JP3780790B2 - Surface acoustic wave device - Google Patents

Surface acoustic wave device Download PDF

Info

Publication number
JP3780790B2
JP3780790B2 JP2000002568A JP2000002568A JP3780790B2 JP 3780790 B2 JP3780790 B2 JP 3780790B2 JP 2000002568 A JP2000002568 A JP 2000002568A JP 2000002568 A JP2000002568 A JP 2000002568A JP 3780790 B2 JP3780790 B2 JP 3780790B2
Authority
JP
Japan
Prior art keywords
thin film
piezoelectric material
acoustic wave
surface acoustic
wave device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000002568A
Other languages
Japanese (ja)
Other versions
JP2001196893A (en
Inventor
節也 岩下
天光 樋口
弘 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2000002568A priority Critical patent/JP3780790B2/en
Publication of JP2001196893A publication Critical patent/JP2001196893A/en
Application granted granted Critical
Publication of JP3780790B2 publication Critical patent/JP3780790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、情報通信分野に用いられる表面弾性波素子およびその作製方法、さらに詳しく言えば薄膜を用いた表面弾性波素子およびその作製方法に関する。
【0002】
【従来の技術】
従来の表面弾性波素子としては、大きく分けて圧電材料の単結晶を用いたものと基板上に圧電材料からなる薄膜を形成したものとの2種類がある。単結晶を用いるものの代表的な例としては、水晶、ニオブ酸リチウム(以下LiNbO3)、タンタル酸リチウム(以下LiTaO3)などを用いた素子があげられる。一方、圧電材料の薄膜を用いた表面弾性波素子としては、Jpn.J.Appl.Phys.Vol.32(1993)pp.2337−2340に記載されているようなサファイア基板上に酸化亜鉛(以下ZnO)薄膜を形成したもの、あるいはJpn.J.Appl.Phys.Vol.32(1993)pp.L745−L747に記載されているようなサファイア基板上にLiNbO3薄膜を形成したものなどがあげられる。
【0003】
表面弾性波素子の性能に関して、通信分野の目覚しい発展に伴い、より大きい電気機械結合係数(以下k2)を有するもの、より温度特性が良好なもの、より高周波に適用できるものへの要求が高まっている。表面弾性波素子はフィルタ、発振器の両者に応用可能であるが、特に発振器に用いる場合は温度特性が重要になる。また、発振器には高次逓倍型、位相同期型、直接型などがあるが機器の小型化のためには直接型が望ましく、それには高周波化も重要である。また、フィルタでは高いk2が望まれる。フィルタ、発振器とも高周波化には音速の速い材料が望まれる。
【0004】
温度特性については、例えば「表面波デバイスとその応用」電子材料工業会編1978年発行 pp106〜108に述べられているように、群遅延時間温度特性TCDの符号が互いに逆である(正負が異なる)ZnOとSiO2などを積層することにより改善される可能性がある。これについては、特開平6−164294あるいは特開平9−130192にも記されている。特開平6−164294ではSi基板上にダイヤモンド薄膜を形成し、さらにその上に圧電薄膜と二酸化珪素保護膜を形成することにより、高周波化とk2の向上を図ることが記載されている。一方、特開平9−130192では、水晶基板上のZnOの膜厚の規格化やさらに電極の位置の適正化によってk2の向上を図ることが記載されている。
【0005】
【発明が解決しようとする課題】
しかし、従来の表面弾性波素子には、以下のような問題点がある。
【0006】
まず、単結晶を用いた表面弾性波素子では、音速、k2や温度係数などの特性は材料固有の値であり、単結晶材料をカットする面方位でその特性が決まってしまう。これまで公表されている材料には一長一短があり、したがって、今のところ使用する目的によって、材料を使い分けている。例えば、周波数の広帯域化、低損失化が要求されるフィルタの場合には、k2の大きいLiNbO3が用いられ、一方、周波数は狭帯域でも良いが温度特性が安定なものが必要な場合は温度係数が小さい水晶が用いられる。ただし、水晶は音速があまり速くなく高周波化には不利であり、GHz帯に用いるのは難しい。したがって、高周波での直接型発振器やフィルタの作製は難しい。すなわち、電極間隔が狭く電極のパターニングが困難である。k2および温度係数がそれぞれLiNbO3と水晶の間にあるLiTaO3はその中間的な役割を果たしている。しかし、音速が速くk2が大きく温度係数が小さい表面弾性波素子が要望されている現在、これらの特性を満足させる材料はない。従って、単結晶を用いる場合は新しい材料の発見を待つしかない。
【0007】
一方、圧電材料の薄膜を用いた表面弾性波素子は、音速の速い基板上に薄膜を形成することにより、高周波化やk2の向上がはかられ、また温度特性の改善も可能と期待されている。すなわち、用いる基板と薄膜の材料の組み合わせや薄膜の配向のコントロールなどにより、材料固有の値に支配されない特性が得られる可能性がある。しかし、現在のところ、所望の特性を満足させるものは得られていない。水晶などのSiO2を主成分とする材料以外を用いた場合,例えばサファイア上にLiNbO3薄膜を形成するものでも温度特性はあまり改善されていない。一方、特開平6−164294に記されているようなダイヤモンド薄膜を基板に用いる場合には速い音速が得られるが、ダイヤモンド薄膜の表面平坦性が問題となる。基板の表面平坦性は素子特性に影響を及ぼすため重要である。現在、その表面を研磨して用いているが、ダイヤモンドは硬いため加工が難しい。研磨技術は進歩しているが、ダイヤモンド薄膜は多結晶でもあり、他の単結晶基板の表面平坦性と比較すると明らかに劣る。また、その直上に形成される圧電薄膜の結晶性も素子特性、信頼性に関して重要であるが、多結晶のダイヤモンド薄膜上に高品質な圧電薄膜を形成することは難しい。圧電薄膜としては、エピタキシャル膜が望ましい。特開平9−130192では、これを用いて温度特性の良いものができるとしているが、GHz帯までの高周波化には不十分であり、音速の速い波を用いても難しく、その場合は電極の加工に負荷がかかる。さらに、信頼性の高い素子を得るには、その作製方法も重要である。例えば、水晶には転移温度があるが、転移温度以上で薄膜を形成する場合、水晶に割れや欠陥が導入され質の高いものが得られない。
【0008】
本発明は上記問題点に鑑みてなされたものであり、その課題とするところは、高周波化に対応できかつk2が高く温度特性も良い薄膜を用いた表面弾性波素子、及び信頼性の高い表面弾性波素子が得られる作製方法を提供することである。
【0009】
【課題を解決するための手段】
本発明の表面弾性波素子は、水晶基板と該水晶基板上に形成された圧電材料からなる薄膜と非圧電材料からなる薄膜と電極を具備することを特徴とする。
【0010】
上記表面弾性波素子において、さらに好ましくは、前記非圧電材料は、ヤング率が3.5×1012dyne/cm2以上であり、かつ密度が4g/cm3以下であること、前記電極は少なくとも圧電材料からなる薄膜に接して形成されること、圧電材料と非圧電材料は結晶系が同じであること、圧電材料からなる薄膜と非圧電材料からなる薄膜はそれぞれエピタキシャル膜である。
【0011】
本発明の表面弾性波素子の基本構成によれば、水晶基板と圧電薄膜の温度係数の符号が逆のため相殺されて良好な温度特性が得られる。また、水晶基板上に圧電薄膜をエピタキシャル成長させることは可能であり、特にその上に形成する非圧電薄膜の結晶系を圧電薄膜の結晶系と同じものを選択することにより、非圧電薄膜もエピタキシャル成長させることが可能となる。非圧電材料は硬質であることから、電極を圧電薄膜に接して形成することにより速い音速が得られ高周波化が可能となる。更に、圧電薄膜、非圧電薄膜とも高品質に得ることで、信頼性も高く、また、k2の向上も期待される。
【0012】
本発明によれば、水晶基板と該水晶基板上に形成された圧電材料からなる薄膜と非圧電材料からなる薄膜と電極とを具備する表面弾性波素子の作製方法であって、圧電材料からなる薄膜と非圧電材料からなる薄膜と電極は夫々水晶の転移温度以下で形成することを特徴とする方法が提供される。
【0013】
上記方法によれば、水晶基板に割れやクラックなどの欠陥を導入すること無く、安定な素子特性が実現される。
【0014】
上記方法において、圧電材料からなる薄膜と非圧電材料からなる薄膜の各膜厚を制御することによって素子特性を制御することが好ましい。
【0015】
【発明の実施の形態】
以下、本発明の実施形態をその実施例に沿って詳細に説明する。
【0016】
(実施例1)
図1は本発明の実施例1に係る表面弾性波素子の断面構造を示す図である。
【0017】
同図に示す素子構造は、水晶基板1と圧電材料からなる薄膜2、非圧電材料からなる薄膜3、および圧電材料からなる薄膜2に接して形成される電極4で構成されている。
【0018】
当該構造の素子は、以下の方法に沿って得ることができる。α−SiO2で表されるSTカット水晶基板1上に圧電材料として酸化亜鉛(以下ZnO)を用いて薄膜2を形成し、その上に銅(以下Cu)を用いて電極4を形成する。さらに電極4を設けた薄膜2上に非圧電材料として酸化アルミニウムを主成分とする薄膜3を形成して表面弾性波素子を得る。
【0019】
上記構成からなる本発明の表面弾性波素子の作製プロセスの具体例を示す。
【0020】
まずSTカット水晶基板上1に圧電材料からなる薄膜2であるZnOを成膜した。成膜にはZnOの単一ターゲットを用いたレーザーアブレーション法を用い、成膜中基板に酸素プラズマを照射しながらその場成長させた。この時の基板温度は、水晶の転移温度である573℃以下の550℃とした。X線回折およびRHEEDから、(0001)配向のZnOエピタキシャル膜が得られていることが確認された。
【0021】
次にZnOエピタキシャル膜上にCuを蒸着し、パターニングして電極4を形成した。続いてその上に、ZnOの場合と同様に酸化アルミニウムの単一ターゲットを用いたレーザーアブレーション法により、成膜中基板に酸素プラズマを照射しながら非圧電材料からなる薄膜3である酸化アルミニウム薄膜をその場で成長させた。この時基板温度も、水晶の転移温度である573℃以下の550℃とした。X線回折およびRHEEDから、(0001)配向の酸化アルミニウムエピタキシャル膜が得られていることが確認された。この時のZnO薄膜と酸化アルミニウム薄膜の面内方向の関係は、
数1

Figure 0003780790
【0022】
であった。ここで、ZnOと酸化アルミニウムは同じ六方晶系であり、両者の格子定数が公倍数でほぼ一致するため格子ミスマッチが小さくなり、その結果ZnO上に酸化アルミニウムがエピタキシャル成長する。X線反射率測定から、両薄膜の密度は理論密度に対しそれぞれ90%以上と高品質なものであった。
【0023】
なお、ZnOと酸化アルミニウムの製膜条件を変更した実験を行ったところ、少なくともどちらか一方を573℃以上で形成した場合、基板が割れたり、X線回折パターンに不明なピークが現れたりすることがあった。すなわち、素子の信頼性に問題が生じることがあった。
【0024】
このような方法に基づき、条件を種々変更し、得られる種々の設計の素子についてその特性を調べた。
【0025】
まず、酸化アルミニウムを形成しない電極/ZnO薄膜/水晶基板の構造でZnO薄膜の膜厚の最適化を行なった。ZnO薄膜の膜厚をH、表面波の波長をλとした場合、H/λが増加するにしたがって、k2も増加し、H/λが0.3ぐらいでほぼ飽和した。この時の値は約10%であった。一方、音速はH/λが増加するにしたがって、単調に減少した。水晶基板単体の時、すなわちH/λが0の時、音速は約3200m/sであったが、H/λが0.3の時約2800m/sであった。
【0026】
また、温度係数TCFは、水晶基板単体については、すなわちH/λが0の場合約30ppm/℃であったが、H/λが増加するにしたがってTCFは減少して0に近づき、H/λが約0.1のとき0になった。H/λがそれより大きくなると、逆にマイナス側に大きくなっていった。この現象は、周知のように正負異なる温度係数を有する水晶とZnOの積層による効果と考えられる。以上のように、圧電薄膜のZnOの膜厚によって、k2、音速、TCFが大きく変わるため、用途によって膜厚を調整すればよい。例えばk2が大きいものが必要な場合は、ここではH/λを0.3以上とすれば良いし、TCFを0にしたい場合にはH/λを約0.1にすればよい。ここでは、温特を良くするため、TCFがほぼ0になるようH/λを0.1として、以後の評価を行なった。H/λが0.1の時のk2は約2%であった。また、音速は約3000m/sであった。なお、比較のため、エピタキシャル膜でないZnOを用いて同様な評価を行なったが、H/λが増加するに従い、エピタキシャル膜の場合と比べ、音速の減少が大きくまたk2の増加の程度も小さかった。さらにTCFが0になるH/λの値もばらついた。すなわち、エピタキシャル膜の方が特性が良い。
【0027】
次に、酸化アルミニウム薄膜を形成した酸化アルミニウム薄膜/電極/ZnO薄膜/水晶基板の構造で酸化アルミニウムの膜厚を変えて評価を行なった。前述したように、ZnO薄膜の膜厚はTCFが0になるH/λ=0.1となるように設定した。酸化アルミニウムはヤング率が3.77×1012dyne/cm2で密度が3.93g/cm3である。すなわち、硬くて軽い材料である。このような材料は音速が速い。酸化アルミニウム薄膜の膜厚をHAl、表面波の波長をλとすると、HAl/λが増加するに従い、音速およびk2とも単調に増加した。音速はHAl/λが0.5の時約5000m/s、1.0のとき約6000m/sであった。この値は、酸化アルミニウム薄膜がない場合と比べ2倍となる。また、水晶単体の場合の約1.9倍となる。これによって、電極間隔も2倍にできるため、電極パターニングの困難さが改善されることが判った。また、k2はHAl/λ=0.5のとき12%、1.0のとき14%であった。すなわち、酸化アルミニウムの膜厚を厚くすれば良い特性が得られるが、使用周波数帯に応じて膜厚を調整して音速を制御すればよいことが導かれる。一方、TCFはHAl/λが増加してもほとんど変化しなかった。以上より、エピタキシャル酸化アルミニウム膜を形成することにより、さらに特性が改善される。
【0028】
比較のため、エピタキシャル膜でない酸化アルミニウム薄膜を形成した試料を作製し評価した。その場合も音速、k2とも同様に増加するが、その程度はエピタキシャル膜の場合と比べ小さかった。すなわち、エピタキシャル膜の方を用いることがより好ましい。
【0029】
なお、ここでは非圧電材料として酸化アルミニウムを用いたが、さらに比較のため同じ六方晶系のランタンアルミネート(LaAlO3)を用いて評価した。LaAlO3の密度は4g/cm3以上、ヤング率は3.5×1012dyne/cm2以下、すなわち酸化アルミニウムと比べ軟らかく重い材料である。この場合、k2は増加するが、高周波化に重要な音速の増加が見られなかった。
【0030】
この他、硬くて軽い材料としては、酸化アルミニウム以外にダイヤモンドがある。これも密度は4g/cm3以下、ヤング率は3.5×1012dyne/cm2以上である。したがって、酸化アルミニウムの場合と同様な効果が得られる。ダイヤモンド薄膜を最上層に形成する場合、基板に用いる場合と違ってミラー研磨する必要がない、また圧電薄膜の結晶性に影響を与えないという利点がある。すなわち、基板に用いる場合よりには素子作製が容易である。また、酸化アルミニウムやダイヤモンド以外の材料でも前記条件を満たせば問題ない。なお、上記実施例では電極を圧電材料からなる薄膜2と非圧電材料からなる薄膜3の間に形成したが、水晶基板1と圧電材料からなる薄膜2の間に形成してもよい。
【0031】
以上のように、本実施例によれば特性の良い、また膜厚によって素子の特性を制御できる表面弾性波素子を得ることができる。
【0032】
(実施例2)
実施例1では圧電材料としてZnOを用いたが、それ以外の材料を用いても良い。本実施例では、ニオブ酸リチウム(LiNbO3)を用いる。素子の構造は図1と同じである。すなわち、水晶基板1上に圧電材料であるLiNbO3薄膜2が形成され、その上にCuからなる電極4、非圧電材料である酸化アルミニウム薄膜3が順に形成された構造の素子を作製した。
【0033】
LiNbO3もZnOと同様に六方晶系であり、レーザーアブレーション法を用いて成膜条件を適正化することにより、水晶基板1上にエピタキシャル成長させることが可能である。また、LiNbO3膜上に酸化アルミニウム薄膜をエピタキシャル成長させることも可能である。LiNbO3は水晶よりも音速が速い。また、ZnOや水晶よりもk2が大きい。したがって、非圧電材料薄膜3がない電極/LiNbO3薄膜/水晶基板構造において、LiNbO3の膜厚をHLi、表面波の波長をλとし、HLi/λを変化させたところ、この値が増加するに従い音速、k2とも単調に増加する。また、LiNbO3もZnOと同様に負のTCFを有するので、HLi/λを調整することにより、TCFを0にできる。
【0034】
続いて、この上に硬くて軽い酸化アルミニウムの非圧電材料薄膜3を形成することにより、さらに音速、k2が向上した。これら値は、酸化アルミニウ薄膜の膜厚が増加するに従い増加し、圧電材料薄膜2にZnOを用いた場合より大きく、より高周波、高性能の素子として期待できる。なお、ここでは圧電材料としてLiNbO3を用いたが、その他の負のTCFを有する圧電材料を用いても何ら問題ない。この時、音速、k2が大きいほうがより好ましい。また、非圧電材料も密度が4g/cm3以下、ヤング率が3.5×1012dyne/cm2以上のものであればよい。
【0035】
【発明の効果】
以上述べたように本発明によれば、水晶基板と該水晶基板上に形成した圧電材料からなる薄膜と非圧電材料からなる薄膜と電極で構成し、更に前記非圧電材料のヤング率を3.5×1012dyne/cm2以上、かつ密度を4g/cm3以下とし、また前記電極を少なくとも圧電材料からなる薄膜に接して形成し、また圧電材料からなる薄膜と非圧電材料からなる薄膜の各膜厚を制御し、また圧電材料と非圧電材料の結晶系を同じとし、さらに圧電材料からなる薄膜と非圧電材料からなる薄膜をそれぞれエピタキシャル膜にすることによって、容易に作製でき、また高周波化に適応できる高性能な表面弾性波素子が提供される。
【0036】
また、本発明によれば、水晶基板と該水晶基板上に形成された圧電材料からなる薄膜と非圧電材料からなる薄膜と電極で構成される表面弾性波素子の圧電材料からなる薄膜と非圧電材料からなる薄膜と電極を水晶の転移温度以下で形成することによって、再現性、信頼性の高い表面弾性波素子の作製方法が提供される。
【図面の簡単な説明】
【図1】本発明の実施例に係る表面弾性波素子の構造を示す断面図である。
【符号の説明】
1 水晶基板
2 圧電材料からなる薄膜
3 非圧電材料からなる薄膜
4 電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface acoustic wave device used in the field of information communication and a manufacturing method thereof, and more particularly to a surface acoustic wave device using a thin film and a manufacturing method thereof.
[0002]
[Prior art]
Conventional surface acoustic wave devices are roughly classified into two types, one using a single crystal of a piezoelectric material and one having a thin film made of a piezoelectric material formed on a substrate. As a typical example using a single crystal, an element using crystal, lithium niobate (hereinafter, LiNbO 3 ), lithium tantalate (hereinafter, LiTaO 3 ), or the like can be given. On the other hand, as a surface acoustic wave device using a piezoelectric material thin film, Jpn. J. et al. Appl. Phys. Vol. 32 (1993) p. 2337-2340, a zinc oxide (hereinafter referred to as ZnO) thin film formed on a sapphire substrate, or Jpn. J. et al. Appl. Phys. Vol. 32 (1993) p. Examples thereof include a LiNbO 3 thin film formed on a sapphire substrate as described in L745-L747.
[0003]
With regard to the performance of surface acoustic wave devices, with the remarkable development of the communication field, there is an increasing demand for devices having a larger electromechanical coupling coefficient (hereinafter referred to as k 2 ), better temperature characteristics, and more applicable to higher frequencies. ing. A surface acoustic wave element can be applied to both a filter and an oscillator, but temperature characteristics are particularly important when used for an oscillator. In addition, there are a high-order multiplication type, a phase-synchronization type, a direct type, and the like as the oscillator, but the direct type is desirable for downsizing the device, and high frequency is also important for that purpose. Also, a high k 2 is desired for the filter. For filters and oscillators, materials with high sound speed are desired for higher frequency.
[0004]
Regarding the temperature characteristics, as described in, for example, “Surface wave devices and their applications” edited by Electronic Materials Industry Association, 1978, pp 106-108, signs of group delay time temperature characteristics TCD are opposite to each other (positive and negative are different). It may be improved by laminating ZnO and SiO 2 . This is also described in JP-A-6-164294 or JP-A-9-130192. Japanese Patent Laid-Open No. 6-164294 discloses that a diamond thin film is formed on a Si substrate, and a piezoelectric thin film and a silicon dioxide protective film are further formed thereon to increase the frequency and improve k 2 . On the other hand, Japanese Patent Laid-Open No. 9-130192 describes that k 2 is improved by standardizing the thickness of ZnO on the quartz substrate and further optimizing the position of the electrodes.
[0005]
[Problems to be solved by the invention]
However, the conventional surface acoustic wave device has the following problems.
[0006]
First, in a surface acoustic wave device using a single crystal, characteristics such as sound velocity, k 2 and temperature coefficient are values specific to the material, and the characteristics are determined by the plane orientation in which the single crystal material is cut. There are merits and demerits in the materials that have been published so far, and therefore, materials are selected according to the purpose of use. For example, in the case of a filter that requires a wider frequency band and lower loss, LiNbO 3 having a large k 2 is used. On the other hand, when the frequency may be a narrow band but a stable temperature characteristic is required. Quartz with a small temperature coefficient is used. However, quartz is not very fast in sound speed and disadvantageous for high frequency, and is difficult to use in the GHz band. Therefore, it is difficult to produce a direct oscillator or filter at a high frequency. That is, the electrode spacing is narrow and it is difficult to pattern the electrodes. LiTaO 3 having k 2 and a temperature coefficient between LiNbO 3 and quartz respectively plays an intermediate role. However, there is no material that satisfies these characteristics at present when a surface acoustic wave device having a high sound speed and a large k 2 and a low temperature coefficient is desired. Therefore, when using a single crystal, there is no choice but to wait for the discovery of a new material.
[0007]
On the other hand, a surface acoustic wave device using a thin film of piezoelectric material is expected to increase frequency and improve k 2 and to improve temperature characteristics by forming a thin film on a substrate with a high sound velocity. ing. That is, depending on the combination of the substrate and thin film material used and the control of the orientation of the thin film, there is a possibility that characteristics that are not controlled by the values specific to the material may be obtained. However, at present, none satisfying the desired characteristics has been obtained. When a material other than SiO 2 as a main component is used, such as quartz, for example, a temperature characteristic is not improved so much even if a LiNbO 3 thin film is formed on sapphire. On the other hand, when a diamond thin film as described in JP-A-6-164294 is used for the substrate, a high sound speed can be obtained, but the surface flatness of the diamond thin film becomes a problem. The surface flatness of the substrate is important because it affects the device characteristics. Currently, the surface is polished and used, but diamond is hard and difficult to process. Although the polishing technology has advanced, the diamond thin film is also polycrystalline, which is clearly inferior to the surface flatness of other single crystal substrates. The crystallinity of the piezoelectric thin film formed immediately above is also important for device characteristics and reliability, but it is difficult to form a high-quality piezoelectric thin film on a polycrystalline diamond thin film. As the piezoelectric thin film, an epitaxial film is desirable. In Japanese Patent Laid-Open No. 9-130192, it is said that a good temperature characteristic can be obtained by using this, but it is insufficient for high frequency up to the GHz band, and it is difficult to use a wave with a high sound speed. Processing is burdened. Furthermore, the manufacturing method is also important for obtaining a highly reliable device. For example, quartz has a transition temperature, but when a thin film is formed at a temperature higher than the transition temperature, cracks and defects are introduced into the crystal, and a high quality product cannot be obtained.
[0008]
The present invention has been made in view of the above problems, and the problem is that a surface acoustic wave device using a thin film that can cope with high frequency, has a high k 2 and good temperature characteristics, and has high reliability. It is to provide a production method for obtaining a surface acoustic wave device.
[0009]
[Means for Solving the Problems]
The surface acoustic wave device of the present invention comprises a quartz substrate, a thin film made of a piezoelectric material and a thin film made of a non-piezoelectric material and an electrode formed on the quartz substrate.
[0010]
In the surface acoustic wave device, more preferably, the non-piezoelectric material has a Young's modulus of 3.5 × 10 12 dyne / cm 2 or more and a density of 4 g / cm 3 or less, and the electrode has at least Formed in contact with a thin film made of a piezoelectric material, the piezoelectric material and the non-piezoelectric material have the same crystal system, and the thin film made of the piezoelectric material and the thin film made of the non-piezoelectric material are each an epitaxial film.
[0011]
According to the basic configuration of the surface acoustic wave device of the present invention, the sign of the temperature coefficient of the quartz substrate and that of the piezoelectric thin film are reversed, so that good temperature characteristics are obtained. In addition, it is possible to epitaxially grow a piezoelectric thin film on a quartz substrate. In particular, a non-piezoelectric thin film can also be epitaxially grown by selecting the same non-piezoelectric thin film crystal system as that formed on the quartz substrate. It becomes possible. Since the non-piezoelectric material is hard, by forming the electrode in contact with the piezoelectric thin film, a high sound speed can be obtained and a high frequency can be achieved. Furthermore, by obtaining high quality both the piezoelectric thin film and the non-piezoelectric thin film, high reliability is expected and an improvement in k 2 is also expected.
[0012]
According to the present invention, there is provided a method of manufacturing a surface acoustic wave device comprising a quartz substrate, a thin film made of a piezoelectric material formed on the quartz substrate, a thin film made of a non-piezoelectric material, and an electrode, and made of the piezoelectric material A method is provided in which the thin film and the electrode made of a non-piezoelectric material and the electrode are formed below the transition temperature of the crystal.
[0013]
According to the above method, stable element characteristics can be realized without introducing defects such as cracks and cracks in the quartz substrate.
[0014]
In the above method, it is preferable to control element characteristics by controlling each film thickness of a thin film made of a piezoelectric material and a thin film made of a non-piezoelectric material.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail along the examples.
[0016]
Example 1
1 is a diagram showing a cross-sectional structure of a surface acoustic wave device according to a first embodiment of the present invention.
[0017]
The element structure shown in FIG. 1 includes a quartz crystal substrate 1, a thin film 2 made of a piezoelectric material, a thin film 3 made of a non-piezoelectric material, and an electrode 4 formed in contact with the thin film 2 made of a piezoelectric material.
[0018]
The element having the structure can be obtained by the following method. A thin film 2 is formed by using zinc oxide (hereinafter referred to as ZnO) as a piezoelectric material on an ST cut quartz crystal substrate 1 represented by α-SiO 2 , and an electrode 4 is formed thereon by using copper (hereinafter referred to as Cu). Further, a thin film 3 mainly composed of aluminum oxide is formed as a non-piezoelectric material on the thin film 2 provided with the electrodes 4 to obtain a surface acoustic wave device.
[0019]
A specific example of the manufacturing process of the surface acoustic wave device of the present invention having the above-described configuration will be shown.
[0020]
First, ZnO, which is a thin film 2 made of a piezoelectric material, was formed on an ST cut quartz substrate 1. The film was grown in situ using a laser ablation method using a single target of ZnO while irradiating the substrate with oxygen plasma. The substrate temperature at this time was set to 550 ° C., which is 573 ° C. or lower, which is the crystal transition temperature. From X-ray diffraction and RHEED, it was confirmed that a (0001) -oriented ZnO epitaxial film was obtained.
[0021]
Next, Cu was deposited on the ZnO epitaxial film and patterned to form an electrode 4. Subsequently, an aluminum oxide thin film, which is a thin film 3 made of a non-piezoelectric material, is irradiated on the substrate while irradiating oxygen plasma to the substrate during film formation by laser ablation using a single target of aluminum oxide as in the case of ZnO. Grown on the spot. At this time, the substrate temperature was also set to 550 ° C., which is 573 ° C. or lower, which is the crystal transition temperature. From X-ray diffraction and RHEED, it was confirmed that a (0001) -oriented aluminum oxide epitaxial film was obtained. At this time, the relationship between the in-plane direction of the ZnO thin film and the aluminum oxide thin film is
Number 1
Figure 0003780790
[0022]
Met. Here, ZnO and aluminum oxide are the same hexagonal system, and the lattice constants of the two are almost the same multiple, so the lattice mismatch is reduced. As a result, aluminum oxide is epitaxially grown on ZnO. From the X-ray reflectivity measurement, the density of both thin films was as high as 90% or more of the theoretical density.
[0023]
In addition, when an experiment was conducted by changing the film forming conditions of ZnO and aluminum oxide, when at least one of them was formed at 573 ° C. or higher, the substrate was cracked or an unknown peak appeared in the X-ray diffraction pattern. was there. That is, a problem may occur in the reliability of the element.
[0024]
Based on such a method, various conditions were changed, and the characteristics of the various designed elements were examined.
[0025]
First, the film thickness of the ZnO thin film was optimized in the structure of electrode / ZnO thin film / quartz substrate in which aluminum oxide was not formed. When the thickness of the ZnO thin film was H and the wavelength of the surface wave was λ, k 2 increased as H / λ increased, and was almost saturated when H / λ was about 0.3. The value at this time was about 10%. On the other hand, the speed of sound monotonously decreased as H / λ increased. When the quartz substrate was used alone, that is, when H / λ was 0, the sound velocity was about 3200 m / s, but when H / λ was 0.3, it was about 2800 m / s.
[0026]
The temperature coefficient TCF was about 30 ppm / ° C. for the quartz substrate alone, that is, when H / λ was 0, but TCF decreased and approached 0 as H / λ increased, and H / λ 0 when the value was about 0.1. On the contrary, when H / λ was larger than that, it became larger on the minus side. As is well known, this phenomenon is considered to be an effect of the lamination of quartz and ZnO having different temperature coefficients. As described above, since k 2 , sound velocity, and TCF vary greatly depending on the thickness of ZnO in the piezoelectric thin film, the thickness may be adjusted depending on the application. For example, when a large k2 is required, H / λ may be set to 0.3 or more here, and H / λ may be set to about 0.1 when TCF is to be zero. Here, in order to improve the temperature characteristics, H / λ was set to 0.1 so that the TCF was almost 0, and the subsequent evaluation was performed. When H / λ was 0.1, k 2 was about 2%. The sound speed was about 3000 m / s. For comparison, the same evaluation was performed using ZnO which is not an epitaxial film. However, as H / λ increased, the decrease in sound speed and the increase in k 2 were smaller as compared with the epitaxial film. It was. Further, the value of H / λ at which TCF becomes 0 also varied. That is, the epitaxial film has better characteristics.
[0027]
Next, evaluation was performed by changing the thickness of the aluminum oxide in the structure of the aluminum oxide thin film / electrode / ZnO thin film / crystal substrate on which the aluminum oxide thin film was formed. As described above, the film thickness of the ZnO thin film was set so that H / λ = 0.1 at which TCF was zero. Aluminum oxide has a Young's modulus of 3.77 × 10 12 dyne / cm 2 and a density of 3.93 g / cm 3 . That is, it is a hard and light material. Such a material has a high sound speed. Assuming that the film thickness of the aluminum oxide thin film is H Al and the wavelength of the surface wave is λ, the sound velocity and k 2 monotonously increased as H Al / λ increased. The speed of sound was about 5000 m / s when H Al / λ was 0.5 and about 6000 m / s when 1.0. This value is twice that of the case without an aluminum oxide thin film. In addition, it is about 1.9 times that of a single crystal. As a result, the electrode spacing can be doubled, and it has been found that the difficulty of electrode patterning is improved. Further, k 2 was 12% when H Al /λ=0.5, and 14% when 1.0. In other words, it is possible to obtain a characteristic that the film thickness of the aluminum oxide is increased, but the sound speed may be controlled by adjusting the film thickness according to the use frequency band. On the other hand, TCF hardly changed even when H Al / λ increased. As described above, the characteristics are further improved by forming the epitaxial aluminum oxide film.
[0028]
For comparison, a sample on which an aluminum oxide thin film that is not an epitaxial film was formed was prepared and evaluated. In that case as well, the sound velocity and k 2 increase in the same manner, but the extent is smaller than that of the epitaxial film. That is, it is more preferable to use an epitaxial film.
[0029]
Although aluminum oxide was used as the non-piezoelectric material here, the same hexagonal lanthanum aluminate (LaAlO 3 ) was used for further comparison. LaAlO 3 has a density of 4 g / cm 3 or more and a Young's modulus of 3.5 × 10 12 dyne / cm 2 or less, that is, a softer and heavier material than aluminum oxide. In this case, k 2 increases, but an increase in sound speed important for higher frequency was not observed.
[0030]
In addition, as a hard and light material, there is diamond other than aluminum oxide. This also has a density of 4 g / cm 3 or less and a Young's modulus of 3.5 × 10 12 dyne / cm 2 or more. Therefore, the same effect as in the case of aluminum oxide can be obtained. When the diamond thin film is formed as the uppermost layer, unlike the case where it is used for the substrate, there is an advantage that mirror polishing is not necessary and the crystallinity of the piezoelectric thin film is not affected. That is, it is easier to fabricate the device than when used for a substrate. Moreover, there is no problem even if materials other than aluminum oxide and diamond satisfy the above conditions. In the above embodiment, the electrode is formed between the thin film 2 made of the piezoelectric material and the thin film 3 made of the non-piezoelectric material, but may be formed between the quartz substrate 1 and the thin film 2 made of the piezoelectric material.
[0031]
As described above, according to this embodiment, it is possible to obtain a surface acoustic wave element having good characteristics and capable of controlling the characteristics of the element by the film thickness.
[0032]
(Example 2)
In Example 1, ZnO was used as the piezoelectric material, but other materials may be used. In this embodiment, lithium niobate (LiNbO 3 ) is used. The structure of the element is the same as in FIG. That is, an element having a structure in which a LiNbO 3 thin film 2 as a piezoelectric material was formed on a quartz substrate 1 and an electrode 4 made of Cu and an aluminum oxide thin film 3 as a non-piezoelectric material were formed in that order on the quartz substrate 1 was produced.
[0033]
LiNbO 3 is also a hexagonal system like ZnO, and can be epitaxially grown on the quartz substrate 1 by optimizing the film forming conditions using a laser ablation method. It is also possible to epitaxially grow an aluminum oxide thin film on the LiNbO 3 film. LiNbO 3 has a higher sound speed than quartz. Moreover, k2 is larger than ZnO or quartz. Therefore, in the electrode / LiNbO 3 thin film / quartz substrate structure without the non-piezoelectric material thin film 3, when the LiNbO 3 film thickness is H Li , the surface wave wavelength is λ, and the H Li / λ is changed, this value increases. As the sound speed increases, both the speed of sound and k 2 increase monotonously. Further, LiNbO 3 also has a negative TCF similarly to ZnO, so that TCF can be reduced to 0 by adjusting H Li / λ.
[0034]
Subsequently, the sound speed and k 2 were further improved by forming a non-piezoelectric thin film 3 of hard and light aluminum oxide on this. These values increase as the thickness of the aluminum oxide thin film increases, and are larger than those obtained when ZnO is used for the piezoelectric material thin film 2, and can be expected as a higher frequency and higher performance element. Here, LiNbO 3 is used as the piezoelectric material, but there is no problem even if other piezoelectric materials having negative TCF are used. At this time, it is more preferable that the sound speed, k 2 is larger. Further, the non-piezoelectric material may be any material having a density of 4 g / cm 3 or less and a Young's modulus of 3.5 × 10 12 dyne / cm 2 or more.
[0035]
【The invention's effect】
As described above, according to the present invention, a quartz substrate, a thin film made of a piezoelectric material formed on the quartz substrate, a thin film made of a non-piezoelectric material, and an electrode are formed. 5 × 10 12 dyne / cm 2 or more and a density of 4 g / cm 3 or less, and the electrode is formed in contact with at least a thin film made of a piezoelectric material, and a thin film made of a piezoelectric material and a thin film made of a non-piezoelectric material Each film thickness is controlled, the crystal system of the piezoelectric material and the non-piezoelectric material is the same, and the thin film made of the piezoelectric material and the thin film made of the non-piezoelectric material are each made into an epitaxial film. Provided is a high-performance surface acoustic wave device that can be adapted to the development.
[0036]
Further, according to the present invention, a thin film made of a piezoelectric material of a surface acoustic wave device composed of a quartz substrate, a thin film made of a piezoelectric material formed on the quartz substrate, a thin film made of a non-piezoelectric material, and an electrode, and non-piezoelectric By forming the thin film made of the material and the electrode below the crystal transition temperature, a method for manufacturing a surface acoustic wave device with high reproducibility and reliability is provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the structure of a surface acoustic wave device according to an embodiment of the present invention.
[Explanation of symbols]
1 Crystal substrate 2 Thin film made of piezoelectric material 3 Thin film made of non-piezoelectric material 4 Electrode

Claims (4)

水晶基板と該水晶基板上に形成された圧電材料からなる薄膜と非圧電材料からなる薄膜と電極とを具備し、
前記圧電材料と前記非圧電材料は結晶系が同じであることを特徴とする表面弾性波素子。
A quartz substrate, a thin film made of a piezoelectric material formed on the quartz substrate, a thin film made of a non-piezoelectric material, and an electrode;
A surface acoustic wave device, wherein the piezoelectric material and the non-piezoelectric material have the same crystal system.
前記非圧電材料は、ヤング率が3.5×1012dyne/cm2以上であり、かつ密度が4g/cm3以下であることを特徴とする請求項1記載の表面弾性波素子。 2. The surface acoustic wave device according to claim 1, wherein the non-piezoelectric material has a Young's modulus of 3.5 × 10 12 dyne / cm 2 or more and a density of 4 g / cm 3 or less. 前記電極は少なくとも前記圧電材料からなる薄膜に接して形成されることを特徴とする請求項1記載の表面弾性波素子。  2. The surface acoustic wave device according to claim 1, wherein the electrode is formed in contact with at least a thin film made of the piezoelectric material. 前記圧電材料からなる薄膜と前記非圧電材料からなる薄膜は、それぞれエピタキシャル膜であることを特徴とする請求項1記載の表面弾性波素子。  2. The surface acoustic wave device according to claim 1, wherein the thin film made of the piezoelectric material and the thin film made of the non-piezoelectric material are each an epitaxial film.
JP2000002568A 2000-01-11 2000-01-11 Surface acoustic wave device Expired - Fee Related JP3780790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000002568A JP3780790B2 (en) 2000-01-11 2000-01-11 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000002568A JP3780790B2 (en) 2000-01-11 2000-01-11 Surface acoustic wave device

Publications (2)

Publication Number Publication Date
JP2001196893A JP2001196893A (en) 2001-07-19
JP3780790B2 true JP3780790B2 (en) 2006-05-31

Family

ID=18531663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000002568A Expired - Fee Related JP3780790B2 (en) 2000-01-11 2000-01-11 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP3780790B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201004141A (en) * 2008-07-09 2010-01-16 Tatung Co High frequency surface acoustic wave device

Also Published As

Publication number Publication date
JP2001196893A (en) 2001-07-19

Similar Documents

Publication Publication Date Title
KR100859674B1 (en) Method for producing devices having piezoelectric films
JP5910763B2 (en) Elastic wave device
US5355568A (en) Method of making a surface acoustic wave device
TWI762832B (en) Surface acoustic wave device
EP0616426B1 (en) Surface acoustic wave device having a lamination structure
US11949400B2 (en) Multiple layer system, method of manufacture and saw device formed on the multiple layer system
JP2001524295A (en) Surface acoustic wave device including separated comb electrodes
JP3225495B2 (en) Surface acoustic wave device and method of manufacturing the same
US5838089A (en) Acoustic wave devices on diamond with an interlayer
TW202044757A (en) High-order mode surface acoustic wave device
US4501987A (en) Surface acoustic wave transducer using a split-finger electrode on a multi-layered substrate
TWI769270B (en) Surface acoustic wave device and method for manufacturing the same
JP3780791B2 (en) Surface acoustic wave device
JP3780790B2 (en) Surface acoustic wave device
Uemura et al. Low loss diamond SAW devices by small grain size poly-crystalline diamond
JP2023029042A (en) Piezoelectric film, resonator, filter, laminate, peeled laminate, and method for manufacturing resonator
JPH01103310A (en) Surface acoustic wave element
EP0644651A1 (en) Surface wave filter element and method for manufacturing it
JPH08154033A (en) Diamond base material and surface acoustic wave element
JP4680561B2 (en) Method for manufacturing piezoelectric thin film element
JP2001267884A (en) Surface acoustic wave element and forming method therefor
Yoshino et al. Zinc oxide piezoelectric thin films for bulk acoustic wave resonators
JPH08330882A (en) Surface acoustic wave element substrate and its manufacture
WO2022063231A1 (en) Surface acoustic wave devices with ultra-thin transducers
JP2001185988A (en) Surface acoustic wave device and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees