JP2851868B2 - Driving support device - Google Patents

Driving support device

Info

Publication number
JP2851868B2
JP2851868B2 JP18602389A JP18602389A JP2851868B2 JP 2851868 B2 JP2851868 B2 JP 2851868B2 JP 18602389 A JP18602389 A JP 18602389A JP 18602389 A JP18602389 A JP 18602389A JP 2851868 B2 JP2851868 B2 JP 2851868B2
Authority
JP
Japan
Prior art keywords
value
steam
temperature
calculating
thermal stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18602389A
Other languages
Japanese (ja)
Other versions
JPH0351602A (en
Inventor
幸穂 深山
拓 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP18602389A priority Critical patent/JP2851868B2/en
Publication of JPH0351602A publication Critical patent/JPH0351602A/en
Application granted granted Critical
Publication of JP2851868B2 publication Critical patent/JP2851868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は蒸気発生設備などにおける運転支援装置に係
り、特に設備の高信頼性を維持しつつ、頻繁な蒸気温
度、圧力変化を伴う運用に好適な運転支援装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an operation support device in a steam generation facility or the like, and particularly to an operation with frequent steam temperature and pressure changes while maintaining high reliability of the facility. The present invention relates to a suitable driving support device.

〔従来の技術〕[Conventional technology]

第3図は本発明の対象たる蒸気発生設備の熱交換部位
と、従来技術に基づく計装システムの一例を示す。
FIG. 3 shows an example of a heat exchange part of a steam generating facility to which the present invention is applied and an example of an instrumentation system based on the prior art.

被過熱蒸気1は熱交換器入口ヘツダ4を経て熱交換器
伝熱管5に導かれる。該伝熱管5は燃料供給ライン11か
らの燃料を燃料流調弁12により加減して、バーナ14に与
えて得られた火炎15により加熱されており、該伝熱管5
の通過蒸気は過熱された後、熱交換器出口ヘツダ6を経
て過熱蒸気供給ライン23に送られる。このとき、かかる
蒸気発生設備が発生する供給ライン23の過熱蒸気量は過
熱蒸気供給弁9の開度により調節され、その際の余剰蒸
気は余剰蒸気排出弁2により排出される。また、かかる
設備の発生蒸気温度は温度検出器7による計測値に基づ
き、該伝熱管5の通過蒸気流量に応じてバーナ14に供給
する燃料量を加減して調整する。
The superheated steam 1 is led to a heat exchanger heat transfer tube 5 via a heat exchanger inlet header 4. The heat transfer tube 5 is heated by a flame 15 obtained by adjusting the fuel from a fuel supply line 11 by a fuel flow regulating valve 12 and applied to a burner 14.
Is passed through a heat exchanger outlet header 6 and then sent to a superheated steam supply line 23. At this time, the amount of superheated steam in the supply line 23 generated by the steam generation equipment is adjusted by the opening degree of the superheated steam supply valve 9, and excess steam at that time is discharged by the excess steam discharge valve 2. Further, the temperature of the generated steam of such equipment is adjusted based on the value measured by the temperature detector 7 by adjusting the amount of fuel supplied to the burner 14 in accordance with the flow rate of the steam passing through the heat transfer tube 5.

この蒸気発生設備において、過熱蒸気供給ライン23に
おける蒸気温度、流量を頻繁に変化させる必要がある場
合は、設備信頼性の面で注意を要する。すなわち、蒸気
温度を意識的に変化させる場合はもちろんのこと、蒸気
流量を変化させる場合であつても蒸気流量の変化に対応
して、該伝熱管5における熱交換量変化をぴつたり調節
できなければ蒸気温度変動を生じ、設備を構成する容器
に熱応力を発生する。そして該熱応力に伴う疲労損傷及
びクリープ損傷により、ついには容器の亀裂発生,噴破
といつた事態を招く恐れがある。
In this steam generation equipment, when it is necessary to frequently change the steam temperature and the flow rate in the superheated steam supply line 23, care must be taken in terms of equipment reliability. In other words, not only when the steam temperature is intentionally changed, but also when the steam flow rate is changed, the heat exchange amount change in the heat transfer tube 5 cannot be adjusted depending on the steam flow rate. For example, the steam temperature fluctuates, and thermal stress is generated in the container constituting the equipment. The fatigue damage and creep damage caused by the thermal stress may eventually lead to cracking and blasting of the container.

このような危惧に対処するため、従来技術においても
熱交換器出口ヘツダ6の熱応力の監視が行なわれてい
る。これは、かかるヘツダは厚肉であつて、本質的にメ
タル温度分布に起因する熱応力が顕著に発生し、かつ、
万が一の亀裂発生等の事態に陥つた際に、伝熱管5に比
して特に交替が困難である点、及び熱交換部位の出口は
熱収支のアンバランスが累積して蒸気温度の変動が最も
大きくなりやすい等の観点から、過熱蒸気を発生する設
備における熱応力の代表監視点としてふさわしいからで
ある。
In order to cope with such a fear, monitoring of the thermal stress at the heat exchanger outlet header 6 is performed in the prior art. This is because such a header is thick, and the thermal stress inherently caused by the metal temperature distribution is remarkably generated.
In the event of a crack, etc., it is difficult to replace the heat transfer tube 5 in particular, and at the exit of the heat exchange site, heat balance imbalance is accumulated and steam temperature fluctuates most. This is because it is suitable as a representative monitoring point of the thermal stress in the facility that generates the superheated steam from the viewpoint of easily increasing the size.

従来技術に基づく熱応力監視の実施は、例えば宮垣,
程塚:ボイラ熱応力監視装置:日立評論第65巻6号P391
(昭58−6)に紹介されているが、その熱応力の算出法
は以下の考え方に要約できる。
For example, Miyazaki,
Hoduka: Boiler Thermal Stress Monitoring System: Hitachi Critic Review Vol. 65, No. 6, P391
The method of calculating the thermal stress is summarized in the following concept.

一般にヘツダ等の円筒容器の温度分布は、肉厚に対し
て筒部の長さは十分に長いため、軸対称一次元の熱伝導
方程式を解けば良いことが知られており、該方程式は下
式に示される。
In general, the temperature distribution of a cylindrical container such as a header is known to solve an axially symmetric one-dimensional heat conduction equation because the length of the cylindrical portion is sufficiently long with respect to the wall thickness. It is shown in the equation.

ここに、以下の記号を与える。 Here, the following symbols are given.

t :時間経過〔sec〕 ρ:メタル密度〔kg/m3〕 θ:メタル温度〔℃〕 k :メタル温度伝導度〔m2/sec〕 r :円筒容器半径方向の距離〔m〕 c :メタル熱伝導率〔kcal/m・sec・℃〕 μ:メタル比熱〔kcal/kg・℃〕 微分方程式(1)を解く際の境界条件の与え方の相違
に係り、3種類の実施例を示すことができるが、これに
ついては後述する。
t: elapsed time [sec] ρ: metal density [kg / m 3 ] θ: metal temperature [° C] k: metal temperature conductivity [m 2 / sec] r: distance in the radial direction of cylindrical container [m] c: metal Thermal conductivity [kcal / m · sec · ° C] μ: Specific heat of metal [kcal / kg · ° C] Regarding the difference in how to give the boundary conditions when solving differential equation (1), show three examples. , Which will be described later.

微分方程式(1)を解くと、rの関数θ(r,t)とし
て時刻tにおけるメタル温度分布を得ることができる
が、容器の平均温度はrの値により、同一温度θ(r,
t)近傍の体積が相違するため、これを考慮して求める
必要がある。かくなる平均メタル温度は、体積平均温
度と呼ばれ次式で与えられる。
By solving the differential equation (1), the metal temperature distribution at time t can be obtained as a function θ (r, t) of r.
t) Since the volumes in the vicinity are different, it is necessary to take this into consideration. The average metal temperature to be reduced is called a volume average temperature and is given by the following equation.

ここに、添字a,bはそれぞれ円筒容器の内外面を示
す。従つてθ=θ(ra,t),θ=θ(rb,t)であ
る。
Here, the subscripts a and b indicate the inner and outer surfaces of the cylindrical container, respectively. Accordingly, θ a = θ (r a , t) and θ b = θ (r b , t).

円筒容器においては一般に内面の熱応力が最も厳しく
なることが知られているが、これは以下のように算出で
きる。
It is generally known that the thermal stress on the inner surface of a cylindrical container becomes the severest, and this can be calculated as follows.

σtr=0 ………(8) ここに以下の記号を与える。σ tr = 0 ... (8) The following symbols are given here.

μ:メタル線膨張係数〔1/℃〕 η:メタルヤング率〔kg/mm2〕 ν:メタルポアソン比 σt:内面熱応力〔kg/mm2〕 また、添字r,s,zは順に半径,円周,軸方向の成分で
あることを示す。
μ: Metal linear expansion coefficient [1 / ° C] η: Metal Young's modulus [kg / mm 2 ] ν: Metal Poisson's ratio σ t : Thermal stress inside [kg / mm 2 ] Also, the subscripts r, s, and z are radii in order , Circumferential and axial components.

さらに、圧力容器においては内圧応力を考慮しなけれ
ばならないが、これらは下式に示される。
Furthermore, in a pressure vessel, internal pressure stress must be taken into account, and these are expressed by the following formula.

ここに、以下の記号を与える。 Here, the following symbols are given.

σp:内面内圧応力〔kg/mm2〕 Pf :容器内流体圧力〔kg/cm2〕 熱交換器ヘツダ、気水分離器等は円筒容器の側面に伝
熱管や連絡管が接続されており、その先端はノズルとみ
なすことができる。公知のように、円筒容器の内面にか
かるノズル上の穴が存在する場合、その穴のコーナー部
は特に応力値が高くなるが、その値はノズル状の穴の存
在しない容器の内面の応力値に応力集中定数を乗じて評
価すれば良いから、ノズル状の穴のコーナー部の応力は
以下に求められる。
σ p : Inner surface pressure stress [kg / mm 2 ] P f : Vessel fluid pressure [kg / cm 2 ] For heat exchanger headers, steam separators, etc., heat transfer tubes and connecting tubes are connected to the side of the cylindrical container. And its tip can be regarded as a nozzle. As is well known, when there is a hole on the nozzle that is applied to the inner surface of the cylindrical container, the stress value is particularly high at the corner of the hole, but the value is the stress value of the inner surface of the container without the nozzle-shaped hole. Is multiplied by the stress concentration constant, and the stress at the corner of the nozzle-shaped hole is determined as follows.

σ=Kprσpr ………(12) σ=Ktsσts+Kpsσps ………(13) σ=Ktzσtz+Kpzσpz ………(14) ここに、以下の記号を与える。σ r = K pr σ pr …… (12) σ s = K ts σ ts + K ps σ ps …… (13) σ z = K tz σ tz + K pz σ pz …… (14) The following symbols are given.

σ:ノズルコーナー部分合計応力〔kg/mm2〕 Kt:熱応力集中係数 Kp:内圧応力集中係数 以上のように算出したノズルコーナー部は、かかる容
器において、最も応力値が厳しい箇所であるため、該箇
所を対象に発生応力に係る損傷の評価を行なえば良い。
公知のように被労損傷は主応力差の三成分のうち絶対値
最大の値、クリープ損傷は相当応力値がそれぞれ支配す
るが、これらの諸量は下式で求められる。
σ: Nozzle corner total stress [kg / mm 2 ] Kt: Thermal stress concentration coefficient Kp: Internal pressure stress concentration coefficient Since the nozzle corner calculated as above is the place where the stress value is the severest in such a container, What is necessary is just to evaluate the damage related to the generated stress for the location.
As is well known, work damage is governed by the maximum absolute value of the three components of the principal stress difference, and creep damage is governed by the equivalent stress value. These quantities are determined by the following equations.

σsz=σ−σ ………(15) σzr=σ−σ ………(16) σrs=σ−σ ………(17) ここに、下式の記号を定義する。σ sz = σ s- σ z (15) σ zr = σ z- σ r ... (16) σ rs = σ r- σ s (17) Here, the following symbols are defined.

δsz:主応力差(周一軸成分) 〔kg/mm2〕 δzr:主応力差(軸−半径成分)〔kg/mm2〕 δrs:主応力差(半径−周成分)〔kg/mm2〕 δeg:相当応力 〔kg/mm2〕 以上に述べた諸式の適用にあたり、前述したように
(1)式の境界条件の与え方に係り、実施例が種々存在
し、それぞれ特徴を有し、第3図に示す構造は以下タイ
プIと呼ぶ典型的な構成である。タイプIを詳述した
後、以下タイプIIと呼ぶ第4図、以下タイプIIIと呼ぶ
第5図について説明することとする。
δsz: Principal stress difference (uniaxial component) [kg / mm 2 ] δzr: Principal stress difference (axial-radial component) [kg / mm 2 ] δrs: Principal stress difference (radius-circular component) [kg / mm 2 ] δeg: Equivalent stress [kg / mm 2 ] In applying the above-described equations, as described above, there are various examples related to how to give the boundary condition of equation (1), each of which has a feature, The structure shown in FIG. 3 is a typical structure hereinafter referred to as type I. After the type I is described in detail, FIG. 4 referred to as type II hereinafter and FIG. 5 referred to as type III hereinafter will be described.

タイプIにおいては以下の考え方に従う。第3図にお
いてヘツダ6の外面は保温材20に囲まれているため、外
面から熱の出入りは無いと仮定する。従つて、メタルの
温度傾配を用いて外面単位面積あたりの熱移動量を表わ
せるから、下式を得る。
In Type I, the following concept is followed. In FIG. 3, since the outer surface of the header 6 is surrounded by the heat insulating material 20, it is assumed that no heat enters or exits from the outer surface. Therefore, the amount of heat transfer per unit area of the outer surface can be expressed by using the temperature gradient of the metal, so that the following equation is obtained.

同様に、内面における熱移動量は、内面と内部の流体
間の熱伝達量に等しいから、単位面積について下式を得
る。
Similarly, since the heat transfer amount on the inner surface is equal to the heat transfer amount between the inner surface and the internal fluid, the following expression is obtained for the unit area.

ここに、次の記号を定義する。 Here, the following symbols are defined.

α:メタル−流体間熱伝達率〔kcal/m2・sec・℃〕 θf:平均流体温度〔℃〕 タイプIにおいては、時々刻々θfを与えつつ、
(1)式を(19),(20)式と組合わせて解く。具体的
には温度検出手段7により得た流体温度信号17をθfと
して、第2の演算手段107で(20)式の右辺を算出し、
既に右辺の値を仮定した(19)式の境界条件と共に、
(1)式を解く第3の演算手段109に与えることによ
る。
α: Heat transfer coefficient between metal and fluid [kcal / m 2 · sec · ° C] θf: Average fluid temperature [° C] In type I, while giving θf every moment,
Solve equation (1) by combining equations (19) and (20). Specifically, the fluid temperature signal 17 obtained by the temperature detecting means 7 is defined as θf, and the right side of the equation (20) is calculated by the second calculating means 107.
Along with the boundary condition in Eq. (19) that already assumed the value on the right side,
(1) is given to the third calculating means 109 for solving the equation.

第2の演算手段107に取り扱う(20)式中の熱伝達率
αの値は熱応力値の算出精度を支配する重要パラメータ
であるが、従来技術においては以下のように求める。
The value of the heat transfer coefficient α in the equation (20) handled by the second calculating means 107 is an important parameter that governs the accuracy of calculating the thermal stress value, and is obtained as follows in the related art.

ここに、以下の記号を定義する。 Here, the following symbols are defined.

λf:内部流体熱伝導率〔Kcal/m・sec.℃〕 Din:代表寸法(流路内径)〔m〕 Nuf:内部流体ヌセルト数 Ref:内部流体レイノルズ数 Prf:プラントル数 uf :内部流体流速〔m/sec〕 ζf:内部流体動粘性係数〔m2/sec〕 Gf :内部流体総質量流量〔Kg/s〕 n :サーキツト数 π :円周率 Pf :内部流体密度〔kg/m3〕 (21)式はMcAdamsの式と呼ばれており、詳細は適当
な参考文献(例えば:Giedt;横堀,久我訳:基礎伝熱工
学:丸善)を参照されたい。諸式中n,Dinはヘツダ6の
構造から、Gfは蒸気発生設備の運転状態から求められ、
λt,Prf,ζf,Pfは内部流体の温度,圧力,乾き度を知れ
ば例えば日本機械学会発行の蒸気表を用いて知ることが
できる。これら諸量に基づき式(21)〜(23)に係る全
変数の値を算出できる。
λf: Thermal conductivity of internal fluid [Kcal / m · sec. ° C] Din: Representative dimensions (channel inner diameter) [m] Nuf: Internal fluid Nusselt number Ref: Internal fluid Reynolds number Prf: Prandtl number uf: Internal fluid flow rate [ m / sec] ζf: Kinematic viscosity of internal fluid [m 2 / sec] Gf: Total mass flow rate of internal fluid [Kg / s] n: Number of circuits π: Pi Pf: Internal fluid density [kg / m 3 ] ( 21) The formula is called McAdams formula, and for details, refer to an appropriate reference (eg: Giedt; Yokobori, Kuga translation: Basic heat transfer engineering: Maruzen). In the formulas, n and Din are obtained from the structure of the header 6, and Gf is obtained from the operating state of the steam generating equipment.
λt, Prf, ζf, Pf can be found by using, for example, a steam table published by the Japan Society of Mechanical Engineers if the temperature, pressure, and dryness of the internal fluid are known. Based on these quantities, the values of all the variables according to equations (21) to (23) can be calculated.

以上の考え方に従い、タイプIの実施例においては熱
応力現在値信号110を算出し、温度計測手段7による流
体温度信号17を画面編集手段111により、運転員が把握
しやすい画面に構成してデイスプレイ26に表示してい
る。運転員はデイスプレイ26を監視して、熱応力値が規
定値を越えないように信号設定器101,102,及び103を操
作する。
According to the above concept, in the type I embodiment, the thermal stress present value signal 110 is calculated, and the fluid temperature signal 17 from the temperature measuring means 7 is constituted by the screen editing means 111 into a screen which is easy for the operator to grasp. It is displayed on 26. The operator monitors the display 26 and operates the signal setting units 101, 102, and 103 so that the thermal stress value does not exceed a specified value.

なお、図中の3は余剰蒸気排出ライン、104は過熱蒸
気供給駆動信号、105は燃料流調弁駆動信号、106は余剰
蒸気排出駆動信号、108は伝熱量現在値信号、112はデイ
スプレイ駆動信号である。
In the figure, 3 is an excess steam discharge line, 104 is a superheated steam supply drive signal, 105 is a fuel flow regulating valve drive signal, 106 is a surplus steam discharge drive signal, 108 is a heat transfer amount current value signal, and 112 is a display drive signal. It is.

第4図にタイプIIの実施例を示す。大部分の装置構成
及び演算の考え方はタイプIと同様であるから、両者の
相違点に関してのみ説明する。なお、第3図と第4図に
おいて、同一の作用を演じる構成要素には同一の部品番
号を付した。
FIG. 4 shows a type II embodiment. Most of the configuration of the apparatus and the concept of the operation are the same as those of the type I, so only the differences between them will be described. In FIGS. 3 and 4, components performing the same function are denoted by the same part numbers.

タイプIIの最大の特徴はメタル温度検出器8を用い
て、外表面温度θを与える信号16を得ていることであ
る。タイプIIにおいては(19)式の保温材20に係るヘツ
ダ外面断熱の条件を仮定することなく、直接に実測のθ
を(1)式の境界条件として温度分布を解く方法に基
づいており、ことに保温材20が不十分な厚さであつて、
ヘツド6の外面より、かなりの熱量が大気へ放散してい
るケースではタイプIに比して有効な精度向上が期待で
きる。
The biggest feature of Type II with the metal temperature detector 8 is that to obtain a signal 16 to provide an outer surface temperature theta b. In type II, the measured θ is directly measured without assuming the conditions for heat insulation on the outer surface of the header relating to the heat insulating material 20 in equation (19).
b is based on the method of solving the temperature distribution with the boundary condition of the equation (1). In particular, if the heat insulating material 20 has an insufficient thickness,
In the case where a considerable amount of heat is radiated to the atmosphere from the outer surface of the head 6, an effective improvement in accuracy can be expected as compared with the type I.

しかしながら、通常の蒸気発生装置においては、熱損
失防止,接触時の安全の両観点から、十分な厚さの保温
が施行されるのが通常であり、タイプIIにおいてもタイ
プIと同様に(20)式に係るαの妥当性が熱応力算出精
度を支配する最も重要な因子であることに変わりはな
い。
However, in a normal steam generator, a sufficient thickness of heat is usually performed from the viewpoints of both heat loss prevention and safety at the time of contact. ) Is still the most important factor that governs the thermal stress calculation accuracy.

第5図にタイプIIIの実施例を示す。大部分の装置構
成及び演算の考え方はタイプI,タイプIIと同様であるか
ら、相違点のみ説明する。また同一作用を演じる構成要
素には第3図と第4図における部品番号と同一としてあ
る。
FIG. 5 shows a type III embodiment. Most of the configuration of the apparatus and the concept of the operation are the same as those of the type I and the type II, so only the differences will be described. Components that perform the same function are the same as those in FIG. 3 and FIG.

タイプIIIの最大の特徴はメタル温度検出器118を用い
て、内表面温度θとみなし得る内表面近傍のメタル温
度信号119を得ており、このθの値を直接に境界条件
として(1)式を解くことにより、αを含む(20)式を
不要とすることができる点にある。
The biggest feature of the Type III with a metal temperature detector 118, and to obtain a metal temperature signal 119 in the vicinity of inner surface can be regarded as the inner surface temperature theta a, the value of this theta a directly as a boundary condition (1 Equation (20) can be eliminated by solving equation (20).

確かにαの算出は基本的に実験式である(21)式に依
存せざるを得ない状況にあるため、本質的に誤差を含み
やすいαを用いないタイプIIIの演算手法はメリツトを
有する。しかしながら、後述する熱応力将来値予測演算
への発展に難点があるほか、ヘツダ6の厚肉部において
一般に内表面近傍は温度傾配が急であるため、内表面の
近傍で計測しても、相表面の温度の真値に対し誤差が生
じやすい問題がある。
Certainly, since the calculation of α basically depends on the empirical formula (21), the type III calculation method that does not use α that is inherently susceptible to errors has advantages. However, in addition to the difficulty in developing the thermal stress future value prediction calculation described later, the temperature gradient is generally sharp near the inner surface of the thick portion of the header 6, so that even when measuring near the inner surface, There is a problem that an error easily occurs with respect to the true value of the phase surface temperature.

以上、熱交換器出口ヘツダを例に、従来技術による計
装技術を説明したが、蒸気発生装置においては気水分離
器あるいは蒸気ドラムも同様に厚肉であり、万一の亀裂
発生の際に取り替えが困難であつて、熱応力に係る疲労
損傷、クリープ損傷には最大限の留意を要する部位であ
る。かかる部位においては、その内部の流体は気水混合
物であるため、流体温度と一意に飽和圧力が対応するか
ら、圧力値あるいは圧力変化率で管理することが常套で
ある。これは一般に圧力が温度よりも計測,制御とも容
易であることによる。
In the above, the instrumentation technology according to the prior art has been described using the heat exchanger outlet header as an example.However, in the steam generator, the steam-water separator or the steam drum is similarly thick, and in the event of a crack occurring, It is a part that is difficult to replace and requires maximum attention to fatigue damage and creep damage due to thermal stress. In such a portion, since the fluid inside is a gas-water mixture, the fluid temperature and the saturation pressure uniquely correspond to each other. Therefore, it is customary to control the pressure by a pressure value or a pressure change rate. This is because pressure is generally easier to measure and control than temperature.

第6図は、蒸気発生設備の気水分離部位と、従来技術
に基づく計装システムの一例を示す。給水ライン51から
供給された水は、蒸発管52中で火炎63からの熱を受けて
蒸気を発生し、気水混合物となり。気水混合物はノズル
54より気水分離器53の内壁に沿つて旋回流を形成するよ
うに、内面接線方向に吹きこまれる。この際、比重が大
なる液相分は遠心力により気水分離器内面に押しつけら
れ旋回しつつ落下し、ドレン出口56より排出される。比
重の小さい気相は遠心力の作用が小さいため、気水分離
器の中心部に集まり、蒸気供給弁57を経て蒸気供給ライ
ナ58に送られる。当該設備における蒸気圧力は蒸気供給
弁57による蒸気抜き出し量に応じて、燃料流調整弁64を
調節し、蒸気管52内の蒸発量を加減することにより行
う。
FIG. 6 shows an example of a steam / water separation part of a steam generating facility and an example of an instrumentation system based on the prior art. The water supplied from the water supply line 51 receives heat from the flame 63 in the evaporating pipe 52 to generate steam, and becomes a steam-water mixture. Air-water mixture nozzle
The air is blown in tangentially from the inner surface of the steam-water separator 53 so as to form a swirling flow along the inner wall of the steam separator 53. At this time, the liquid phase having a large specific gravity is pressed against the inner surface of the steam separator by centrifugal force, falls while rotating, and is discharged from the drain outlet 56. Since the gas phase having a small specific gravity has a small effect of the centrifugal force, it is collected at the center of the steam separator and sent to the steam supply liner 58 via the steam supply valve 57. The steam pressure in the facility is adjusted by adjusting the fuel flow regulating valve 64 in accordance with the amount of steam withdrawn by the steam supply valve 57 to adjust the amount of evaporation in the steam pipe 52.

従来技術における計装システムは蒸気圧力検出器59に
よつて得た蒸気圧力信号82から、蒸気における圧力と飽
和温度の関数形を内蔵する演算手段78により蒸気飽和温
度信号67を求める。以降の構成は熱交換出口ヘツダに係
る従来技術による計装システムである第3図と同様であ
る。当該装置においては熱応力現在値信号158を受け、
圧力計測手段59による流体圧力信号82を画面編集手段15
9により、運転員が把握しやすい画面に構成してデイス
プレイ75に表示する。運転員はデイスプレイ75を監視し
て、熱応力値が規定値を越えないように信号設定器151
及び152を操作する。
The instrumentation system according to the prior art obtains a steam saturation temperature signal 67 from a steam pressure signal 82 obtained by a steam pressure detector 59 by an arithmetic means 78 having a function form of the pressure and the saturation temperature in the steam. The subsequent configuration is the same as that of FIG. 3 which is a conventional instrumentation system relating to the heat exchange outlet header. The device receives a thermal stress current value signal 158,
The fluid pressure signal 82 from the pressure measuring means 59 is displayed on the screen editing means 15
According to 9, the screen is configured to be easily understood by the operator and displayed on the display 75. The operator monitors the display 75 and sets the signal setting unit 151 so that the thermal stress value does not exceed the specified value.
And 152 are operated.

なお、図中の153は蒸気供給弁駆動信号、154は燃料流
調弁駆動信号、155は第2の演算手段、156は伝熱量現在
値信号、157は第3の演算手段、160はデイスプレイ駆動
信号である。
In the figure, 153 is a steam supply valve drive signal, 154 is a fuel flow control valve drive signal, 155 is a second calculation means, 156 is a heat transfer amount current value signal, 157 is a third calculation means, and 160 is a display drive Signal.

第6図の装置は熱応力演算手法において、第3図の装
置と同様に前述したタイプIに属するが、第6図中の気
水分離器53の熱応力算出法に係り、第4図の装置と同様
のタイプII、第5図の装置と同様のタイプIIIの手法を
適用することも当然可能である。気水分離器53のタイプ
II及びタイプIIIの構成に関する例は第6図に基づき、
第3図、第4図及び第5図の相互間の相違点を考慮すれ
ば、構成、特徴等が容易に類推できるので説明は省略す
る。
The apparatus shown in FIG. 6 belongs to the above-mentioned type I in the thermal stress calculation method similarly to the apparatus shown in FIG. 3, but relates to the method for calculating the thermal stress of the steam separator 53 in FIG. It is of course possible to apply a type II method similar to the apparatus and a type III method similar to the apparatus of FIG. Steam-water separator 53 type
Examples for II and Type III configurations are based on FIG.
Considering the differences between FIG. 3, FIG. 4, and FIG. 5, the configuration, features, and the like can be easily analogized, and thus the description is omitted.

以上説明した従来技術の計装システムの共通点は、い
ずれも管理対象たる厚肉部位に発生する熱応力の現在値
のみを監視し、その情報に基づいて装置運転員の熟練に
期待して装置の操作を行つていることである。
The common feature of the above-described conventional instrumentation systems is that all of them monitor only the current value of the thermal stress generated in the thick part to be managed and, based on the information, expect the skill of the equipment operator to be skilled. Operation.

すなわち、熱応力発生は本質的に容器内部の流体温度
の変化が、容器メタルの肉厚方向に遅れて伝わる現象に
起因しており、例えば、燃料投入量増加操作を行なつて
いる最中に熱応力値高を知つて、燃料投入量増加を中止
しても一般に熱応力値は、しばらくの期間上昇を続け
る。従つて必然的に、現時点の熱応力値を考慮して、現
在の装置操作に係る熱応力値の見通しを持たなければ、
装置の運用上問題が生じるが、かかる見通しを得るには
熟練を要するものである。
That is, the thermal stress generation is essentially caused by the phenomenon that the change in the fluid temperature inside the container is transmitted with a delay in the thickness direction of the container metal, for example, during the operation of increasing the fuel input amount. Even if the increase of the fuel input is stopped by knowing the high thermal stress value, the thermal stress value generally keeps increasing for a while. Therefore, inevitably, taking into account the current thermal stress value, if there is no prospect of the thermal stress value related to the current operation of the equipment,
Although a problem arises in the operation of the device, skill is required to obtain such a prospect.

さらに、前述したように、従来技術における熱応力現
在値の監視精度についても、容器内面の熱伝達率算出の
信頼性に依存する場合には、ある程度の誤差を想定しな
ければならず、これを含んで熱応力の将来値の見通しを
得て、装置を運転することは、はなはだ高度な熟練を要
する。
Further, as described above, the monitoring accuracy of the current thermal stress value in the conventional technique also depends on the reliability of calculating the heat transfer coefficient of the inner surface of the container. Operating the device, including the prospect of future values of thermal stress, including in itself, requires a great deal of skill.

以上の指摘事項は、結論から言えば現時点までの装置
運転状況により熱応力の将来値を予測する機能をもつて
解決され、これは基本的には従来技術において熱応力値
を算出する際に用いた演算手段を、適当な境界条件の下
で将来に向けて逐次時間を進めて行う予測シミユレータ
として適用すれば実現できることは既に知られている。
The above findings were solved with the function of predicting the future value of thermal stress based on the operating condition of the equipment up to the present point, which is basically used for calculating the thermal stress value in the conventional technology. It has already been known that this can be realized by applying the calculation means as a prediction simulator which sequentially advances the future under appropriate boundary conditions.

しかしながら、かかる熱応力値の予測は次に述べる問
題点により、未だ実用に供せられていなかつた。
However, such prediction of the thermal stress value has not yet been put to practical use due to the following problems.

1)タイプI及びタイプIIの熱応力算出法においては容
器内面の熱伝達率αが精度を支配するが、αの算出は代
表的な(21)式をはじめ、いずれも内部流体が単相流、
無限長円管等の理想化した仮定の下に行なつており、逐
次時間を進めて、くり返しαを用いなければならない予
測演算では、αに起因する誤差が蓄積して、妥当な熱応
力評価が不可能な場合が多い。
1) In the type I and type II thermal stress calculation methods, the heat transfer coefficient α on the inner surface of the container governs the accuracy. ,
It is performed under the idealized assumption of an infinitely long pipe, etc., and in the prediction calculation in which the time must be advanced and α must be used repeatedly, errors due to α accumulate and a reasonable thermal stress evaluation Is often impossible.

2)タイプIIIの熱応力算出法は、前述した誤差の原因
となるαを用いない反面、境界条件として厚肉容器の内
外面メタル温度が必要となり、これは実測値が利用でき
る熱応力現在値の算出に支障はないが、将来値の予測に
は適用が難しい。
2) The type III thermal stress calculation method does not use α which causes the above-mentioned error, but on the other hand, it requires the metal temperature of the inner and outer surfaces of the thick-walled container as the boundary condition, which is the current value of the thermal stress for which the measured value can be used Although it does not hinder the calculation of, it is difficult to apply to the prediction of future values.

すなわち、厚肉容器は受動的な部位であり、他の熱交
換部位から供給される内部流体の温度、及び容器からの
流体抜き出し量の影響を受けた結果として、内外面メタ
ル温度が決定されるという物理的メカニズムを計算に考
慮せずして、厚肉部内外面メタル温度の将来値を高精度
に求めることは不可能である。
That is, the thick container is a passive part, and the inner and outer surface metal temperatures are determined as a result of the influence of the temperature of the internal fluid supplied from other heat exchange parts and the amount of fluid withdrawn from the container. It is impossible to determine the future value of the metal temperature on the inner and outer surfaces of the thick portion with high accuracy without considering the physical mechanism of the calculation in the calculation.

しかしながら、かかる物理的メカニズムを考慮すれ
ば、容器内流体と容器内面間の熱移動を計算する必要が
生じ、当該計算にはどうしても相当のパラメータが必要
であるため、実測値が適用できない予測演算にはタイプ
I,IIと同様な欠点が避けられない。
However, considering such a physical mechanism, it is necessary to calculate the heat transfer between the fluid in the container and the inner surface of the container, and the calculation requires a considerable number of parameters. Is the type
The same drawbacks as I and II are inevitable.

本発明の目的は、従来技術において運転員の熟練に期
待するほかなかつた設備の高信頼性を維持しつつ、頻繁
な蒸気温度、圧力変化を行う運用を容易に実現させる観
点において、その最も効果的な手段となる熱応力将来値
の高精度な予測を中心とする運転支援システムを提供す
るにあり、具体的には、かかる予測機能実用化のあい路
である前述の熱伝達率αに係る誤差の問題を解決するこ
とに帰着する。
An object of the present invention is to achieve the most effective operation from the viewpoint of easily realizing an operation in which frequent steam temperature and pressure changes are performed while maintaining high reliability of facilities other than those expected from the skill of operators in the prior art. To provide a driving support system centered on high-precision prediction of a future value of thermal stress, which is a practical means. Specifically, the present invention relates to the above-described heat transfer coefficient α, which is a path for practical use of the prediction function. It comes down to solving the error problem.

〔課題を解決するための手段〕[Means for solving the problem]

前記目的を達成するため、本発明は下記1)〜7)の
手段を備えたことを特徴とするものである。
In order to achieve the above object, the present invention is characterized by including the following means 1) to 7).

1)熱交換器出口ヘツダ内の蒸気温度将来値を予測する
手段、該蒸気温度の将来値を用いて蒸気とヘツダ間の熱
交換量の将来値を予測する手段、該熱交換量の将来値を
用いてヘツダ内面の熱応力を予測する手段、 2)気水分離器に係り、1)項と同様にして流体温度将
来値、熱交換量将来値,気水分離器内面の熱応力将来値
を予測する手段、 3)熱交換器出口ヘツダの熱応力予測値と現時点の昇温
率の関係を表示する手段、 4)気水分離器の熱応力予測値と現時点の昇圧率の関係
を表示する手段、 5)熱交換器出口ヘツダの熱応力予測値に従つて、昇温
率指令値を求める手段、 6)気水分離器の熱応力予測値に従つて、昇圧率指令値
を求める手段、 7)熱交換器出口ヘツダ、気水分離器それぞれについ
て、内部の蒸気または流体との熱交換量現在値を用い
て、当該ヘツダまたは分離器の肉厚方向の温度分布現在
値を算出する手段、当該ヘツダまたは分離器の厚肉容器
外面または厚肉中のメタル温度を計測する手段、かかる
計測値と温度分布現在値を比較して熱交換量現在値算出
に係る熱伝達率αを補正する手段、及び該補正後の熱伝
達率αを1)〜6)項の熱交換量将来値算出に適用する
手段。
1) means for predicting the future value of the steam temperature in the heat exchanger outlet header, means for predicting the future value of the heat exchange amount between steam and the header using the future value of the steam temperature, and the future value of the heat exchange amount Means for predicting the thermal stress on the inner surface of the header by using 2) Regarding the steam-water separator, the future value of the fluid temperature, the future value of the heat exchange amount, the future value of the thermal stress of the inside surface of the steam-water separator in the same manner as in 1) 3) Means for displaying the relationship between the predicted value of the thermal stress at the heat exchanger outlet header and the current heating rate, 4) Displaying the relationship between the predicted value of the thermal stress of the steam separator and the current pressure rising rate 5) Means for determining a heating rate command value in accordance with the predicted value of the thermal stress at the heat exchanger outlet header; 6) Means for determining the pressure increasing rate value in accordance with the predicted thermal stress value of the steam separator 7) Heat exchange with the internal steam or fluid for each of the heat exchanger outlet header and steam-water separator. Means for calculating the current value of the temperature distribution in the thickness direction of the header or the separator by using the current value of the amount, means for measuring the metal temperature in the outer surface of the thick vessel or the thick wall of the header or the separator, such measurement Means for correcting the heat transfer coefficient α related to the calculation of the current heat exchange amount by comparing the heat transfer coefficient α with the current value of the temperature distribution, and calculating the future heat exchange amount in the items 1) to 6) based on the corrected heat transfer coefficient α. Means to apply to.

〔作用〕[Action]

前述の手段1)〜7)項の作用は概略以下の通りであ
る。
The operations of the above-mentioned means 1) to 7) are roughly as follows.

1),2)項における蒸気温度または流体温度の将来予
測法は、物理モデルによるシミユレーシヨン解析の手法
を用い、ボイラに与えられる操作条件に従つて計算すれ
ば良い。具体的には筆者らの研究による手法〔参考文
献:深山ほか「ボイラプラント シミユレータの開発と
応用」:火力原子力発電第37巻11号P1189〜P1199(昭61
−11)〕を適用すれば良い。蒸気、流体温度将来値から
熱応力将来値を求める計算法は従来技術の説明において
熱応力現在値の算出を行なつた手法モードI〔式(1)
〜式(23)に係る説明〕と同一であつて、熱応力現在値
より出発して、適当な計算時間刻み(通常0.1秒〜10秒
程度)ごとに予測した蒸気、流体温度に基づき、該時点
の熱応力値を算出できる。かかる演算において、蒸気、
流体温度から熱交換量を求める際のα〔(20)式にて使
用〕は7)項の手段に係り後述する如く補正を行ない、
実用上十分な精度を確保する。
The future prediction method of the steam temperature or the fluid temperature in the items 1) and 2) may be calculated according to the operating conditions given to the boiler by using a simulation analysis method using a physical model. Specifically, a method based on the research by the authors [Reference: Miyama et al., "Development and Application of Boiler Plant Simulator": Thermal Nuclear Power, Vol. 37, No. 11, P1189-P1199 (Showa 61
−11)] may be applied. The calculation method for calculating the future value of thermal stress from the future value of steam and fluid temperature is a method mode I [Expression (1)] in which the calculation of the current value of thermal stress is performed in the description of the prior art.
-Explanation related to equation (23)], starting from the current value of the thermal stress, based on the steam and fluid temperature predicted at appropriate calculation time intervals (usually about 0.1 to 10 seconds). The thermal stress value at the time can be calculated. In such calculations, steam,
Α (used in equation (20)) for obtaining the heat exchange amount from the fluid temperature is corrected according to the means of item 7) as described later,
Ensure sufficient accuracy for practical use.

3),4)項に関しては、容器に発生する熱応力値は内
部流体温度変化率の高次遅れ特性となることが知られて
おり、かかる現象の理論的裏付は本発明者らの発明「ボ
イラ制御装置」(特開昭63−118503号)の明細書に詳述
した通りである。
Regarding items 3) and 4), it is known that the thermal stress value generated in the container is a high-order lag characteristic of the rate of change of the internal fluid temperature, and such a phenomenon is theoretically supported by the inventors of the present invention. This is as described in detail in the specification of "Boiler control device" (JP-A-63-118503).

一般に圧力容器の信頼性を維持するには発生熱応力の
最大値を制限しなければならないが、前述の特性により
将来発生する熱応力最大値は現時点の温度変化率に支配
されるから、熱交換器出口ヘツダの熱応力将来値を予測
して、該制御値を越えないために現在の昇温率が妥当か
どうか評価できる。
Generally, to maintain the reliability of the pressure vessel, the maximum value of the generated thermal stress must be limited.However, since the maximum value of the thermal stress generated in the future is governed by the current rate of temperature change due to the above-mentioned characteristics, heat exchange By predicting the future value of the thermal stress at the outlet of the vessel, it is possible to evaluate whether the current heating rate is appropriate or not so as not to exceed the control value.

同様に気水分離器については内部の流体は飽和領域で
あり飽和温度と圧力は1対1の関係があるため、一般に
温度は計測の容易な圧力を得て、その関数として求めら
れる。従つて気水分離器の将来の熱応力最大値は現時点
の昇圧率に支配されることになり、熱応力の予測値から
現状の昇圧率の妥当性が評価できる。
Similarly, in the steam-water separator, since the internal fluid is in a saturation region and the saturation temperature and the pressure have a one-to-one relationship, the temperature is generally obtained as a function of obtaining a pressure that can be easily measured. Therefore, the maximum value of the future thermal stress of the steam separator will be governed by the current boost rate, and the validity of the current boost rate can be evaluated from the predicted value of the thermal stress.

5),6)項については、一般に蒸気発生設備の蒸気条
件(温度及び圧力)を変化させる場合は例えば本発明者
らの発明による「ボイラ制御装置」)特開昭61−24905
号)を用いて適当な昇温率,昇圧率を指令して蒸気条件
を調節すればよいが、その際該昇温率,該昇温圧率にて
将来の熱応力高が予想されるならば、該予測値が制限値
以下となるよう、かかる調節により昇温率、昇圧率指令
値の絶対値を低減する作用が実現できる。ここに、かか
る昇温率、昇圧率指令値は蒸気温度、圧力がそれぞれ目
標とする値に一致すれば0となり、一般に正にも負にも
なる。
Regarding the items 5) and 6), generally, when the steam conditions (temperature and pressure) of the steam generating equipment are changed, for example, a "boiler control device" according to the invention of the present inventors) is disclosed in JP-A-61-24905.
The steam condition may be adjusted by instructing an appropriate rate of temperature increase and rate of pressure increase by using the above (2). In this case, if a high thermal stress is expected at the temperature increase rate and the temperature increase pressure rate, For example, an operation of reducing the absolute values of the temperature rise rate and the boost rate command value can be realized by such adjustment so that the predicted value becomes equal to or less than the limit value. Here, the command values for the temperature increase rate and the pressure increase rate are 0 when the steam temperature and the pressure respectively match the target values, and are generally positive or negative.

7)項については、一口に言えば、流体温度将来値か
ら熱応力将来値を求める前述の演算手段において、かか
る将来値演算に先立ち流体温度現在値から、当該ヘツダ
または気水分離器の外面あるいは厚肉中のメタル温度の
現在値を算出する。該メタル温度演算は熱応力値算出の
過程で(1)式を解く際に求められるので、熱応力算出
演算部をそのまま用いることができる。
Regarding the term 7), in short, in the above-mentioned calculating means for obtaining the future value of the thermal stress from the future value of the fluid temperature, the outer surface of the header or the steam-water separator or the current value of the fluid temperature is calculated prior to the calculation of the future value. Calculate the current value of the metal temperature in the thick wall. Since the metal temperature calculation is obtained when solving the equation (1) in the process of calculating the thermal stress value, the thermal stress calculation calculation unit can be used as it is.

該メタル温度算出値と対応する実施例値を比較して、
種々の運転状態において温度算出値が実測値に比して先
行的変化(位相が進んでいる)ならば該演算の精度を支
配する前述の熱伝達率α[(20)式]は過大であり、逆
に実測値に比して遅れて変化するならばαの過小である
から、かかる傾向に着目してαを逐次補正すれば常に十
分な精度を維持できる。従つて7)項の作用により1)
〜6)項の作用を実用上十分な精度で実現することがで
きる。
By comparing the calculated value of the metal temperature with the corresponding example value,
In various operating states, if the calculated temperature value is a prior change (the phase is advanced) compared to the actually measured value, the above-described heat transfer coefficient α [Equation (20)] which governs the accuracy of the calculation is excessive. On the other hand, if it changes later than the actual measurement value, the value of α is too small. Therefore, if α is sequentially corrected while paying attention to such a tendency, sufficient accuracy can always be maintained. Therefore, 1) by the operation of item 7)
The functions of (6) to (6) can be realized with sufficient accuracy for practical use.

〔発明の実施例〕(Example of the invention)

第1図は、本発明の一実施例である熱交換器出口ヘツ
ダを監視対象とした運転支援システムである。
FIG. 1 shows a driving support system according to one embodiment of the present invention, in which a heat exchanger outlet header is monitored.

本システムは従来技術による第3図(モードIの計算
法)、第4図(モードIIの計算法)、第5図(モードII
Iの計算法)それぞれに示した計装システムのいずれに
も前述のように存在した問題点を解決すべく開発され
た。本システムの説明にあたり従来技術に係る第3図,
第4図,第5図と同一の部分には同一の符号を付してい
る。
This system is based on the conventional technology shown in Fig. 3 (mode I calculation method), Fig. 4 (mode II calculation method), and Fig. 5 (mode II).
I was developed to solve the problems that existed in each of the instrumentation systems shown above. In explaining the present system, FIG.
4 and 5 are denoted by the same reference numerals.

図中において、1は被過熱蒸気、2は余剰蒸気排出
弁、3は余剰蒸気排出ライン、4は熱交換器入口ヘツ
ダ、5は熱交換器伝熱管、6は熱交換器出口ヘツダ、7
は蒸気温度検出器、8はメタル温度検出器、9は過熱蒸
気供給弁、10は余剰蒸気排出弁駆動信号、11は燃料供給
ライン、12は燃料流調弁、13は燃料流調弁駆動信号、14
はバーナ、15は火炎、16はメタル温度信号、17は蒸気温
度信号、18は過熱蒸気供給弁駆動信号、19は第2′の演
算手段、20は保温材、21は第6の演算手段、22は第7図
の演算手段、23は過熱蒸気供給ライン、24は第3′の演
算手段、25は画面編集手段、26はデイスプレイ、27は第
1の演算手段、28は第2の演算手段、29は状態量補正信
号、30は第3の演算手段、31は第4の演算手段、32は最
適操作量演出手段、33は信号設定器、34は伝熱量現在値
信号、35はメタル温度現在計算値信号、36は演算数値補
正信号、37は蒸気温度予測信号、38は蒸気温度昇温目標
信号、39は伝熱量予測信号、40は熱応力予測信号、41は
蒸気温度変化率制限値信号、42は熱応力現在値信号、43
はデイスプレイ駆動信号である。
In the figure, 1 is superheated steam, 2 is an excess steam discharge valve, 3 is an excess steam discharge line, 4 is a heat exchanger inlet header, 5 is a heat exchanger heat transfer tube, 6 is a heat exchanger outlet header, 7
Is a steam temperature detector, 8 is a metal temperature detector, 9 is a superheated steam supply valve, 10 is a drive signal for an excess steam discharge valve, 11 is a fuel supply line, 12 is a fuel flow control valve, and 13 is a fuel flow control valve drive signal. ,14
Is a burner, 15 is a flame, 16 is a metal temperature signal, 17 is a steam temperature signal, 18 is a drive signal of a superheated steam supply valve, 19 is 2 'arithmetic means, 20 is heat insulating material, 21 is 6th arithmetic means, 22 is the calculating means of FIG. 7, 23 is the superheated steam supply line, 24 is the 3 'calculating means, 25 is the screen editing means, 26 is the display, 27 is the first calculating means, 28 is the second calculating means , 29 is a state quantity correction signal, 30 is third computing means, 31 is fourth computing means, 32 is an optimal manipulated variable directing means, 33 is a signal setter, 34 is a heat transfer quantity present value signal, and 35 is a metal temperature. Current calculated value signal, 36 is an operation numerical correction signal, 37 is a steam temperature prediction signal, 38 is a steam temperature heating target signal, 39 is a heat transfer amount prediction signal, 40 is a thermal stress prediction signal, 41 is a steam temperature change rate limit value Signal, 42 is thermal stress present value signal, 43
Is a display drive signal.

第1図のシステムは、蒸気温度現在値信号17、及び現
時点のプラント操作量である弁開度信号10,13,18を受け
て蒸気温度将来値予測信号37を求める第1の演算手段27
へ入力する。前記予測信号37は計算刻み巾の間隔で将来
予測する値を算出するため、将来予測適用時間幅を計算
刻み巾で除した個数だけ出力される。例えば10分先まで
計算刻み巾30秒にて予測すれば20個の予測信号が出力さ
れる。
The system shown in FIG. 1 receives a steam temperature present value signal 17 and valve opening degree signals 10, 13, and 18, which are plant operation amounts at the present time, and obtains a steam temperature future value prediction signal 37 by a first calculating means 27.
Enter The prediction signals 37 are output by the number obtained by dividing the future prediction application time width by the calculation step size in order to calculate the value to be predicted in the future at intervals of the calculation step size. For example, if prediction is performed 10 minutes ahead with a calculation step width of 30 seconds, 20 prediction signals are output.

第2の演算手段28は、蒸気温度将来値予測信号37を受
け対応する各時点における伝熱量予測信号39を求める。
該演算において熱伝達率αを用いるため、第2の演算手
段28は後述するαの補正信号36をも入力する。
The second calculating means 28 receives the steam temperature future value prediction signal 37 and obtains a heat transfer amount prediction signal 39 at each corresponding time.
Since the heat transfer coefficient α is used in the calculation, the second calculating means 28 also inputs a correction signal 36 for α described later.

第3の演算手段30は、伝熱量予測信号39を受けて対応
する各時点における熱応力予測信号40を求める。また第
4の演算手段31は熱応力予測信号40を受けて、将来にわ
たり熱応力値が制限値を越えないための現時点における
昇温率制限値信号41を出力する。
The third calculating means 30 receives the heat transfer amount prediction signal 39 and obtains a corresponding thermal stress prediction signal 40 at each time point. Further, the fourth calculating means 31 receives the thermal stress prediction signal 40 and outputs a current temperature rise rate limit value signal 41 for preventing the thermal stress value from exceeding the limit value in the future.

最適操作量算出手段32は、昇温目標温度信号38と現在
の蒸気温度信号17を受け、両信号の偏差に応じて、昇温
率制限値信号41で与えられる制限値(絶対値)以内でプ
ラント操作量である余剰蒸気排出弁駆動信号10、燃料流
調弁駆動信号13及び過剰蒸気供給駆動信号18を算出す
る。
The optimum manipulated variable calculating means 32 receives the target temperature rise signal 38 and the current steam temperature signal 17 and, within a limit value (absolute value) given by the temperature rise rate limit value signal 41, according to the difference between the two signals. An excess steam discharge valve drive signal 10, a fuel flow regulating valve drive signal 13, and an excess steam supply drive signal 18, which are plant operation amounts, are calculated.

一方、以上の予測演算の実用的精度を確保するための
構成として、第2′の演算手段19は蒸気温度現在値信号
17を用いて、伝熱量現在値信号34を求め、第6の演算手
段21は当該熱交換器出口ヘツダの肉厚方向のメタル温度
分布を算出し、計測点8が存在する位置に対応するメタ
ル温度現在計算値信号35を算出する。第7の演算手段22
は対応する実測メタル温度信号16と計算値信号35を受け
て、前述の熱伝達率αをはじめ、必要な補正を行う演算
数値補正信号36を算出する。
On the other hand, as a configuration for ensuring the practical accuracy of the above-mentioned prediction calculation, the second 'calculation means 19 includes a steam temperature present value signal.
The sixth calculation means 21 calculates the metal temperature distribution in the thickness direction of the header at the outlet of the heat exchanger, and calculates the metal temperature distribution corresponding to the position where the measurement point 8 exists. The current temperature calculation value signal 35 is calculated. Seventh arithmetic means 22
Receives the corresponding measured metal temperature signal 16 and the calculated value signal 35, and calculates a calculated numerical value correction signal 36 for performing necessary corrections including the heat transfer coefficient α described above.

熱応力現在値信号42は第3′の演算手段24を用い伝熱
量現在値信号34から計算され、熱応力将来値予測信号40
及び蒸気温度現在値信号17と共に画面編集手段25を経て
デイスプレイ26に表示される。
The thermal stress current value signal 42 is calculated from the heat transfer current value signal 34 by using the third 'arithmetic means 24, and the thermal stress future value prediction signal 40
The display is displayed on the display 26 via the screen editing means 25 together with the current steam temperature value signal 17.

第1の演算手段27の作用は、物理モデルによる予測シ
ユミレーシヨンであり、前述したように詳細は参考文献
(火力原子力発電第37巻11号P1189〜P1199)を参照され
たい。
The operation of the first calculation means 27 is a prediction simulation based on a physical model, and as described above, refer to the reference document (Thermal Nuclear Power Generation, Vol. 37, No. 11, P1189 to P1199).

第2′及び第2の演算手段19及び28は前述の(21)の
式、(22)式、(23)を算出し、(20)式に基づく下式
にて伝熱量を算出する。
The second 'and second calculating means 19 and 28 calculate the above-mentioned equations (21), (22) and (23), and calculate the heat transfer amount by the following equation based on the equation (20).

α=α・δ ………(25) ここに、次の記号を定義する。 α * = α · δ (25) Here, the following symbols are defined.

q:内面軸方向単位長あたりの伝熱量[kcal/m・sec] α:補正後の熱伝達率〔kcal/m2・sec・℃] δ:熱伝達率補正係数〔−〕 このうち熱伝達率補正係数δは、後述する第7の演算
手段により与えられる。
q: Heat transfer amount per unit length in the axial direction of the inner surface [kcal / m · sec] α * : Heat transfer coefficient after correction [kcal / m 2 · sec · ° C] δ: Heat transfer coefficient correction coefficient [−] The transmission rate correction coefficient δ is given by a seventh calculating means described later.

第6の演算手段21は、(1)式及び(2)式を解いて
肉厚方向のメタル温度分布θ(r)を算出すると共に、
第7の演算手段22で用いる計測点に対応するメタル温度
θ=θ(rp,t)を求める。
The sixth calculating means 21 calculates the metal temperature distribution θ (r) in the thickness direction by solving the equations (1) and (2),
The metal temperature θ p = θ (r p , t) corresponding to the measurement point used by the seventh calculating means 22 is obtained.

第3′及び第3の演算手段24及び30は、第6の演算手
段21と同様に(1),(2)式を解くことに加え、熱応
力算出に係る(7)〜(18)式を算出する。
The third 'and third calculating means 24 and 30 solve the equations (1) and (2) in the same manner as the sixth calculating means 21 and also calculate the equations (7) to (18) related to the thermal stress calculation. Is calculated.

以上の諸演算のうち(1)式をデイジタル計算機で解
く場合は、以下の方法によるのが効率的である。(1)
式を中心差分形に展開すると下式に近似できる。
When the equation (1) is solved by a digital computer among the above various operations, the following method is efficient. (1)
When the equation is expanded to the central difference form, it can be approximated to the following equation.

ここに以下の記号を定義する。 Here, the following symbols are defined.

ri=ra+(Δr)i(i=1,…n) …(27) tj=t0+(Δt)j(j=1,…m) …(28) θij=θ(ri,tj) ………(29) 以上の諸式は熱交換器出口ヘツダ及び気水分離器を円
筒形厚肉を容器とみなし、容器を同心円状にn分割し該
セクシヨン内でメタル温度一定と仮定して導かれてい
る。通常n=10程度とすれば、実用上十分な精度である
ことが知られている。Δrは該セクシヨンの厚みであつ
て、Δtは前述した計算刻み巾である。
r i = r a + (Δr) i (i = 1,... n) (27) t j = t 0 + (Δt) j (j = 1,... m) (28) θ ij = θ (r i , t j ) ……… (29) The above equations are derived by assuming that the heat exchanger outlet header and the steam separator are cylindrical and have a thick wall as a container, divide the container into n concentric circles, and assume that the metal temperature is constant in the section. It is known that if n = about 10, the accuracy is practically sufficient. Δr is the thickness of the section, and Δt is the above-mentioned calculation step size.

(26)式は以下の形に簡略化できる。 Equation (26) can be simplified to the following form.

giθi−1,j+1−fiθi,i+1+θi+1,j+1=−gi
θi−1,j+hiθij −θi+1j ………(31) ここに、以下の記号を定義した。
g i θ i−1, j + 1 −f i θ i, i + 1 + θ i + 1, j + 1 = −g i
θ i-1, j + h i θ ij -θ i + 1j ......... (31) here, and define the following symbols.

(31)においてfi,gi,hiは定数であるから、右辺にお
いて時点t=tjの値θi−1,j,θi,j,θi+1,jが既
知であれば右辺は定数となり、連立方程式として左辺の
t=tj+1の値θi−1,j+1,θi,j+1,θ
i+1,j+1を求めることが可能である。
F i, g i, because h i are constants in (31), the value theta i-1 of the time t = t j On the right side, j, theta i, j, right if θ i + 1, j is known Are constants, and as simultaneous equations, the values of t = t j + 1 on the left side, θ i−1, j + 1 , θ i, j + 1 , θ
It is possible to obtain i + 1 and j + 1 .

従がつて、引き続きt=tj+1の値を右辺に代入すれば
同様にしてt=tj+2における値が算出できるので、当該
法にて逐次温度分布の将来値、さらに該温度分布と各時
点において(7)式〜(18)式に適用することにより熱
応力の将来値を遂次算出することができる。なお(31)
式による解法はクランク=ニコルソン法と呼ばれ、比較
的大きなΔtに対しても安定な計算が可能である。クラ
ンク=ニコルソン法に関する詳細は適当な参考文献〔例
えばGDスミス;藤川訳:電算機による偏微分方程式の解
法:サイエンス社(昭46−1)〕を参照することができ
る。
Accordingly, the value at t = t j + 2 can be calculated in the same manner by successively substituting the value of t = t j + 1 into the right side, so that the future value of the temperature distribution and the temperature distribution By applying the equations (7) to (18) at each time, the future value of the thermal stress can be calculated successively. (31)
The solution by the equation is called the crank = Nicholson method, and stable calculation is possible even for a relatively large Δt. For details on the Crank-Nicholson method, reference can be made to appropriate references (eg, GD Smith; translated by Fujikawa: Solution of partial differential equations by computer: Science Inc. (Showa 46-1)).

前述のように(31)式を連立方程式として解く場合の
手法について、以下若干補足する。
As described above, the method for solving the equation (31) as a simultaneous equation will be supplemented slightly below.

(31)式は分割数に対応してn+1本の法廷式を得る
ことができるが、その際未知数はθ-1j+1oj+1〜θ
nj+1θn+1j+1のn+3個となる。これは次のように処理
する。
In equation (31), n + 1 court formulas can be obtained in correspondence with the number of divisions, where the unknowns are θ −1j + 1 , θ oj + 1 to θ
nj + 1 θn + 1j + 1 , that is, n + 3. This is processed as follows.

(19)式を中心差分形に表現すると以下となる。 Expression (19) is expressed in the central difference form as follows.

よつて下式となる。この式は時点j+1においても成
立する。
Therefore, the following equation is obtained. This equation also holds at time j + 1.

θn+1,j=θn−1,j ………(36) 同様に、(24)式を中心差分形に表現すると下式が導
かれる。
θ n + 1, j = θ n−1, j (36) Similarly, if the expression (24) is expressed in the central difference form, the following expression is derived.

上式中、定義よりθ=θojを用いた。またθfjは現
時点θfoについては実測信号17、将来値については第1
の演算手段により算出された時点jの予測値(信号37に
おいてj番目の値)を示す。(37)式より下式を得る。
In the above equation, θ a = θ oj was used from the definition. Θ fj is the measured signal 17 for the current θ fo and the first for the future value.
Shows the predicted value (j-th value in the signal 37) at the time point j calculated by the calculating means. The following equation is obtained from the equation (37).

(38)式も時点j+1において成立することは同様で
あるから、(36)式、(38)式を用いるとこのうちθ
-1j+1及びθn+1j+1が消去できるから、(31)式を連立
方程式として解くことができるのである。
Since the expression (38) is similarly established at the time point j + 1, if the expressions (36) and (38) are used, θ
Since −1j + 1 and θ n + 1j + 1 can be eliminated, equation (31) can be solved as a simultaneous equation.

第7の演算手段22として、例えば信号35と信号16の偏
差を制御装置では一般的なPI調節器に入力して(25)式
のδを求める方法、フアジイ制御理論や知識工学を適用
する方法等種々考えられるが、本実施例では拡張カルマ
ン=フイルタ理論を適用する例を紹介する。本方式の利
点として上述のPI調節器、フアジイ制御、知識工学等を
用いる方法では一般にδの値が理論的に意味のある値に
集束する保証がないのに対し、カルマン=フイルタ理論
を用いるためδが最少分散、不偏推定の意味で最適な値
に収束する保証があることを指摘できる。
As the seventh calculating means 22, for example, a method of inputting a deviation between the signal 35 and the signal 16 to a general PI controller in a control device to obtain δ of the equation (25), a method of applying fuzzy control theory or knowledge engineering Various examples are conceivable. In this embodiment, an example in which the extended Kalman-Filter theory is applied will be introduced. The advantage of this method is that the method using the PI controller, fuzzy control, knowledge engineering, etc. described above generally does not guarantee that the value of δ will converge to a theoretically meaningful value, but uses the Kalman-Filter theory. It can be pointed out that δ is guaranteed to converge to an optimal value in the sense of minimum variance and unbiased estimation.

カルマン=フイルタ理論の詳細は適当な参考文献〔例
えば片山:応用カルマンフイルタ:朝倉書店(昭58−
4)〕を参照するとし、以下当該理論を本発明に適用す
るための要点を述べる。
For details of the Kalman-Filter theory, refer to appropriate references [for example, Katayama: Applied Kalman Filter: Asakura Shoten (1983-
4)], the points for applying the theory to the present invention will be described below.

(31)式,(36)式,(38)式は行列表現により下記
に表わせる。
Equations (31), (36), and (38) can be expressed as follows using matrix expressions.

ここに、以下の通り諸量を定義する。 Here, various quantities are defined as follows.

以上の諸式中 は観測ベクトルであり、温度検出器8による信号16の値
を成分に持ち、該ベクトルの次元は外表面も含め、厚肉
容器の深さの異なる位置に設けられた検出器8の個数に
等しい。特に検出器8が一つの場合は、 はスカラーとなるが以下の取り扱いは同様である。
In the above equations Is an observation vector, having as its component the value of the signal 16 from the temperature detector 8, and the dimension of the vector is equal to the number of detectors 8 provided at different positions of the depth of the thick container including the outer surface. . Especially when there is one detector 8, Is a scalar, but the following treatment is the same.

に対応する現在計算値信号35の値を成分に持つ。以降の
展開において記号^は諸演算の結果得られた推定値を対
応する実測値等と区別するために用いる。
Has the value of the current calculated value signal 35 corresponding to. In the following development, the symbol ^ is used to distinguish an estimated value obtained as a result of various operations from a corresponding measured value or the like.

は次点kにおける状態ベクトルで、厚肉容器の内表面か
ら前述の各分割点及び外表面それぞれにおけるメタル温
度を成分に持つ。後述する補正等を施してメタル温度分
布を推定した場合は上述の記号を用い と表わす。行列Cは の成分と の成分の対応を(40)式により与えている。すなわち の成分のうち実測値信号16と比較する対象のみが(40)
式を用いて取り出されると考えればよい。
Is a state vector at the next point k, and has a metal temperature at each of the above-described division points and the outer surface from the inner surface of the thick container as a component. When the metal temperature distribution is estimated by performing the correction described below, the above-mentioned symbols are used. It is expressed as The matrix C is Ingredients and Is given by equation (40). Ie (40) is the only component that is compared with the measured value signal 16
It can be considered that it is extracted using an expression.

(42)式に示すA**の成分fi,giはすべて正であ
り、A**はいわゆるfri−diagonal行列であるから、
逆行列(A**-1が存在し、掃き出し法等を用いれば
容易に逆行列を求めることができるから、(39)式は下
式となる A=(A**-1A ………(51) B=(A**-1B ………(52) 上式中A,Bはシステム理論でそれぞれ遷移行列、駆動
行列と呼ばれる。ここに、A,Bともに成分にαを含み
(21),(22),(23)及び(25)式よりαはδ,λ
f,Din,Prf,hf,Pfの関数である。また、(32),(3
3),(34)式よりA,Bの他の成分であるfi,gi,hiは、K,
Δr,Δtの関数である。しかしながら、これらの諸パラ
メータのうちδ以外は予測演算の過程も含めて、時点k
において実測値または第1の演算手段27を用いて確定的
に求めることができるに対し、δは各時点のメタル温度
推定誤差は最小とするための未知のパラメータである。
以下の議論においてδ以外のパラメータは適格に計算さ
えされていれば何ら問題を生じないので、簡単のため、
A,Bは未知のパラメータδのみの関数と考える。このと
き下式に示す。
The components f i and g i of A ** shown in equation (42) are all positive, and A ** is a so-called fri-diagonal matrix.
Since the inverse matrix (A ** ) -1 exists and the inverse matrix can be easily obtained by using a sweeping-out method or the like, the equation (39) becomes the following equation. A = (A ** ) -1 A * ... (51) B = (A ** ) -1 B * ... (52) In the above formula, A and B are transition matrices and driving matrices, respectively, in the system theory. Called. Here, both A and B include α * in their components, and from formulas (21), (22), (23) and (25), α * is δ, λ
f , D in , P rf , h f , and P f . (32), (3
From equations (3) and (34), the other components of A and B, f i , g i , and h i are K,
It is a function of Δr, Δt. However, among these parameters, except for δ, including the process of the prediction calculation, the time k
In the above, δ is an unknown parameter for minimizing the metal temperature estimation error at each point in time, while δ can be deterministically determined by using the actually measured value or the first calculating means 27.
In the following discussion, parameters other than δ will not cause any problems as long as they are calculated properly, so for simplicity,
A and B are considered to be functions of only the unknown parameter δ. At this time, it is shown by the following equation.

とδを成分に持つ拡張状態変数Zkを定義すると以下と
なる。ただしδは真値は一定値であるが、推定値 は真値に収束しながら時々刻々変化すると仮定する。
And an extended state variable Z k having δ k as components are defined as follows. Where δ is a true value, but an estimated value Is assumed to change every moment while converging to the true value.

上記のベクトル関数 に拡張カルマンフイルタ理論を適用してZkの推定を行う
には以下の諸式を計算すればよい。
Vector function above In order to estimate Z k by applying the extended Kalman filter theory to, the following equations may be calculated.

以上の諸式は及びの初期値及び、計算誤差、
モデル式に係る物理現象の近似に伴う誤差の程度を共分
散行列としてそれぞれ時点kにおいてRk,Qkとして与え
れば、各時点において、計測信号16に係る を得る毎に(64)式、(63)式、(62)式、(61)式、
(60)式、(59)式の順にくり返し計算をすれば良い。
上式中の諸記号は単に計算の過程で生じる諸変数として
ブラツクボツクスとして扱つて問題ないが、特に以下の
名前が付けられていることを付記する。
The above equations are the initial values of k and k , the calculation error,
If the degree of error accompanying the approximation of the physical phenomenon according to the model formula is given as R k , Q k at time k as a covariance matrix, at each time, the measurement signal 16 (64), (63), (62), (61),
What is necessary is to repeat the calculation in the order of the equations (60) and (59).
The symbols in the above formula can be treated as black boxes simply as variables that occur in the process of calculation, but it should be noted that the following names are especially given.

Kk:カルマンゲイン行列 Pk:推定誤差共分散行列 第7の演算手段においては、以上の諸式を計算して得
られたの成分であるδを用いて第2の演算手段19、
及び28中の補正係数δとする。
K k : Kalman gain matrix P k : estimated error covariance matrix In the seventh arithmetic means, the second arithmetic means 19 is calculated by using δ which is a component of k obtained by calculating the above equations.
And the correction coefficient δ in 28.

また、(60)式の演算は下式に書き換えられることに
着目すれば、もう一つの本実施例特有の効果を指摘でき
る。
Further, if attention is paid to the fact that the operation of the expression (60) can be rewritten into the following expression, another effect unique to the present embodiment can be pointed out.

これは(66)式により求まる が、まさに第3の演算手段24,30及び第6の演算手段21
で求める温度分布であることから、第7の演算手段22は
信号36に相当するδの補正値Δδに加え、信号29に相
当する温度分布の補正値 をも算出可能であり、該補正により、いつそう実測信号
16から知り得る計算対象の温度分布状況に近い温度分布
推定値 が得られる。時点kにおける当該推定値 を新たな初期値として、第3の演算手段30を用いて前述
した予測演算を行なえば、最も高精度に熱応力の将来値
が推定できることは論を持たない。
This is obtained from equation (66). Are exactly the third computing means 24, 30 and the sixth computing means 21
Since the temperature distribution is determined by the following equation, the seventh calculating means 22 calculates the correction value of the temperature distribution corresponding to the signal 29 in addition to the correction value Δδ k of δ corresponding to the signal 36. Can also be calculated.
Temperature distribution estimated value close to the temperature distribution status of the calculation target obtained from 16 Is obtained. The estimate at time k If the above-described prediction calculation is performed using the third calculation means 30 with the following as a new initial value, there is no argument that the future value of the thermal stress can be estimated with the highest accuracy.

第2図は本発明の他の実施例であつて、第1図におけ
る本発明の適用対象であつた熱交換器出口ヘツダを気水
分離器に置き換え、第1図の実施例で実測した内部流体
温度を、流体圧力信号82から飽和温度算出手段78をもつ
て流体温度信号67に変換している他は、前述の第1図の
実施例とほぼ同一構成である。
FIG. 2 shows another embodiment of the present invention, in which the heat exchanger outlet header to which the present invention is applied in FIG. 1 is replaced with a steam-water separator, and the inside measured by the embodiment of FIG. Except that the fluid temperature is converted from the fluid pressure signal 82 to the fluid temperature signal 67 by using the saturation temperature calculating means 78, the configuration is almost the same as that of the embodiment of FIG.

図中において、51は給水ライン、52は蒸発器、53は気
水分離器、54はノズル、55は蒸気出口、56はドレン出
口、57は蒸気供給弁、58は蒸気供給ライン、59は流体圧
力検出器、60はメタル温度検出器、61は燃料供給ライ
ン、62はバーナ、63は火炎、64は燃料流調弁、65は燃料
流調弁駆動信号、66は蒸気供給弁、67は流体温度信号、
68はメタル温度信号、69は第2′の演算手段、70は信号
設定要素、71は第6の演算手段、72は第7の演算手段、
73は第3′の演算手段、74は画面編集手段、75はデイス
プレイ、76は第1の演算手段、77は第2の演算手段、78
は飽和温度算出手段、79は第3の演算手段、80は第5の
演算手段、81は最適操作量算出手段、82は流体圧力信
号、83は伝熱量現在値信号、84はメタル温度計算値信
号、85は演算数値補正信号、86は熱応力現在値信号、87
はデイスプレイ駆動信号、88は蒸気温度予測信号、89は
流体圧力昇圧目標信号、90は伝熱量予測信号、91は熱応
力予測信号、92は流体圧力変化率指令信号、93は状態量
補正信号である。
In the figure, 51 is a water supply line, 52 is an evaporator, 53 is a steam separator, 54 is a nozzle, 55 is a steam outlet, 56 is a drain outlet, 57 is a steam supply valve, 58 is a steam supply line, and 59 is a fluid. Pressure detector, 60 is metal temperature detector, 61 is fuel supply line, 62 is burner, 63 is flame, 64 is fuel flow control valve, 65 is fuel flow control valve drive signal, 66 is steam supply valve, 67 is fluid Temperature signal,
68 is the metal temperature signal, 69 is the second 'arithmetic means, 70 is the signal setting element, 71 is the sixth arithmetic means, 72 is the seventh arithmetic means,
73 is a 3 'arithmetic means, 74 is a screen editing means, 75 is a display, 76 is a first arithmetic means, 77 is a second arithmetic means, 78
Is a saturation temperature calculating means, 79 is a third calculating means, 80 is a fifth calculating means, 81 is an optimum manipulated variable calculating means, 82 is a fluid pressure signal, 83 is a heat transfer amount current value signal, and 84 is a metal temperature calculated value. Signal, 85 is an operation numerical correction signal, 86 is a thermal stress current value signal, 87
Is a display drive signal, 88 is a steam temperature prediction signal, 89 is a fluid pressure increase target signal, 90 is a heat transfer quantity prediction signal, 91 is a thermal stress prediction signal, 92 is a fluid pressure change rate command signal, and 93 is a state quantity correction signal. is there.

〔発明の効果〕〔The invention's effect〕

本発明は前述のような構成になつているから、 1)従来運転員の経験と勘にたよつていた熱交換器出口
ヘツダの熱応力将来値が、制限値を超えるか否かの判断
が定量的に可能となる。
Since the present invention is configured as described above, 1) it is determined whether or not the future value of the thermal stress at the heat exchanger outlet header, which has been determined based on the experience of the conventional operator, exceeds the limit value. Quantitatively possible.

2)従来運転員の経験と勘にたよつていた気水分離器の
熱応力将来値が、制限値を超えるか否かの判断が定量的
に可能となる。
2) It is possible to quantitatively determine whether or not the future value of the thermal stress of the steam separator exceeds the limit value based on the experience and intuition of the conventional operator.

3)従来運転員の経験と勘にたよつていた熱交換器出口
ヘツダの熱応力値制限の観点から現在の蒸気温度変化率
が、妥当か否かの判断が定量的に可能となる。
3) It is possible to quantitatively determine whether or not the current steam temperature change rate is appropriate from the viewpoint of limiting the thermal stress value at the heat exchanger outlet header, which was conventionally based on the experience and intuition of the operator.

4)従来運転員の経験と勘にたよつていた気水分離器の
熱応力値制限の観点から現在の蒸気圧力変化率が、妥当
か否かの判断が定量的に可能となる。
4) It is possible to quantitatively determine whether or not the current steam pressure change rate is appropriate from the viewpoint of limiting the thermal stress value of the steam separator, which was conventionally based on the experience and intuition of the operator.

5)従来運転員の経験と勘にたよつていた熱交換出口ヘ
ツダの熱応力による損傷防止の要求と必要な蒸気温度変
化を迅速に行う要求を調和させた運転が自動的に実施で
きる。
5) It is possible to automatically carry out the operation in which the requirement for preventing the heat exchange outlet header from being damaged due to the thermal stress and the requirement for promptly changing the required steam temperature, which have been conventionally based on the experience and intuition of the operator, are harmonized.

6)従来運転員の経験と勘にたよつていた気水分離器の
熱応力による損傷防止の要求と、必要な蒸気圧力変化を
迅速に行う要求を調和させた運転が自動的に実施でき
る。
6) An operation in which the requirement for preventing damage caused by thermal stress of the steam separator, which was based on the experience and intuition of the conventional operator, and the requirement for promptly changing the required steam pressure can be automatically implemented.

7)上述の1)〜6)項に示した効果を実現する上で不
可欠な要件となる熱応力値の高精度な推定が可能とな
る。ことに、従来熱応力算出上最大の誤差要因であつた
メタル=流体間熱伝達率の値に係る問題が解決できる。
7) It is possible to highly accurately estimate the thermal stress value, which is an indispensable requirement for realizing the effects described in the above items 1) to 6). In particular, the problem relating to the value of the heat transfer coefficient between metal and fluid, which has conventionally been the largest error factor in calculating thermal stress, can be solved.

【図面の簡単な説明】[Brief description of the drawings]

第1図および第2図は本発明の各実施例を説明するため
の概略構成図、第3図,第4図,第5図ならびに第6図
は従来技術を説明するための概略構成図である。 1……被過熱蒸気、4……熱交換入口ヘツダ、5……熱
交換器伝熱管、6……熱交換器出口ヘツダ、7……蒸気
温度検出器、8……メタル温度検出器、9……過熱蒸気
供給弁、10……余剰蒸気排出弁駆動信号、11……燃料供
給ライン、12……燃料流調弁、13……燃料流調弁駆動信
号、16……メタル温度信号、17……蒸気温度信号、18…
…過熱蒸気供給弁駆動信号、19……第2′の演算手段、
21……第6の演算手段、22……第7の演算手段、24……
第3′の演算手段、35……画面編集手段、26……デイス
プレイ、27……第1の演算手段、28……第2の演算手
段、29……状態量補正信号、30……第3の演算手段、31
……第4の演算手段、32……最適操作量算出手段、33…
…信号設定器、34……伝熱量現在値信号、35……メタル
温度現在計算値信号、36……演算数値補正信号、37……
蒸気温度予測信号、38……蒸気温度昇温目標信号、39…
…伝熱量予測信号、40……熱応力予測信号、41……蒸気
温度変化率制限値信号、42……熱応力現在値信号、43…
…デイスプレイ駆動信号、53……気水分離器、59……流
体圧力検出器、60……メタル温度検出器、64……燃料流
調弁、65……燃料流調弁駆動信号、66……蒸気供給弁、
67……流体温度信号、68……メタル温度信号、69……第
2′の演算手段、70……信号設定要素、71……第6の演
算手段、72……第7の演算手段、73……第3′の演算手
段、74……画面編集手段、75……デイスプレイ、76……
第1の演算手段、77……第2の演算手段、78……飽和温
度算出手段、79……第3の演算手段、80……第5の演算
手段、81……最適操作量算出手段、82……流体圧力信
号、83……伝熱量現在値信号、84……メタル温度計算値
信号、85……演算数値補正信号、86……熱応力現在値信
号、87……デイスプレイ駆動信号、88……蒸気温度予測
信号、89……流体圧力昇圧目標信号、90……伝熱量予測
信号、91……熱応力予測信号、92……流体圧力変化率指
令信号、93……状態量補正信号。
FIGS. 1 and 2 are schematic structural views for explaining each embodiment of the present invention, and FIGS. 3, 4, 5 and 6 are schematic structural views for explaining the prior art. is there. 1 ... steam to be heated, 4 ... heat exchange inlet header, 5 ... heat exchanger heat transfer tube, 6 ... heat exchanger outlet header, 7 ... steam temperature detector, 8 ... metal temperature detector, 9 …… Superheated steam supply valve, 10… Excess steam discharge valve drive signal, 11… Fuel supply line, 12 …… Fuel flow control valve, 13 …… Fuel flow control valve drive signal, 16 …… Metal temperature signal, 17 …… Steam temperature signal, 18…
.., A superheated steam supply valve drive signal, 19.
21... Sixth arithmetic means, 22... Seventh arithmetic means, 24.
3 'arithmetic means, 35 ... screen editing means, 26 ... display, 27 ... first arithmetic means, 28 ... second arithmetic means, 29 ... state quantity correction signal, 30 ... third Arithmetic means of 31
... 4th calculation means, 32 ... Optimal operation amount calculation means, 33 ...
... Signal setting unit, 34 ... Heat transfer current value signal, 35 ... Metal temperature present value signal, 36 ... Computed numerical value correction signal, 37 ...
Steam temperature prediction signal, 38 ... Steam temperature heating target signal, 39 ...
... heat transfer amount prediction signal, 40 ... thermal stress prediction signal, 41 ... steam temperature change rate limit value signal, 42 ... thermal stress present value signal, 43 ...
… Display drive signal, 53… water-water separator, 59 …… fluid pressure detector, 60 …… metal temperature detector, 64 …… fuel flow control valve, 65 …… fuel flow control valve drive signal, 66 …… Steam supply valve,
67 fluid temperature signal 68 metal temperature signal 69 second calculating means 70 signal setting element 71 sixth calculating means 72 seventh calculating means 73 ... 3rd computing means 74... Screen editing means 75... Display 76.
First arithmetic means, 77 second arithmetic means, 78 saturated temperature calculating means, 79 third arithmetic means, 80 fifth arithmetic means, 81 optimal operation amount calculating means, 82: Fluid pressure signal, 83: Heat transfer current value signal, 84: Metal temperature calculation value signal, 85: Computed numerical value correction signal, 86: Thermal stress current value signal, 87: Display drive signal, 88 ... steam temperature prediction signal, 89 ... fluid pressure increase target signal, 90 ... heat transfer amount prediction signal, 91 ... thermal stress prediction signal, 92 ... fluid pressure change rate command signal, 93 ... state quantity correction signal.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F22B 35/00 F22B 35/18 F22B 37/38Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) F22B 35/00 F22B 35/18 F22B 37/38

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】蒸気を通じる熱交換部位と該熱交換部位の
出口近傍の蒸気流路を有する装置の運転支援装置におい
て、 前記熱交換部位の出口の蒸気温度の将来値を予測する第
1の演算手段と、 該第1の演算手段で求めた前記蒸気温度の将来予測値を
用いて、前記熱交換部位内における蒸気と熱交換部位内
面相互間の伝熱量の将来予測値を求める第2の演算手段
と、 前記伝熱量の将来予測値を用いて、前記熱交換部位内面
に発生する熱応力の将来予測値を求める第3の演算手段
と、 前記熱交換部位の出口の蒸気温度の現在値に基づいて、
前記熱交換部位内における蒸気と熱交換部位内面相互間
の伝熱量の現在値を算出する第2′の演算手段と、 該第2′の演算手段で求めた伝熱量の現在値に基づき前
記熱交換部位内面に発生する熱応力を算出する第3′の
演算手段と、 前記熱交換部位の外面または肉厚中の点のうち、少なく
とも1箇所のメタル温度を測定する計測手段と、 前記第2′の演算手段で求めた伝熱量の現在値に基づい
て前記測定手段の測定箇所のメタル温度を算出する第6
の演算手段と、 前記測定箇所に対応する前記計測手段により求めたメタ
ル温度計測値と前記第6の演算手段により求めた算出の
組を入力して、少なくとも前記第2の演算手段による演
算に係る数値の補正量を算出する第7の演算手段と、を
備えた ことを特徴とする運転支援装置。
1. An operation support device for a device having a heat exchange portion through which steam passes and a steam flow passage near an outlet of the heat exchange portion, wherein a first value of a future value of a steam temperature at an outlet of the heat exchange portion is predicted. A second calculating means for calculating a future predicted value of the heat transfer between the steam in the heat exchange part and the inner surface of the heat exchange part using the future predicted value of the steam temperature obtained by the first calculating means. Calculating means, using the future predicted value of the heat transfer amount, third calculating means for obtaining a predicted value of the thermal stress generated on the inner surface of the heat exchange portion, and a current value of the steam temperature at the outlet of the heat exchange portion On the basis of,
Second 'arithmetic means for calculating a current value of heat transfer between the steam in the heat exchange part and the inner surface of the heat exchange part; and the heat value based on the current value of heat transfer obtained by the second' arithmetic means. A third calculating means for calculating a thermal stress generated on an inner surface of the exchange part; a measuring means for measuring a metal temperature of at least one of an outer surface and a point in a thickness of the heat exchange part; 'Calculates the metal temperature at the measuring point of the measuring means based on the current value of the heat transfer amount obtained by the calculating means.
And a set of a metal temperature measurement value obtained by the measurement means corresponding to the measurement point and a calculation set obtained by the sixth calculation means are input, and at least a calculation operation by the second calculation means is performed. A driving support device comprising: a seventh calculating means for calculating a numerical correction amount.
【請求項2】水または蒸気、もしくはこれらの混合物で
ある流体を通じて気水分離を行う部位と該部位の出口近
傍の流路を有する装置の運転支援装置において、 前記部位を通過する前記流体温度の将来値を予測する第
1の演算手段と、 該第1の演算手段で求めた前記流体温度の将来予測値を
用いて、前記部位内における流体と部位内面相互間の伝
熱量の将来予測値を求める第2の演算手段と、 前記伝熱量の将来予測値を用いて前記部位内面に発生す
る熱応力の将来予測値を求める第3の演算手段と、 前記部位の出口の流体温度の現在値に基づいて部位内に
おける流体と部位内面相互間の伝熱量の現在値を算出す
る第2′の演算手段と、 該第2′の演算手段で求めた伝熱量の現在値に基づき前
記部位内面に発生する熱応力を算出する第3′の演算手
段と、 前記部位の外面または肉厚中の点のうち、少なくとも1
箇所のメタル温度を測定する計測手段と、 前記第2′の演算手段で求めた伝熱量の現在値に基づい
て前記計測手段の測定箇所のメタル温度を算出する第6
の演算手段と、 前記測定箇所に対応する前記計測手段により求めたメタ
ル温度計測値と前記第6の演算手段により求めた算出値
の組を入力して、少なくとも前記第2の演算手段による
演算に係る数値の補正量を算出する第7の演算手段と、
を備えた ことを特徴とする運転支援装置。
2. An operation assisting apparatus for a device having a portion for performing steam-water separation through a fluid that is water or steam, or a mixture thereof, and a flow passage near an outlet of the portion, wherein the temperature of the fluid passing through the portion is controlled. A first calculating means for predicting a future value; and a future predicted value of the heat transfer amount between the fluid in the part and the inner surface of the part using the future predicted value of the fluid temperature obtained by the first calculating means. A second calculating means for obtaining; a third calculating means for obtaining a future predicted value of thermal stress generated on the inner surface of the part using the predicted value of the heat transfer amount; and a current value of the fluid temperature at the outlet of the part. Second 'calculating means for calculating the current value of the heat transfer between the fluid in the part and the inner surface of the part based on the current value of the heat transfer generated on the inner surface of the part based on the current value of the heat transfer obtained by the second' calculating means 3 'to calculate the thermal stress Calculating means, among the points of the outer surface or meat Atsunaka of the site, at least 1
Measuring means for measuring the metal temperature at the point; and sixth calculating the metal temperature at the measuring point of the measuring means based on the current value of the heat transfer amount obtained by the second 'calculating means.
And a set of a metal temperature measurement value obtained by the measurement means corresponding to the measurement point and a calculation value obtained by the sixth calculation means, and at least calculation by the second calculation means is performed. A seventh calculating means for calculating the correction amount of the numerical value,
A driving assistance device comprising:
【請求項3】請求項1に記載の運転支援装置において、 前記第3および第3′の演算手段で求めた前記熱交換部
位内面に発生する熱応力の将来予測値および現在値と前
記熱交換部位の出口の現時点における蒸気温度を表示す
る表示手段を設けたことを特徴とする運転支援装置。
3. The driving support device according to claim 1, wherein the predicted value and the current value of the thermal stress generated on the inner surface of the heat exchange portion obtained by the third and third arithmetic means and the heat exchange. A driving support device comprising a display unit for displaying a current steam temperature at an exit of a part.
【請求項4】請求項2に記載の運転支援装置において、 前記第3および第3′の演算手段で求めた前記部位内面
に発生する熱応力の将来予測値および現在値と前記部位
の出口の現時点における蒸気圧力を表示する表示手段を
設けたことを特徴とする運転支援装置。
4. The driving support apparatus according to claim 2, wherein a predicted future value and a present value of thermal stress generated on the inner surface of the part determined by the third and third 'arithmetic means and an outlet of the part. A driving support device comprising a display means for displaying a current steam pressure.
【請求項5】請求項1に記載の運転支援装置において、 前記熱交換部位の出口蒸気温度の制御手段を備え、 前記熱交換部位の熱応力の将来予測値に基づき、前記制
御手段に指令する蒸気温度目標値または蒸気温度変化率
目標値を算出する第4の演算手段を設ける ことを特徴とする運転支援装置。
5. The driving support device according to claim 1, further comprising control means for controlling an outlet steam temperature of the heat exchange part, and instructing the control means based on a future predicted value of a thermal stress of the heat exchange part. A driving support device comprising: a fourth calculating means for calculating a steam temperature target value or a steam temperature change rate target value.
【請求項6】請求項2に記載の運転支援装置において、 前記気水分離を行う部位内の流体圧力の制御手段を備
え、 前記部位内の熱応力の将来予測値に基づき、前記制御手
段に指令する蒸気圧力目標値または蒸気圧力変化率目標
値を算出する第5の演算手段を設ける ことを特徴とする運転支援装置。
6. The driving support device according to claim 2, further comprising a control unit for controlling a fluid pressure in a portion where the water / water separation is performed, wherein the control unit controls the fluid pressure based on a future predicted value of thermal stress in the portion. A driving support device comprising: a fifth calculating means for calculating a commanded steam pressure target value or a steam pressure change rate target value.
JP18602389A 1989-07-20 1989-07-20 Driving support device Expired - Fee Related JP2851868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18602389A JP2851868B2 (en) 1989-07-20 1989-07-20 Driving support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18602389A JP2851868B2 (en) 1989-07-20 1989-07-20 Driving support device

Publications (2)

Publication Number Publication Date
JPH0351602A JPH0351602A (en) 1991-03-06
JP2851868B2 true JP2851868B2 (en) 1999-01-27

Family

ID=16181043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18602389A Expired - Fee Related JP2851868B2 (en) 1989-07-20 1989-07-20 Driving support device

Country Status (1)

Country Link
JP (1) JP2851868B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3831420B2 (en) * 1995-01-19 2006-10-11 三菱重工業株式会社 Heat absorption amount estimation device for heat transfer surface

Also Published As

Publication number Publication date
JPH0351602A (en) 1991-03-06

Similar Documents

Publication Publication Date Title
US4390058A (en) Method of monitoring condenser performance and system therefor
US6070471A (en) Method and apparatus determining turbine stress
RU2372554C2 (en) Method for operation of direct-flow steam generator
EP0128593A2 (en) Method of controlling operation of thermoelectric power station
JPH0539902A (en) Monitoring device for abnormality of heat exchanger
KR920005799A (en) Method and system for controlling the operation of steam condensers in power plants
JPH02247599A (en) Improvement in measured value accuracy of flowrate at core of boiling water reactor
CN101737311A (en) Method for measuring drainage pump output of low pressure heater system of thermal generator set based on energy balance
JP2851868B2 (en) Driving support device
EP0165675B1 (en) Apparatus for measuring thermal stress of pressure-tight tube
JP2008249580A (en) Nuclear power plant, thermal fatigue monitoring method for water supply nozzle, and operation method for nuclear power plant
WO2016071204A1 (en) Control method for operating a heat recovery steam generator
KR20010030687A (en) Method and device for determining the enthalpy of wet steam
JPH11501719A (en) Method and apparatus for monitoring the supply of water to a boiler
US4627955A (en) Process for detecting the variations in the reactivity of the core of a pressurized water nuclear reactor and device for making use of this process
CN109580241A (en) A kind of quantitative analysis method of condenser pollution level
EP1777505A1 (en) Virtual temperature measuring point
US10578023B2 (en) Controlling a water bath heater for fuel gas
JP2003057384A (en) Core flow measuring operation method of atomic power plant and its device
JP2721508B2 (en) Warm-up separation heater control device
Sunde et al. Data reconciliation in the steam-turbine cycle of a boiling water reactor
JPS59158901A (en) Method of controlling temperature of boiler steam
Aikman Frequency-response analysis and controllability of a chemical plant
JPS59128429A (en) Life monitoring method for pressure resisting parts
JPH10122506A (en) Controller for water supply of steam generator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees