
、右辺において時点1.=1.,の値θj−1+j l
θ.,j.θ1..が既知であれば右辺は定数となり、
連立方程式として左辺のt.=Lj*+の値θI−1n
 j1+θl+j■,θi41+j■を求めることが可
能である。
1 1 1 ■ Δr 2r▲? 31) In the equation, ft, gt+ht are constants, so on the right side, time 1. =1. , the value θj−1+j l
θ. ,j. θ1. .. If is known, the right-hand side becomes a constant, and
As a simultaneous equation, t. =Lj** value θI-1n
It is possible to obtain j1+θl+j■ and θi41+j■.

従がって、引き続き1 = 1 j.,の値を右辺に代
?すれば同様にして1 = 1 ,.■における値が算
出できるので、当該法にて逐次温度分布の将来値、さら
に該温度分布を各時点において(7)弐〜(l8)式に
適用することにより熱応力の将来値を遂次算出すること
ができる.なお(31)式による解法はクランク=ニコ
ルソン法と呼ばれ、比較的大きなΔtに対しても安定な
計算が可能である.クランク=ニコルソン法に関する詳
細は適当な参考文献〔例えばGDスミス;藤川訳:電算
機による偏微分方程式の解法:サイエンス社(昭46−
1)〕を参照することができる。
Therefore, 1 = 1 j. Substitute the value of , on the right-hand side? Then, in the same way, 1 = 1, . Since the value in (1) can be calculated, the future value of the temperature distribution can be calculated sequentially using this method, and the future value of the thermal stress can be calculated sequentially by applying the temperature distribution to equations (7)2 to (18) at each point in time. can do. Note that the solution method using equation (31) is called the Crank-Nicholson method, and stable calculation is possible even for relatively large Δt. For details on the Crank-Nicholson method, please refer to appropriate references [e.g. GD Smith; Translated by Fujikawa: How to solve partial differential equations using a computer: Science Publishing (1973-
1)].

前述のように(31)式を連立方程式として解く場合の
手法について、以下若干補足する。
As mentioned above, the method for solving equation (31) as a simultaneous equation will be slightly supplemented below.

(3l)式は分割数に対応してnfi本の法廷式を得る
ことができるが、その際未知数はθ−..1,θoj・
一〜θnj−1θ+s+Ij+lのn+3f囚となる。
Formula (3l) can obtain nfi court formulas corresponding to the number of divisions, but in this case, the unknowns are θ−. .. 1,θoj・
1 to θnj-1θ+s+Ij+l, n+3f.

これは次のように処理する。This is handled as follows.

(l9)式を中心差分形に表現すると以下となる。Expressing equation (l9) in central difference form is as follows.

2λr よって下弐となる。この式は時点j+lにおいても或立
する。
2λr Therefore, it becomes lower two. This equation also holds at time j+l.

θ+1..J =θn−1+J        ・・・
・・・・・・(36)同様に、(24)式を中心差分形
に表現すると下式が導かれる。
θ+1. .. J=θn-1+J...
(36) Similarly, when formula (24) is expressed in central difference form, the following formula is derived.

・・・・・・・・・(37) 上式中、定義よりθ.=θ。,を用いた。またθ,jは
現時点θ,。については実測信号17、将来値について
は第1の演算手段により算出された時点jの予測値(信
号37においてj番目の{i)を示す.(37)式より
下弐を得る。
・・・・・・・・・(37) In the above formula, from the definition, θ. =θ. , was used. Also, θ,j is the current θ,. For , the actual measured signal 17 is shown, and for the future value, the predicted value at time j calculated by the first calculation means (the j-th {i in the signal 37) is shown. From equation (37), we obtain lower 2.

・・・・・・・・・(38) (38)式も時点j+lにおいて或立することは同様で
あるから、(36)式、(38)式を用いるとこのうち
θ−..,及びθ**Ij+1が消去できるから、(3
l)式を連立方程式として解くことができるの?ある. 第7の演算手段22として、例えば信号35と信号l6
の偏差を制御装置では一般的なPI調節器に入力して(
25)式のδを求める方法、ファジィ制御理論や知識工
学を適用する方法等種々考えられるが、本実施例では拡
張カルマン=フィルタ理論を適用する例を紹介する。本
方式の利点として上述のPI調節器、ファジィ制御、知
識工学等を用いる方法では一般にδの値が理論的に意味
のある値に収束する保証がないのに対し、カルマン=フ
ィルタ理論を用いるためδが最少分散、不偏推定の意味
で最適な値に収束する保証があることを指摘できる。
(38) Since equation (38) also holds true at time j+l, using equations (36) and (38), of these, θ−. .. , and θ**Ij+1 can be eliminated, so (3
l) Is it possible to solve equations as simultaneous equations? be. As the seventh calculation means 22, for example, the signal 35 and the signal l6
In the control device, the deviation is input to a general PI controller (
Various methods can be considered, such as finding δ in equation 25) and applying fuzzy control theory or knowledge engineering, but in this embodiment, an example will be introduced in which extended Kalman filter theory is applied. The advantage of this method is that, in general, there is no guarantee that the value of δ will converge to a theoretically meaningful value in the methods using the above-mentioned PI adjuster, fuzzy control, knowledge engineering, etc., but because it uses Kalman filter theory, It can be pointed out that there is a guarantee that δ converges to an optimal value in the sense of minimum variance and unbiased estimation.

カルマン=フィルタ理論の詳細は適当な参考文献〔例え
ば片山:応用カルマンフィルタ;朝倉書店(昭58−4
))を参照するとし、以下当該理論を本発明に適用する
ための要点を述べる。
For details on the Kalman filter theory, refer to appropriate references [e.g. Katayama: Applied Kalman Filter; Asakura Shoten (1984-4
)), and the main points for applying the theory to the present invention will be described below.

(3l)式,(36)式,(3B)式は行列表現により
下記に表わせる。
Equations (3l), (36), and (3B) can be expressed as follows using matrix representation.

A”/IF■,=A′″&k+B”θ■   ・・・・
・・・・・(39)yk 一〇δk ・・・・・・・・・(40〉 ここに、 以下の通り諸量を定義する。
A''/IF■,=A'''&k+B”θ■...
・・・・・・(39)yk 10δk ・・・・・・・・・(40〉) Here, various quantities are defined as follows.

・・・・・・・・・(42) ・・・・・・・・・(44) 以上の諸式中y,は観測ベクトルであり、温度検出器8
による信号16の値を戒分に持ち、該ベクトルの次元は
外表面も含め、厚内容器の深さの異なる位置に設けられ
た検出器8の個数に等しい。
・・・・・・・・・(42) ・・・・・・・・・(44) In the above formulas, y is the observation vector, and the temperature detector 8
The dimension of the vector is equal to the number of detectors 8 provided at different depths of the thick vessel, including the outer surface.

特に検出器8が一つの場合は、y,はスカラーとなるが
以下の取り扱いは同様である。? kはykに対応する
現在計算値信号35の値を成分に持つ。
In particular, when there is only one detector 8, y is a scalar, but the following handling is the same. ? k has as a component the value of the current calculated value signal 35 corresponding to yk.

以降の展開において記号′は諸演算の結果得られた推定
値を対応する実測値等と区別するために用いる。
In the subsequent development, the symbol ' is used to distinguish estimated values obtained as a result of various operations from corresponding actual measured values.

/?ヶは次点kにおける状態ベクトルで、厚肉容器の内
表面から前述の各分割点及び外表面それぞれにおけるメ
タル温度を戒分に持つ。後述する補正等を施してメタル
温度分布を推定した場合は上述の記号を用い層,と表わ
す。行列Cはδ,の戒分と2kの戒分の対応を(40)
式により与えている。すなわち層,の戒分のうち実測値
信号16と比較する対象のみが(40)式を用いて取り
出されると考えればよい。
/? is the state vector at the next point k, which has the metal temperature at each of the above-mentioned dividing points and the outer surface from the inner surface of the thick-walled container. When the metal temperature distribution is estimated by applying corrections, etc., which will be described later, the above symbol is used to represent the layer. The matrix C represents the correspondence between the precepts of δ and the precepts of 2k (40)
It is given by the formula. That is, it is only necessary to consider that among the precepts of the layer, only the object to be compared with the measured value signal 16 is extracted using equation (40).

(42)式に示すA一の威分r.,g.はすべて?であ
り、A”はいわゆるfri −diagonal行列で
あるから、逆行列(A”)−’が存在し、掃き出し法等
を用いれば容易に逆行列を求めることができるから、(
39)式は下弐となる /?え.1 =Aθk+Bθ■     ・・・・・・
・・・(50)A= (A”)−1A”       
  ・・・・・・・・・(51)B= (A”)−1B
”         ・・・・・・・・・(52)上式
中A,Bはシステム理論でそれぞれ遷移行列、駆動行列
と呼ばれる。ここに、A,Bともに戒分にα1を含み(
2 1), (2 2), (2 3)及び(25)式
よりα9はδ,λf +  Dill+  Prf, 
 hf +P,の関数である。また、(3 2),(3
 3),(3 4)式よりA,Bの他の戒分であるfi
 +  gi ,}liは、K,Δr,Δむの関数であ
る。しかしながら、これらの諸パラメータのうちδ以外
は予測演算の過程も含めて、時点kにおいて実測値また
は第1の演算手段27を用いて確定的に求めることがで
きるに対し、δは各時点のメタル温度推定誤差は最小と
するための未知のパラメータである。以下の議論におい
てδ以外のパラメータは適格に計算?えされていれば何
ら問題を生じないので、簡単のため、A,Bは未知のパ
ラメータδのみの関数と考える。このとき下式に示す。
The power of A1 shown in equation (42) is r. , g. Everything? Since A'' is a so-called fri-diagonal matrix, there is an inverse matrix (A'')-', and the inverse matrix can be easily obtained by using the sweep method etc., so (
39) The formula becomes lower 2/? picture. 1 =Aθk+Bθ■ ・・・・・・
...(50)A= (A")-1A"
・・・・・・・・・(51)B=(A”)−1B
” ・・・・・・・・・(52) In the above formula, A and B are called transition matrix and driving matrix, respectively, in system theory.Here, both A and B include α1 in the precept (
From equations 2 1), (2 2), (2 3) and (25), α9 is δ, λf + Dill+ Prf,
It is a function of hf +P. Also, (3 2), (3
3), fi which is another precept of A and B from formulas (34)
+ gi , }li are functions of K, Δr, Δm. However, among these parameters, other than δ can be determined definitively at time k using the actual measurement value or the first calculation means 27, including the process of prediction calculation, whereas δ is determined by the metal value at each time point. The temperature estimation error is an unknown parameter to be minimized. Are parameters other than δ properly calculated in the following discussion? Therefore, for simplicity, consider A and B to be functions of only the unknown parameter δ. At this time, it is shown in the formula below.

/?■とδ5を戒分に持つ拡張状態変数Z,を定義する
と以下となる。ただしδは真値は一定値であるが、推定
値3kは真僅に収束しながら時々刻々変化すると仮定す
る。
/? Defining an extended state variable Z having ■ and δ5 as precepts is as follows. However, it is assumed that the true value of δ is a constant value, but the estimated value 3k changes from time to time while converging slightly.

・・・・・・・・・(54) )/f =  (c; o)Z,=#  (z*  )・・・・
・・・・・(55) 上記のベクトル関数ψ(z.,k),φ(Zk)に拡張
カルマンフィルタ理論を適用してZ,の推定を行うには
以下の諸式を計算すればよい。
・・・・・・・・・(54) )/f = (c; o)Z,=# (z*)・・
(55) To estimate Z by applying the extended Kalman filter theory to the above vector functions ψ(z.,k) and φ(Zk), the following equations may be calculated.

・・・・・・・・・(56) 1 2Δδ 〔 ( A ( & k+Δδ) A(3, Δδ)} 釦 + {B(,}k+Δδ)−B(&k一Δδ)}θ,,
]・・・・・・・・・(57) 2 l+− + = 6 k( 2 k)Qw=”;l
w+Kw (!/K−Qi+)2k=φm(zm) K.=百mHm”(Hhνk}{k’+Rk)百k・.
=FKPkF,” ・・・・・・・・・(59) ・・・・・・・・・(60) ・・・・・・・・・(6I) ・・・・・・・・・(62) ・・・・・・・・・(63) P1百1FkHkT CHk百,Hy” + Rh) 
 一嘗旧?,・・・・・・・・・(64) 以上の諸式は2k及び百,の初期値及び、計算誤差、モ
デル式に係る物理現象の近似に伴う誤差の程度を共分散
行列としてそれぞれ時点kにおいてR.Q*として与え
れば、各時点において、計測信号l6に係るハを得る毎
に(64)式、(63)式、(62)式、(61)式、
(60)式、(59)式の順にくり返し計算をすれば良
い。上式中の諸記号は単に計算の課程で生じる諸変数と
してブランクボックスとして扱って問題ないが、特に以
下の名前が付けられていることを付記する。
・・・・・・・・・(56) 1 2Δδ [(A (&k+Δδ) A(3, Δδ)} Button+ {B(,}k+Δδ)−B(&k−Δδ)}θ,,
]・・・・・・・・・(57) 2 l+− + = 6 k( 2 k)Qw=”;l
w+Kw (!/K-Qi+)2k=φm(zm) K. = 100 mHm” (Hhνk}{k'+Rk) 100k・.
=FKPkF,” ・・・・・・・・・(59) ・・・・・・・・・(60) ・・・・・・・・・(6I) ・・・・・・・・・( 62) ・・・・・・・・・(63) P1101FkHkT CHk100, Hy” + Rh)
One year old? ,・・・・・・・・・(64) The above equations are calculated using the initial values of 2k and 100, the calculation error, and the degree of error accompanying the approximation of the physical phenomenon related to the model formula as a covariance matrix at each point in time. R in k. If it is given as Q*, then at each time point, each time C related to the measurement signal l6 is obtained, Equation (64), Equation (63), Equation (62), Equation (61),
Calculations may be repeated in the order of equations (60) and (59). The symbols in the above formula can simply be treated as blank boxes as variables that occur during the calculation process, but it should be noted that they are given the following names.

K,:カルマンゲイン行列 Pk :推定誤差共分散行列 第7の演算手段においては、以上の諸式を計算して得ら
れた2,の成分であるδを用いて第2の演算手段19、
及び28中の補正係数δとする。
K, : Kalman gain matrix Pk : Estimated error covariance matrix In the seventh calculation means, the second calculation means 19 uses δ, which is the component of 2, obtained by calculating the above equations.
and the correction coefficient δ in 28.

また、(60)式の演算は下式に書き換えられることに
着目すれば、もう一つの本実施例特有の効果を指摘でき
る。
Furthermore, by noting that the calculation in equation (60) can be rewritten as the following equation, another effect unique to this embodiment can be pointed out.

?* =A(L−+)δk−+ + B ( 8 k一
+)θ■−1・・・・・・・・・(66) これは(66)式により求まる1,が、まさに第3の演
算手段24.30及び第6の演算手段2lで求める温度
分布であることから、第7の演算手段22は信号36に
相当するδの補正値Δδ6に加え、信号29に相当する
温度分布の補正値Δj,をも算出可能であり、該補正に
より、いっそう実測信号16から知り得る計算対象の温
度分布状況に近い温度分布推定値δ5が得られる。時点
kにおける当該推定値層、を新たな初期値として、第3
の演算手段30を用いて前述した予測演算を行なえば、
最も高精度に熱応力の将来値が推定できることは論を待
たない。
? *=A(L−+)δk−+ + B (8 k−+)θ■−1・・・・・・・・・(66) This means that 1, found by equation (66), is exactly the third Since the temperature distribution is calculated by the calculation means 24.30 and the sixth calculation means 2l, the seventh calculation means 22 calculates the temperature distribution corresponding to the signal 29 in addition to the correction value Δδ6 of δ corresponding to the signal 36. A correction value Δj, can also be calculated, and by this correction, an estimated temperature distribution value δ5 that is closer to the temperature distribution state of the calculation target that can be known from the actual measurement signal 16 can be obtained. The estimated value layer at time k is set as the new initial value, and the third
If the above-mentioned prediction calculation is performed using the calculation means 30 of
It goes without saying that the future value of thermal stress can be estimated with the highest accuracy.

第2図は本発明の他の実施例であって、第1図における
本発明の適用対象であった熱交換器出口ヘッダを気水分
離器に置き換え、第l図の実施例で実測した内部流体温
度を、流体圧力信号82から飽和温度算出手段78をも
って流体温度信号67に変換している他は、前述の第1
図の実施例とほぼ同一構戒である。
FIG. 2 shows another embodiment of the present invention, in which the heat exchanger outlet header to which the present invention was applied in FIG. Except that the fluid temperature is converted from the fluid pressure signal 82 to the fluid temperature signal 67 by the saturation temperature calculation means 78,
The structure is almost the same as the embodiment shown in the figure.

図中において、5lは給水ライン、52は蒸発器、53
は気水分離器、54はノズル、55は蒸気出口、56は
ドレン出口、57は蒸気供給弁、58は蒸気供給ライン
、59は流体圧力検出器、60はメタル温度検出器、6
lは燃料供給ライン、62はバーナ、63は火炎、64
は燃料流調弁、65は燃料流調弁駆動信号、66は蒸気
供給弁、67は流体温度信号、68はメタル温度信号、
69は第2の演算手段、70は信号設定要素、7lは第
6の演算手段、72は第7の演算手段、73は第3の演
算手段、74は画面編集手段、75はディスプレイ、7
6は第1の演算手段、77は第2の演算手段、78は飽
和温度算出手段、79は第3の演算手段、80は第5の
演算手段、81は最適操作量算出手段、82は流体圧力
信号、83は伝熱量現在値信号、84はメタル温度計算
値信号、85は演算数値補正信号、86は熱応力現在値
信号、87はディスプレイ駆動信号、88は蒸気温度予
測信号、89は流体圧力昇圧目標信号、90は伝熱量予
測信号、9lは熱応力予測信号、92は流体圧力変化率
指令信号、93は状態量補正信号である。
In the figure, 5l is a water supply line, 52 is an evaporator, and 53
54 is a steam separator, 54 is a nozzle, 55 is a steam outlet, 56 is a drain outlet, 57 is a steam supply valve, 58 is a steam supply line, 59 is a fluid pressure detector, 60 is a metal temperature detector, 6
1 is a fuel supply line, 62 is a burner, 63 is a flame, 64
is a fuel flow control valve, 65 is a fuel flow control valve drive signal, 66 is a steam supply valve, 67 is a fluid temperature signal, 68 is a metal temperature signal,
69 is a second calculation means, 70 is a signal setting element, 7l is a sixth calculation means, 72 is a seventh calculation means, 73 is a third calculation means, 74 is a screen editing means, 75 is a display, 7
6 is a first calculation means, 77 is a second calculation means, 78 is a saturation temperature calculation means, 79 is a third calculation means, 80 is a fifth calculation means, 81 is an optimum operation amount calculation means, and 82 is a fluid 83 is a heat transfer amount current value signal, 84 is a metal temperature calculation value signal, 85 is an arithmetic value correction signal, 86 is a thermal stress current value signal, 87 is a display drive signal, 88 is a steam temperature prediction signal, 89 is a fluid 90 is a heat transfer amount prediction signal, 9l is a thermal stress prediction signal, 92 is a fluid pressure change rate command signal, and 93 is a state quantity correction signal.

〔発明の効果〕〔Effect of the invention〕

本発明は前述のような構成になっているから、■)従来
運転員の経験と勘にたよっていた熱交換器出口ヘッダの
熱応力将来値が、制限値を超えるか否かの判断が定量的
に可能となる。
Since the present invention has the above-mentioned configuration, ■) the determination of whether the future thermal stress value of the heat exchanger outlet header, which conventionally relied on the experience and intuition of the operator, will exceed the limit value can now be made quantitatively. It becomes possible.

2)従来運転員の経験と勘にたよっていた気水分離器の
熱応力将来値が、制限値を超えるか否かの判断が定量的
に可能となる。
2) It becomes possible to quantitatively determine whether the future thermal stress value of the steam/water separator, which conventionally relied on the experience and intuition of the operator, will exceed the limit value.

3)従来運転員の経験と勘にたよっていた熱交換器出口
ヘッダの熱応力値制限の観点から現在の蒸気温度変化率
が、妥当か否かの判断が定量的に可能となる。
3) It becomes possible to quantitatively determine whether or not the current rate of change in steam temperature is appropriate from the perspective of limiting the thermal stress value of the heat exchanger outlet header, which conventionally relied on the experience and intuition of operators.

4)従来運転員の経験と勘にたよっていた気水分離器の
熱応力値制限の観点から現在の蒸気圧力変化率が、妥当
か否かの判断が定量的に可能となる。
4) It becomes possible to quantitatively determine whether or not the current rate of change in steam pressure is appropriate from the perspective of limiting the thermal stress value of the steam/water separator, which conventionally relied on the experience and intuition of operators.

5)従来運転員の経験と勘にたよっていた熱交換器出口
ヘッダの熱応力による損傷防止の要求と必要な蒸気温度
変化を迅速に行う要求を調和させた運転が自動的に実施
できる。
5) It is possible to automatically perform an operation that harmonizes the requirement to prevent damage caused by thermal stress to the heat exchanger outlet header, which conventionally relied on the experience and intuition of operators, and the requirement to quickly change the required steam temperature.

6)従来運転員の経験と勘にたよっていた気水分離器の
熱応力による損傷防止の要求と、必要な蒸気圧力変化を
迅速に行う要求を調和させた運転が自動的に実施できる
6) It is possible to automatically perform an operation that harmonizes the requirement to prevent damage to the steam/water separator due to thermal stress, which conventionally relied on the experience and intuition of operators, and the requirement to quickly change the required steam pressure.

7)上述の1)〜6)項に示した効果を実現する上で不
可欠な要件となる熱応力値の高精度な推定が可能となる
。ことに、従来熱応力算出上最大の誤差要因であったメ
タル=流体間熱伝達率の値に係る問題が解決できる。
7) It is possible to estimate thermal stress values with high accuracy, which is an essential requirement for realizing the effects shown in items 1) to 6) above. In particular, the problem related to the value of the metal-fluid heat transfer coefficient, which was the biggest error factor in conventional thermal stress calculation, can be solved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の各実施例を説明するため
の概略構戒図、第3図,第4図,第5図ならびに第6図
は従来技術を説明するための概略横戒図である。 ■・・・・・・・・・被過熱蒸気、4・・・・・・・・
・熱交換入口ヘッダ、5・・・・・・・・・熱交換器伝
熱管、6・・・・・・・・・熱交換器出口ヘッダ、7・
・・・・・・・・蒸気温度検出器、8・・・・・・・・
・メタル温度検出器、9・・・・・・・・・過熱蒸気供
給弁、10・・・・・・・・・余剰蒸気排出弁駆動信号
、1l・・・・・・・・・燃料供給ライン、12・・・
・・・・・・燃料流調弁、l3・・・・・・・・・燃料
流調弁駆動信号、l6・・・・・・・・・メタル温度信
号、17・・・・・・・・・蒸気温度信号、18・・・
・・・・・・過熱蒸気供給弁駆動信号、l9・・・・・
・・・・第2の演算手段、2l・・・・・・・・・第6
の演算手段、22・・・・・・・・・第7の演算手段、
24・・・・・・・・・第3の演算手段、25・・・・
・・・・・画面編集手段、26・・・・・・・・・ディ
スプレイ、27・・・・・・・・・第lの演算手段、2
8・・・・・・・・・第2の演算手段、29・・・・・
・・・・状態量補正信号、30・・・・・・・・・第3
の演算手段、31・・・・・・・・・第4の演算手段、
32・・・・・・・・・最適操作量算出手段、33・・
・・・・・・・信号設定器、34・・・・・・・・・伝
熱量現在値信号、35・・・・・・・・・メタル温度現
在計算値信号、36・・・・・・・・・演算数値補正信
号、37・・・・・・・・・蒸気温度予測信号、38・
・・・・・・・・蒸気温度昇温目標信号、39・・・・
・・・・・伝熱量予測信号、40・・・・・・・・・熱
応力予測信号、41・・・・・・・・・蒸気温度変化率
制限値信号、42・・・・・・・・・熱応力現在値信号
、43・・・・・・・・・ディスプレイ駆動信号、53
・・・・・・・・・気水分離器、59・・・・・・・・
・流体圧力検出器、60・・・・・・・・・メタル温度
検出器、64・・・・・・・・・燃料流調弁、65・・
・・・・・・・燃料流調弁駆動信号、66・・・・・・
・・・蒸気供給弁、67・・・・・・・・・流体温度信
号、68・・・・・・・・・メタル温度信号、69・・
・・・・・・・第2の演算手段、70・・・・・・・・
・信号設定要素、71・・・・・・・・・第6の演算手
段、72・・・・・・・・・第7の演算手段、73・・
・・・・・・・第3の演算手段、74・・・・・・・・
・画面編集手段、75・・・・・・・・・デイスプL・
イ、76・・・・・・・・・第1の演算手段、77・・
・・・・・・・第2の演算手段、78・・・・・・・・
・飽和温度算出手段、79・・・・・・・・・第3の演
算手段、80・・・・・・・・・第5の演算手段、81
・・・・・・・・・最適操作量算出手段、82・・・・
・・・・・流体圧力信号、83・・・・・・・・・伝戦
!現在値信号、84・・・・・・・・・メタル温度計算
値信号、85・・・・・・・・・演算数値補正信号、8
6・・・・・・・・・熱応力現在値信号、87・・・・
・・・・・ディスプレイ駆動信号、88・・・・・・・
・・蒸気温度予測信号、89・・・・・・・・・流体圧
力昇圧目標信号、90・・・・・・・・・伝熱量予測信
号、91・・・・・・・・・熱応力予測信号、92・・
・・・・・・・流体圧力変化率指令信号、93・・・・
・・・・・状態量補正信号。 第3図 第4嬉 鷺5図
1 and 2 are schematic diagrams for explaining each embodiment of the present invention, and FIGS. 3, 4, 5, and 6 are schematic diagrams for explaining the prior art. It is a diagram. ■・・・・・・Superheated steam, 4・・・・・・・・・
・Heat exchange inlet header, 5... Heat exchanger heat transfer tube, 6... Heat exchanger outlet header, 7.
・・・・・・・・・Steam temperature detector, 8・・・・・・・・・
・Metal temperature detector, 9...Superheated steam supply valve, 10...Excess steam discharge valve drive signal, 1l...Fuel supply Line, 12...
...Fuel flow control valve, l3...Fuel flow control valve drive signal, l6...Metal temperature signal, 17... ...Steam temperature signal, 18...
...Superheated steam supply valve drive signal, l9...
...Second calculation means, 2l...Sixth
calculation means, 22...7th calculation means,
24...Third calculation means, 25...
...Screen editing means, 26...Display, 27...Lth calculation means, 2
8... Second calculating means, 29...
...State quantity correction signal, 30...3rd
calculation means, 31...4th calculation means,
32...Optimum operation amount calculation means, 33...
...... Signal setting device, 34... Heat transfer amount current value signal, 35... Metal temperature current calculated value signal, 36... ...... Arithmetic value correction signal, 37... Steam temperature prediction signal, 38.
......Steam temperature increase target signal, 39...
...Heat transfer amount prediction signal, 40...Thermal stress prediction signal, 41...Steam temperature change rate limit value signal, 42... ...Thermal stress current value signal, 43...Display drive signal, 53
・・・・・・・・・Sea water separator, 59・・・・・・・・・
・Fluid pressure detector, 60...Metal temperature detector, 64...Fuel flow control valve, 65...
......Fuel flow control valve drive signal, 66...
...Steam supply valve, 67...Fluid temperature signal, 68...Metal temperature signal, 69...
......Second calculation means, 70...
・Signal setting element, 71...Sixth calculation means, 72...Seventh calculation means, 73...
......Third calculation means, 74...
・Screen editing means, 75...Disp L・
A, 76...First calculation means, 77...
......Second calculation means, 78...
・Saturation temperature calculation means, 79...Third calculation means, 80...Fifth calculation means, 81
......Optimum operation amount calculation means, 82...
...Fluid pressure signal, 83...Densen! Current value signal, 84...Metal temperature calculation value signal, 85......Calculated value correction signal, 8
6...Thermal stress current value signal, 87...
...Display drive signal, 88...
...Steam temperature prediction signal, 89...Fluid pressure increase target signal, 90...Heat transfer amount prediction signal, 91...Thermal stress Predicted signal, 92...
...Fluid pressure change rate command signal, 93...
...State quantity correction signal. Figure 3 Figure 4 Happy Heron Figure 5

Claims (7)

【特許請求の範囲】[Claims] (1)、蒸気を通じる熱交換部位を有する装置の運転支
援装置において、 該部位出口の蒸気温度の将来値を予測する第1の演算手
段と、 該部位出口近傍の蒸気流路を構成する容器において、少
くとも蒸気温度に基づいて容器内蒸気と容器内面相互間
の伝熱量を算出する第2の演算手段と、 少くとも容器内面に係る伝熱量に基づき、かかる容器に
発生する熱応力を算出する第3の演算手段を有し、 前記第1の演算手段で求めた上述の蒸気温度の将来値を
用いて、第2の演算手段で伝熱量の将来値を求め、さら
に第3の演算手段で当該伝熱量将来値を用いて熱応力の
将来予測値を求めるように構成されていることを特徴と
する運転支援装置。
(1) An operation support device for a device having a heat exchange section through steam, comprising: a first calculation means for predicting a future value of the steam temperature at the outlet of the section; and a container forming a steam flow path near the outlet of the section. a second calculation means for calculating the amount of heat transfer between the steam inside the container and the inner surface of the container based on at least the steam temperature; and a second calculation means for calculating the thermal stress generated in the container based on at least the amount of heat transfer related to the inner surface of the container. a third calculation means for determining the future value of the amount of heat transfer using the second calculation means using the future value of the steam temperature determined by the first calculation means; A driving support device characterized in that the device is configured to use the future value of the amount of heat transfer to obtain a predicted future value of thermal stress.
(2)、水または蒸気、もしくはこれらの混合物である
流体を通じて気水分離を行なう部位を有する装置の運転
支援装置において、 かかる部位を通過する当該流体温度の将来値を予測する
第1の演算手段と、 かかる部位自体もしくは近傍の流路を構成する容器にお
いて、少くとも流体温度に基づいて容器内流体と容器内
面相互間の伝熱量を算出する第2の演算手段と、 少くとも容器内面に係る伝熱量に基づき、かかる容器に
発生する熱応力を算出する第3の演算手段を有し、 第1の演算手段で求めた上述の流体温度の将来値を用い
て、第2の演算手段で伝熱量の将来値を求め、さらに第
3の演算手段で当該伝熱量将来値を用いて熱応力の将来
予測値を求めるように構成されていることを特徴とする
運転支援装置。
(2) In an operation support device for an apparatus having a part that performs steam and water separation through a fluid that is water, steam, or a mixture thereof, a first calculation means for predicting a future value of the temperature of the fluid passing through the part. and a second calculating means for calculating the amount of heat transfer between the fluid in the container and the inner surface of the container based on at least the fluid temperature in the container constituting the flow path in or near the part itself, and at least the inner surface of the container. It has a third calculation means for calculating the thermal stress generated in the container based on the amount of heat transfer, and the second calculation means uses the future value of the fluid temperature obtained by the first calculation means to calculate the thermal stress generated in the container. A driving support device characterized in that it is configured to obtain a future value of heat amount, and further calculate a future predicted value of thermal stress using the future value of heat transfer amount in a third calculating means.
(3)、請求項(1)記載において、少くとも前記第3
の演算手段で求めた熱応力将来予測値、及び現時点にお
ける蒸気温度の変化率および蒸気温度の変化履歴を表示
する表示手段を設けたことを特徴とする運転支援装置。
(3) In claim (1), at least the third
1. An operation support device comprising display means for displaying a predicted value of future thermal stress obtained by the calculation means, a current rate of change in steam temperature, and a history of changes in steam temperature.
(4)、請求項(2)記載において、少くとも前記第3
の演算手段で求めた熱応力将来予測値、及び現時点にお
ける蒸気圧力の変化率または蒸気圧力の変化履歴を表示
する表示手段を設けたことを特徴とする運転支援装置。
(4) In claim (2), at least the third
1. An operation support device comprising display means for displaying a predicted future value of thermal stress obtained by the calculation means, and a current rate of change in steam pressure or a history of changes in steam pressure.
(5)、請求項(1)記載において、前記かかる熱交換
部位出口蒸気温度の制御手段を有し、前記容器の熱応力
の将来予測値に基づき、当該制御手段に指令する蒸気温
度目標値、または蒸気温度変化率目標値を算出する第4
の演算手段を設けたことを特徴とする運転支援装置。
(5) The steam temperature target value according to claim (1), comprising means for controlling the steam temperature at the outlet of the heat exchange section, and commanding the control means based on a future predicted value of thermal stress of the container; or the fourth to calculate the steam temperature change rate target value.
A driving support device characterized by being provided with a calculation means.
(6)、請求項(2)記載において、前記かかる気水分
離器内流体圧力の制御手段を有し、前記容器の熱応力の
将来予測値に基づき、当該制御手段に指令する蒸気圧力
目標値、または蒸気圧力変化率目標値を算出する第5の
演算手段を設けたことを特徴とする運転支援装置。
(6) In claim (2), the steam-water separator includes means for controlling fluid pressure within the steam-water separator, and a steam pressure target value is commanded to the control means based on a future predicted value of thermal stress of the container. , or a fifth calculation means for calculating a steam pressure change rate target value.
(7)、請求項(1)ないし請求項(6)記載のいずれ
かにおいて、前記かかる容器の外面または容器肉厚中の
点のうち、少くとも1箇所の温度を測定する計測手段と
、 当該温度測定点の温度を、少くとも容器内面に係る伝熱
量に基づいて算出する第6の演算手段と、対応する該温
度計測値と該温度算出値の組を少くとも1組を入力して
、前記第2の演算手段中の諸数値の補正量を算出する第
7の演算手段を有し、流体または蒸気温度の現在値より
第2の演算手段において伝熱量の現在値を求め、これを
第6の演算手段に適用して得た現在温度算出値、及び対
応する現在温度計測値に基づき、第7の演算手段で第2
の演算手段を補正する操作を実施し、かかる状態におい
て熱応力の将来値を求めるように構成されていることを
特徴とする運転支援装置。
(7) In any one of claims (1) to (6), a measuring means for measuring the temperature at at least one point among the outer surface of the container or a point in the wall thickness of the container; inputting at least one set of the corresponding temperature measurement value and the temperature calculation value; It has a seventh calculation means for calculating the amount of correction of various numerical values in the second calculation means, and calculates the current value of the amount of heat transfer in the second calculation means from the current value of the fluid or steam temperature, and calculates the current value of the amount of heat transfer from the current value of the fluid or steam temperature. Based on the current temperature calculation value obtained by applying the calculation means 6 and the corresponding current temperature measurement value, the seventh calculation means calculates the second
What is claimed is: 1. A driving support device characterized by being configured to perform an operation for correcting the calculating means of and calculate a future value of thermal stress in such a state.
JP18602389A 1989-07-20 1989-07-20 Driving support device Expired - Fee Related JP2851868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18602389A JP2851868B2 (en) 1989-07-20 1989-07-20 Driving support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18602389A JP2851868B2 (en) 1989-07-20 1989-07-20 Driving support device

Publications (2)

Publication Number Publication Date
JPH0351602A true JPH0351602A (en) 1991-03-06
JP2851868B2 JP2851868B2 (en) 1999-01-27

Family

ID=16181043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18602389A Expired - Fee Related JP2851868B2 (en) 1989-07-20 1989-07-20 Driving support device

Country Status (1)

Country Link
JP (1) JP2851868B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193701A (en) * 1995-01-19 1996-07-30 Mitsubishi Heavy Ind Ltd Device for estimating heat absorption quantity of heat transfer surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193701A (en) * 1995-01-19 1996-07-30 Mitsubishi Heavy Ind Ltd Device for estimating heat absorption quantity of heat transfer surface

Also Published As

Publication number Publication date
JP2851868B2 (en) 1999-01-27

Similar Documents

Publication Publication Date Title
US4390058A (en) Method of monitoring condenser performance and system therefor
US4916715A (en) Method and apparatus for measuring the distribution of heat flux and heat transfer coefficients on the surface of a cooled component used in a high temperature environment
US5900555A (en) Method and apparatus for determining turbine stress
CN108871821B (en) Real-time monitoring method for energy efficiency state of air cooler based on mean value-moving range method
CN110412062B (en) Diagnosis and monitoring method for corrosion abnormity of clad pipeline
CN101319256A (en) Intelligent monitoring method for cooling wall of blast furnace
Eissenberg An investigation of the variables affecting steam condensation on the outside of a horizontal tube bundle
Jaremkiewicz et al. Monitoring of transient thermal stresses in pressure components of steam boilers using an innovative technique for measuring the fluid temperature
JP4705066B2 (en) Nuclear power plant, method for monitoring thermal fatigue of water supply nozzle, and method for operating nuclear power plant
US4792912A (en) System for estimating thermal stress of pressure parts
Mersinligil et al. Unsteady pressure measurements with a fast response cooled probe in high temperature gas turbine environments
JPH0351602A (en) Operation support apparatus
Taler et al. Experimental verification of space marching methods for solving inverse heat conduction problems
Scheepers et al. Experimental study of heat transfer augmentation near the entrance to a film cooling hole in a turbine blade cooling passage
CN101382458B (en) Station boiler air preheater hot spot detecting method based on analog computation of rotor temperature field
JPS611809A (en) Casing of steam turbine
JPH09111318A (en) Method for predicting abnormal operation of plant
Aikman Frequency-response analysis and controllability of a chemical plant
Novak et al. Heat transfer study in rotating cascade using IR thermography and CFD analyses
US20230105228A1 (en) Estimation device, estimation method, and non-transitory computer-readable recording medium for thickness of deposit
JPH0624645Y2 (en) Boiler thermal stress monitor
Wolf Heating and Cooling Air and Carbon Dioxide in the Thermal Entrance Region of a Circular Duct With Large Gas to Wall Temperature Differences
JPS59158901A (en) Method of controlling temperature of boiler steam
Beard et al. Deepanshu Singh
JPH0159402B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees