JPH0351128B2 - - Google Patents

Info

Publication number
JPH0351128B2
JPH0351128B2 JP58084447A JP8444783A JPH0351128B2 JP H0351128 B2 JPH0351128 B2 JP H0351128B2 JP 58084447 A JP58084447 A JP 58084447A JP 8444783 A JP8444783 A JP 8444783A JP H0351128 B2 JPH0351128 B2 JP H0351128B2
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
thin film
light
wave device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58084447A
Other languages
Japanese (ja)
Other versions
JPS59210708A (en
Inventor
Kentaro Setsune
Osamu Yamazaki
Kazuo Tatsuki
Kyotaka Wasa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8444783A priority Critical patent/JPS59210708A/en
Publication of JPS59210708A publication Critical patent/JPS59210708A/en
Publication of JPH0351128B2 publication Critical patent/JPH0351128B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、弾性表面波デバイスの製造方法に関
するもので、特に高精度の弾性表面波デバイスの
製造方法に関している。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a surface acoustic wave device, and particularly to a method of manufacturing a surface acoustic wave device with high precision.

従来例の構成とその問題点 高精度の固体化フイルタ,共振器,遅延素子な
どに、弾性表面波デバイスが有用であるとされて
いるが、弾性表面波デバイスを生産すると、例え
ば弾性表面波フイルタの中心周波数のバラツキが
0.05%以上である。一方、最近の情報機器では、
中心周波数のバラツキは、この値よりさらに1桁
以上小さいことが要求されるため、一般には選別
という手段で生産されている。しかし、この種の
生産手段では、より高精度のデバイスを大量に生
産することは不可能であるため、高精度の加工プ
ロセスの開発が強く要請されていた。本発明はこ
の要請に応ずるものである。
Conventional configurations and their problems Surface acoustic wave devices are said to be useful for high-precision solid-state filters, resonators, delay elements, etc. However, when producing surface acoustic wave devices, for example, surface acoustic wave filters The variation in the center frequency of
It is 0.05% or more. On the other hand, with recent information devices,
Since the center frequency variation is required to be one order of magnitude smaller than this value, it is generally produced by screening. However, with this type of production method, it is impossible to mass-produce devices with higher precision, so there has been a strong demand for the development of a high-precision processing process. The present invention meets this need.

発明の目的 すなわち、本発明の目的は高精度の弾性表面波
デバイスを容易に得ることのできる製造方法を提
供するものである。
OBJECT OF THE INVENTION That is, an object of the present invention is to provide a manufacturing method that can easily obtain a highly accurate surface acoustic wave device.

発明の構成 本発明は、少なくとも弾性表面波の伝搬する基
板からなる弾性表面波デバイスの製造方法におい
て、上記基板に不整格子配列の薄膜を厚さ10Åか
ら0.02λ(λ:弾性表面波の波長)の範囲でスパツ
タリング法等にて蒸着し、さらに光を照射するこ
とにより、上記弾性表面波の伝搬速度を変化させ
ることを特徴とするものである。
Structure of the Invention The present invention provides a method for manufacturing a surface acoustic wave device comprising at least a substrate through which surface acoustic waves propagate, in which a thin film with a mismatched lattice arrangement is formed on the substrate to a thickness of 10 Å to 0.02λ (λ: wavelength of surface acoustic waves). The method is characterized in that the propagation speed of the surface acoustic wave is changed by depositing by a sputtering method or the like within a range of 100 to 100%, and then irradiating the surface acoustic wave with light.

実施例の説明 以下、図と実施例により本発明の内容を説明す
る。
DESCRIPTION OF EMBODIMENTS The contents of the present invention will be explained below with reference to figures and examples.

第1図は、本発明の高精度の弾性表面波デバイ
スの製造方法を説明するための弾性表面波デバイ
ス10の要部構造を示す。すなわち、第1図にお
いて、弾性表面波11が伝搬する基板12の上
に、不整格子配列の薄膜13を、厚さ10Åから
0.02λ(λ:弾性表面波の波長)の範囲で蒸着する
ことにより、上記弾性表面波11の伝搬速度を変
化させ、所望の伝搬速度をもつた弾性表面波デバ
イスの構成を特開昭59−210716号公報で開示し
た。
FIG. 1 shows the main structure of a surface acoustic wave device 10 for explaining the method of manufacturing a high-precision surface acoustic wave device of the present invention. That is, in FIG. 1, a thin film 13 with a mismatched lattice arrangement is deposited to a thickness of 10 Å on a substrate 12 through which surface acoustic waves 11 propagate.
By depositing in the range of 0.02λ (λ: wavelength of the surface acoustic wave), the propagation speed of the surface acoustic wave 11 is changed, and a surface acoustic wave device having a desired propagation speed is constructed according to Japanese Patent Laid-Open No. 59- It was disclosed in Publication No. 210716.

すなわち、通常弾性表面波デバイスの周波数特
性、例えば弾性表面波フイルタの中心周波数O
は、O=υ/λ(υ弾性表面波の伝搬速度)の関
係で決まる。この場合、λは、例えば弾性表面波
励振用のインターデイジタル電極の幾何学的寸法
で決まり、その設計値の寸法に加工することは容
易である。したがつて、この種のデバイスを製造
するときに問題になるのは、弾性表面波の伝搬速
度νの基板材料によるバラツキに起因した、O
バラツキである。Oのバラツキは、基板材料の物
性定数、例えばヤング率、密度、ポアソン比など
のバラツキに起因したり、あるいは単結晶基板で
は、弾性表面波の伝搬方向の設定のバラツキなど
も加わつたりして複雑である。したがつて、これ
らのバラツキを減らすことは通常の技術では容易
ではない。
In other words, the frequency characteristics of a normal surface acoustic wave device, for example the center frequency O of a surface acoustic wave filter,
is determined by the relationship O = υ/λ (propagation speed of υ surface acoustic wave). In this case, λ is determined by, for example, the geometric dimensions of the interdigital electrode for surface acoustic wave excitation, and it is easy to process the dimension to the designed value. Therefore, a problem when manufacturing this type of device is the variation in O due to the variation in the propagation velocity ν of the surface acoustic wave depending on the substrate material. Variations in O are caused by variations in physical constants of the substrate material, such as Young's modulus, density, Poisson's ratio, etc., or in the case of single crystal substrates, variations in the propagation direction of surface acoustic waves are also added. It's complicated. Therefore, it is not easy to reduce these variations using normal techniques.

一方、本発明は、従来のOのバラツキに関し
て、薄い薄膜でかつ結晶化の進んでいない不整格
子配列した薄膜(この種の薄膜は例えば蒸着プロ
セスで形成するとき、薄膜の成長過程でしばしば
見られる)を、弾性表面波の伝搬路上に例えば室
温程度に冷してスパツタ蒸着すると、蒸着時間を
変えるだけで容易にOを調整しうるという本発明
者らの発見に基づくものである。第2図に、見体
的な実施例を示す。水晶基板上に形成した弾性表
面波フイルタの弾性表面波の伝搬路に、スパツタ
法でSiO2の不整格子配列した薄膜を形成した時
のスパツタ時間とOとの関係を曲線21を示す。
曲線21はOの変化がスパツタ時間により負から
正に変化することを示すとともに、この変化を用
いるとスパツタ時間によりOを正負の方向に任意
に調整できることを示す。この場合スパツタ時間
が短かすぎて例えば蒸着された薄膜の厚さが例え
ば10Å以下になると蒸着された薄膜が連続膜にな
らず特性の再現性がない。また逆にスパツタ時間
が長すぎて、例えば膜厚が0.03λ以上になると曲
線22が示すごとく挿入損失が通常の回路設計に
問題になる1dB以上に増加し、実用性に欠く。な
お、この構造では、OとSiO2薄膜の膜厚との関係
は、理論的には第2図曲線23のごとく、単調に
Oが増加すると考えられていた。したがつて、第
2図曲線21でのOの負から正への転換(極小点
の存在)は、通常の格子の整つた薄膜では見られ
ないもので、本発明にかかる不整格子配列の薄膜
の特徴でもある。
On the other hand, the present invention solves the conventional problem of O variation in thin films with poorly crystallized misaligned lattices (this type of thin film is often seen during the growth process of thin films, for example, when formed by vapor deposition process). ) is sputter-deposited on the propagation path of surface acoustic waves, for example, by cooling it to about room temperature, and this is based on the discovery by the present inventors that O can be easily adjusted by simply changing the deposition time. FIG. 2 shows a schematic example. A curve 21 shows the relationship between the sputtering time and O when a thin film of SiO 2 with a misaligned lattice arrangement is formed by the sputtering method on the propagation path of the surface acoustic wave of a surface acoustic wave filter formed on a quartz substrate.
Curve 21 shows that the change in O changes from negative to positive depending on the sputtering time, and also shows that using this change, O can be arbitrarily adjusted in positive and negative directions depending on the sputtering time. In this case, if the sputtering time is too short and the thickness of the deposited thin film is, for example, 10 Å or less, the deposited thin film will not become a continuous film and its characteristics will not be reproducible. On the other hand, if the sputtering time is too long and the film thickness becomes, for example, 0.03λ or more, the insertion loss increases to more than 1 dB, which is a problem in ordinary circuit design, as shown by curve 22, and is therefore impractical. Note that in this structure, the relationship between O and the thickness of the SiO 2 thin film is theoretically monotonous, as shown by curve 23 in Figure 2.
It was thought that O would increase. Therefore, the transition of O from negative to positive (existence of a minimum point) in curve 21 in FIG. It is also a feature of

さらに本発明者らは、この種の弾性表面波デバ
イスの製造方法において、基板に不整格子配列の
薄膜を蒸着した後この薄膜表面に光照射例えばレ
ーザ光を照射すると、上記Oが変化しそのOの変
化が光のパワーによつて精度よく制御できること
を発見し、この光照射により高精度の弾性表面波
デバイス例えばフイルタ、発振子などを再現性よ
く形成できるプロセスを発見した。
Furthermore, in a method for manufacturing this type of surface acoustic wave device, the present inventors discovered that when a thin film with an asymmetric lattice arrangement is deposited on a substrate and the surface of this thin film is irradiated with light, for example, laser light, the above O changes and the O We discovered that the changes in the amount of light can be precisely controlled by the power of light, and discovered a process that allows highly reproducible formation of high-precision surface acoustic wave devices such as filters and oscillators using this light irradiation.

第3図曲線31,32はその実施例を示す。す
なわち、水晶基板に例えばスパツタ法で主成分
SiO2の不整格子配列の薄膜をスパツタ蒸着した
ときの、スパツタ時間とOの変化を曲線31に示
すが、この薄膜表面にCO2赤外線レーザ
(10.7μm)を照射するとOは増加し、長時間照射
すると曲線32に収れんする。したがつて、レー
ザ光線の照射時間を調整すると、曲線31,32
間33の任意のOを示す素子が得られることがわ
かつた。この場合、レーザ光線照射は、単にO
調整のみらず、アニール効果もあるので、弾性表
面波デバイスの長期安定性の改善にも効果である
ことを本発明者らは確認した。
Curves 31 and 32 in FIG. 3 show an example thereof. In other words, the main component is deposited on a quartz substrate using, for example, a sputtering method.
Curve 31 shows the change in sputtering time and O when a thin film of SiO 2 with a mismatched lattice arrangement is sputter deposited. When the surface of this thin film is irradiated with a CO 2 infrared laser (10.7 μm), O increases and When irradiated, the curve converges to a curve 32. Therefore, by adjusting the laser beam irradiation time, curves 31 and 32
It has been found that a device exhibiting any O between 33 and 33 can be obtained. In this case, the present inventors confirmed that laser beam irradiation not only adjusts O but also has an annealing effect, and is therefore effective in improving the long-term stability of the surface acoustic wave device.

なお、光照射の光源は上述したCO2レーザのよ
うな赤外線レーザとしてYAGレーザ(1.06,
1.32μm)、さらにArレーザ(0.4μm),エキシマ
レーザ(0.2〜0.4μm)のような紫外線レーザー
又、ハロゲンランプ,水銀ランプ等の紫外線光源
も同様に用いることができることを本発明者らは
確認した。
The light source for light irradiation is a YAG laser (1.06,
The present inventors have confirmed that UV lasers such as Ar laser (0.4 μm) and excimer laser (0.2 to 0.4 μm), as well as UV light sources such as halogen lamps and mercury lamps, can be used in the same way. did.

また、基板の材料と不整格子配列の薄膜の材料
の組合せも以上に述べた実施例に限定されたもの
ではない。ここで、本発明の効果をより一層理解
され易くするため、2,3具体例をあげて本発明
を説明する。
Further, the combination of the material of the substrate and the material of the misaligned thin film is not limited to the embodiments described above. Here, in order to make the effects of the present invention easier to understand, the present invention will be explained by giving a few specific examples.

実施例 1 STカツト水晶基板12の表面にAl蒸着膜から
なる櫛型電極対(線巾1.2μm,対数150,電極膜
厚500Å)を形成した。この電極付を入出力電極
とした弾性表面波フイルタを用いて、遅延線型弾
性表面波発振器を形成した。その結果、発振周波
数は674,4MHzであつたが、所望の周波数より
0.4MHzずれていた。つづいて、マグネトロンス
パツタ装置で、石英ターゲツトをアルゴンガス中
でスパツタし、伝搬路に1分間主成分がSiO2
薄膜13を形成した。蒸着中素子の温度は30℃に
保持した。その結果、発振周波数は674MHz(所
望の値)を得た。石英薄膜の厚さは100Åであつ
た。なお、スパツタ時間を管理することにより、
周波数の精度は量産時で±50MHz以下であること
を確認した。
Example 1 A comb-shaped electrode pair (width 1.2 μm, number of logarithms 150, electrode film thickness 500 Å) made of an Al vapor-deposited film was formed on the surface of an ST-cut quartz substrate 12. A delay line surface acoustic wave oscillator was formed using a surface acoustic wave filter with this electrode as an input/output electrode. As a result, the oscillation frequency was 674.4MHz, which was lower than the desired frequency.
It was off by 0.4MHz. Subsequently, a quartz target was sputtered in argon gas using a magnetron sputtering device to form a thin film 13 mainly composed of SiO 2 on the propagation path for 1 minute. The temperature of the device was maintained at 30° C. during the deposition. As a result, the oscillation frequency was 674MHz (desired value). The thickness of the quartz thin film was 100 Å. In addition, by managing the sputtering time,
The frequency accuracy was confirmed to be less than ±50MHz during mass production.

実施例 2 実施例1で形成した素子を、さらにエキシマレ
ーザ(0.295μm)で照射した。この場合、レーザ
の電力は0.5W,照射時間30秒で所望の周波数を
得た。この場合、素子の発振周波数をモニターし
ながらレーザ光を照射することにより、周波数の
精度は量産時±20kHz以下であることを確認し
た。また、素子をヒートサイクル試験(−20℃〜
100℃)を行つても、何ら特性の変化は見られず、
信頼性が高いことが確認された。
Example 2 The device formed in Example 1 was further irradiated with an excimer laser (0.295 μm). In this case, the desired frequency was obtained with a laser power of 0.5 W and an irradiation time of 30 seconds. In this case, by irradiating the device with laser light while monitoring the oscillation frequency of the device, it was confirmed that the frequency accuracy was within ±20kHz during mass production. In addition, the device was subjected to a heat cycle test (-20℃~
Even after heating at 100°C, no change in characteristics was observed.
It was confirmed that the reliability is high.

実施例 3 ZnO薄膜/サフアイア構造の多層構造基板12
に実施例1と同様に、石英ターゲツトをマグネト
ロンスパツタで1分間主成分がSiO2の薄膜13
を形成した。この場合の発振周波数は914.9MH
であつた。薄膜13の膜厚による周波数の変化は
400kHz/100Åであつた。この素子に、CO2レー
ザ(10.7μm)を照射し、周波数の調整を行い、
所望の915MHzにした。レーザーの電力,照射時
間は5W,0.75秒であつた。
Example 3 Multilayer structure substrate 12 with ZnO thin film/sapphire structure
Similarly to Example 1, a thin film 13 whose main component is SiO 2 was deposited on a quartz target for 1 minute using a magnetron sputter.
was formed. The oscillation frequency in this case is 914.9MH
It was hot. The change in frequency due to the thickness of the thin film 13 is
It was 400kHz/100Å. This element is irradiated with a CO 2 laser (10.7μm), the frequency is adjusted,
I set it to the desired 915MHz. The laser power and irradiation time were 5W and 0.75 seconds.

発明の効果 以上の説明からも明らかなごとく、本発明の製
造プロセスによると、高精度の弾性表面波デバイ
スが容易に生産できる特徴がある。この場合、弾
性表面波デバイスに伝搬路面への不整格子配列の
薄膜の積層と、さらに望ましくはこれを光照射し
Oを高精度に調整することが特徴である。不整
格子配列の薄膜は、本実施例ではスパツタ蒸着で
形成する方法について述べたが、必ずしもスパツ
タ蒸着法に依る必要はなく、蒸着された薄膜の格
子が乱れておりさえすればよい。イオンビームス
パツタ,電子ビーム蒸着,化学的気相成長
(CVD),プラズマCVDも実用し得る。また、光
照射の光源もレーザ光源に限つたことではなく、
要はエネルギ密度が一定値以上に達しておりさえ
すればよく、紫外線ランプ,赤外線ランプ等も集
光することにより実用し得る。
Effects of the Invention As is clear from the above description, the manufacturing process of the present invention has the feature that a highly accurate surface acoustic wave device can be easily produced. In this case, the feature is that the surface acoustic wave device is laminated with a thin film having a mismatched lattice arrangement on the propagation path surface, and more preferably, this is irradiated with light to adjust O with high precision. In this embodiment, a method of forming a thin film with an irregular lattice arrangement by sputter deposition is described, but it is not necessarily necessary to rely on sputter deposition, and it is sufficient that the lattice of the deposited thin film is disordered. Ion beam sputtering, electron beam evaporation, chemical vapor deposition (CVD), and plasma CVD are also practical. In addition, the light source for light irradiation is not limited to laser light sources.
In short, it is only necessary that the energy density reaches a certain value or more, and ultraviolet lamps, infrared lamps, etc. can also be put to practical use by concentrating the light.

また、上述した例では不整格子配列の薄膜を例
えば水晶のような圧電性基板上に積層していた
が、本発明の効果は、必ずしも圧電性基板上に積
層しなくとも、弾性表面波が伝搬する基板上に積
層さえすれば同様の効果が得られる。したがつ
て、例えば非圧電体基板例えばガラス基板を伝搬
路にもつ遅延素子などは、このガラス基板上に不
整格子配列の薄膜を積層すればよい。
Furthermore, in the above example, a thin film with a misaligned lattice arrangement was laminated on a piezoelectric substrate such as quartz, but the effect of the present invention can be achieved even if the thin film is not necessarily laminated on a piezoelectric substrate to allow surface acoustic waves to propagate. The same effect can be obtained by simply laminating it on a substrate. Therefore, for example, for a delay element having a non-piezoelectric substrate, such as a glass substrate, as a propagation path, a thin film having a mismatched lattice arrangement may be laminated on the glass substrate.

また、本発明の効果は、実施例に述べたフイル
タあるいは遅延素子に限定されたものではなく、
これ以外に弾性表面波レゾネータをはじめ、あら
ゆる種類の弾性表面波デバイアの形成に本発明は
有効であるから、その工業的価値は高い。
Furthermore, the effects of the present invention are not limited to the filters or delay elements described in the embodiments;
In addition to this, the present invention is effective for forming all kinds of surface acoustic wave devias including surface acoustic wave resonators, so its industrial value is high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を説明するための弾性表面波デ
バイスの要部断面図、第2図および第3図は本発
明の効果を説明するための特性曲線図である。 12……基板、13……不整格子配列の薄膜。
FIG. 1 is a sectional view of a main part of a surface acoustic wave device for explaining the present invention, and FIGS. 2 and 3 are characteristic curve diagrams for explaining the effects of the present invention. 12... Substrate, 13... Thin film with mismatched lattice arrangement.

Claims (1)

【特許請求の範囲】 1 弾性表面波が伝搬する基板に不整格子配列の
薄膜を厚さ10Åから0.02λ(λ:弾性表面波の波
長)の範囲で蒸着し、この薄膜に光を照射するこ
とにより、上記弾性表面波の伝搬速度を変化させ
ることを特徴とする弾性表面波デバイスの製造方
法。 2 光に紫外線光を用いることを特徴とする特許
請求の範囲第2項に記載の弾性表面波デバイスの
製造方法。 3 光に赤外線レーザを用いることを特徴とする
特許請求の範囲第2項記載の弾性表面波デバイス
の製造方法。 4 不整格子配列の薄膜をスパツタ蒸着法で形成
することを特徴とする特許請求の範囲第1項記載
の弾性表面波デバイスの製造方法。
[Claims] 1. Depositing a thin film with a mismatched lattice arrangement on a substrate through which surface acoustic waves propagate, with a thickness ranging from 10 Å to 0.02λ (λ: wavelength of surface acoustic waves), and irradiating this thin film with light. A method of manufacturing a surface acoustic wave device, characterized in that the propagation speed of the surface acoustic wave is changed by: 2. The method for manufacturing a surface acoustic wave device according to claim 2, characterized in that ultraviolet light is used as the light. 3. The method for manufacturing a surface acoustic wave device according to claim 2, characterized in that an infrared laser is used for the light. 4. The method of manufacturing a surface acoustic wave device according to claim 1, wherein the thin film with a mismatched lattice arrangement is formed by sputter deposition.
JP8444783A 1983-05-13 1983-05-13 Manufacture of surface acoustic wave device Granted JPS59210708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8444783A JPS59210708A (en) 1983-05-13 1983-05-13 Manufacture of surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8444783A JPS59210708A (en) 1983-05-13 1983-05-13 Manufacture of surface acoustic wave device

Publications (2)

Publication Number Publication Date
JPS59210708A JPS59210708A (en) 1984-11-29
JPH0351128B2 true JPH0351128B2 (en) 1991-08-05

Family

ID=13830858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8444783A Granted JPS59210708A (en) 1983-05-13 1983-05-13 Manufacture of surface acoustic wave device

Country Status (1)

Country Link
JP (1) JPS59210708A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2199985B (en) * 1986-12-22 1991-09-11 Raytheon Co Surface acoustic wave device
US5815900A (en) * 1995-03-06 1998-10-06 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a surface acoustic wave module
CN105393455B (en) 2013-06-28 2017-04-12 大河晶振科技有限公司 Elastic wave device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57107626A (en) * 1980-11-03 1982-07-05 United Technologies Corp Gallium arsenide surface sound wave element compensated for temperature

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57107626A (en) * 1980-11-03 1982-07-05 United Technologies Corp Gallium arsenide surface sound wave element compensated for temperature

Also Published As

Publication number Publication date
JPS59210708A (en) 1984-11-29

Similar Documents

Publication Publication Date Title
US4037176A (en) Multi-layered substrate for a surface-acoustic-wave device
EP1861924B8 (en) Piezoelectric thin film resonator and method for making same
JPH05199057A (en) Surface acoustic wave element and its manufacture
JPH0218614B2 (en)
GB2069278A (en) Surface acoustic wave device
JP3109060B2 (en) Surface acoustic wave device
JP3411124B2 (en) Method for manufacturing surface acoustic wave module element
Tomar et al. Temperature stability of ZnO thin film SAW device on fused quartz
JPH0351128B2 (en)
US4236095A (en) Surface acoustic wave device comprising piezoelectric substrate having zinc oxide layer on α-alumina layer
US4610894A (en) Method of manufacturing surface acoustic wave device
JP3110491B2 (en) Surface acoustic wave device using diamond-like film
JPH0748626B2 (en) Frequency adjustment method for surface acoustic wave device
US5521454A (en) Surface wave filter element
JP2018056866A (en) Piezoelectric composite substrate for surface acoustic wave element and method for manufacturing the same
JPH11116397A (en) Oriented perovskite type potassium niobate thin membrane, and surface acoustic wave element having the thin membrane
JPS5917510A (en) Optical waveguide
JPS63173412A (en) Leaky saw resonator
JP3780790B2 (en) Surface acoustic wave device
JPS59210716A (en) Substrate for surface wave device
JP2004059341A (en) METHOD FOR FORMING ORIENTED THIN FILM OF LiNbO3
JPH05175779A (en) Thin film surface acoustic wave element
JP2003264448A (en) Surface acoustic wave module element
JPH1056350A (en) Piezoelectric element substrate and its production
JPS6163103A (en) Frequency adjusting method of surface acoustic wave resonator