JPH0350822A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0350822A
JPH0350822A JP1188283A JP18828389A JPH0350822A JP H0350822 A JPH0350822 A JP H0350822A JP 1188283 A JP1188283 A JP 1188283A JP 18828389 A JP18828389 A JP 18828389A JP H0350822 A JPH0350822 A JP H0350822A
Authority
JP
Japan
Prior art keywords
layer
substrate
silicon
gallium arsenide
single crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1188283A
Other languages
Japanese (ja)
Inventor
Toshio Mizuki
敏雄 水木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1188283A priority Critical patent/JPH0350822A/en
Publication of JPH0350822A publication Critical patent/JPH0350822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To remove, in the process of growth, the projection arising at the surface of a group III-V compound growth layer by putting the angle formed by the substrate main surface and the cavity side face in an acute angle at the place where the faces adjoin each other, when selectively growing the group III-V compound at the cavity part provided on a silicon single crystalline substrate. CONSTITUTION:An SiO2 layer 23 in the region where a single crystalline gallium arsenic layer is formed, and a silicon substrate 20 are etched in rectangle in the <110> direction. It is dug by ion beam etching method capable of oriented etching so that the angle alpha between the substrate surface and the cavity side face may be acute, for example, 55 deg.. For the single crystalline gallium arsenic layer grown at the face 100 of a silicon single crystalline substrate, a facet 100 is formed at the surface, and an face 111, inclined 55 deg. to the face 100, is grown at the end. A high resistance gallium arsenic layer 26 and an n-type gallium arsenic layer 27 to become a channel layer are formed in the groove.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は半導体装置に関し、シリコン基板上にIn −
V 族化合物を成長させる半導体装置の製造方法に関す
るものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a semiconductor device, in which In −
The present invention relates to a method for manufacturing a semiconductor device that grows a group V compound.

〈従来の技術〉 シリコンを材料とした集積回路は高度の集積化技術が確
立されており、また基板となるシリコン単結晶は安価で
大口径のものが得られることから低価格で製造されてい
る。これに対し、ガリウムひ素をはじめとするIn −
v族化合物半導体はシソコン半導体よりも高速で動作す
る素子をつくれること、シリコン半導体では作製できな
い発光素子をつくれること等から、近年急速に開発が進
められており、既にガリウムひ素集積回路では実用化の
段階に入っている。しかし、■−Y族化合物の単結晶は
大口径化が難しい事等からその素子は高価なものとなっ
ており、また集積化技術も主針発達するに致っていない
。このようなことからシリコン半導体と■−Y族化合物
半導体とはt目補的な関係となっており、あるシヌテム
を組み上げる場合には性能と価格を考慮し両方が混在し
た形で設計されている。設計に際しては、現在各材料ご
とに別々のチップとして集積回路が作られているために
、チップとして分かれた各集積回路を組合わせなければ
ならず、またチップ間の余分な配線も必要となるために
シヌテムの高性能化を防げている。このような閉頭を解
決するためにそれぞれ異なった材料からなる半導体素子
を同一基板上に形成しようとする試みが最近性われ始め
ており、ンリコン単結晶基板上にガリウムひ素手導体素
子とシリコン半導体素子を並べて形成するというような
ことが行われている(例えばIEEE  GaAsIC
シンポジウム、+988.P、239−242参照)。
<Conventional technology> Advanced integration technology has been established for integrated circuits made of silicon, and the silicon single crystal that serves as the substrate is inexpensive and can be obtained in large diameter, so it is manufactured at low cost. . On the other hand, In − including gallium arsenide
V-group compound semiconductors have been rapidly developed in recent years because they can produce elements that operate faster than silicon semiconductors, and they can produce light-emitting elements that cannot be produced with silicon semiconductors, and they have already reached the point where they have been put to practical use in gallium arsenide integrated circuits. It's in a stage. However, since it is difficult to make a single crystal of a -Y group compound large in diameter, the device is expensive, and the integration technology has not yet been fully developed. For this reason, silicon semiconductors and ■-Y group compound semiconductors have a complementary relationship, and when assembling a certain system, a combination of both is designed in consideration of performance and cost. . When designing, since integrated circuits are currently made as separate chips for each material, it is necessary to combine the separate integrated circuits as chips, and extra wiring between chips is also required. This prevents Synutem from becoming more sophisticated. In order to solve this problem, attempts have recently begun to be made to form semiconductor devices made of different materials on the same substrate. For example, IEEE GaAs IC
Symposium, +988. (See P, 239-242).

このような構造を有する半導体装置が具体的にどのよう
にして作製されるかを示す為に、1例として第3図にシ
リコンMO8FETとガリウムひ素MESFETを同一
チップ上に形成する場合の作製工程を示す。まず、シリ
コン単結晶基板l上に通常のMO8FET作製工程によ
りソース領域2、ドレイン領域3、ゲート酸化膜4、ゲ
ート電W5を形成した後、ガリウムひ素層を形成する領
域のシリコン基板表面を反応性イオンエツチング法によ
り垂直にエツチングする(第3図1)。次いで該エツチ
ング部に所定厚のガリウムひ素層をMBE法により成長
させる。この時シリコン表面が露出したエツチング部に
は単結晶ガリウムひ素層が成長し、酸化膜上には多結晶
ガリウムひ素層が成長する。この後、この不必要な多結
晶ガリウムひ素層をエツチングにより除去する(第3図
(b))さらに単結晶ガリウムひ素層6上に通常のガリ
ウムひ素MESFET作製工程により、チャネル1留7
、ソース電極8、ドレイン電極9、ゲート電極10を形
成する(第3図(C))。最後に、基板表面全面に絶縁
層11を形成し、ガリウムひ素MESFET 14とシ
リコンMO8FET13を接続する為の電極上の絶縁層
を選択的に除去し、その上に配線電極12を形成する。
In order to specifically show how a semiconductor device having such a structure is manufactured, as an example, FIG. 3 shows the manufacturing process when a silicon MO8FET and a gallium arsenide MESFET are formed on the same chip. show. First, a source region 2, a drain region 3, a gate oxide film 4, and a gate electrode W5 are formed on a silicon single crystal substrate l by a normal MO8FET manufacturing process, and then the silicon substrate surface in a region where a gallium arsenide layer is to be formed is made reactive. Vertical etching is performed using the ion etching method (Fig. 3, 1). Next, a gallium arsenide layer of a predetermined thickness is grown on the etched portion by MBE. At this time, a monocrystalline gallium arsenide layer grows on the etched portion where the silicon surface is exposed, and a polycrystalline gallium arsenide layer grows on the oxide film. Thereafter, this unnecessary polycrystalline gallium arsenide layer is removed by etching (FIG. 3(b)). Furthermore, channel 1 and 7 are formed on the single crystal gallium arsenide layer 6 by a normal gallium arsenide MESFET fabrication process.
, a source electrode 8, a drain electrode 9, and a gate electrode 10 are formed (FIG. 3(C)). Finally, an insulating layer 11 is formed on the entire surface of the substrate, the insulating layer on the electrode for connecting the gallium arsenide MESFET 14 and the silicon MO8FET 13 is selectively removed, and the wiring electrode 12 is formed thereon.

このようにして、1つのシリコン単結晶基板上に並んだ
構造を有するガリウムひ素MESFETとシリコンMO
8FETとからなる半導体装置が作製されるのであるが
、成長した単結晶ガリウムひ素層が第3図(b)15に
示すような突起を有しており、この突起を横切るように
配線された電極は突起部での電極厚みが薄くなるために
断線を起こす確率が高く、素子作製の歩留りを下げてい
る。
In this way, gallium arsenide MESFET and silicon MOSFET having a structure arranged side by side on one silicon single crystal substrate
A semiconductor device consisting of 8 FETs was fabricated, but the grown single crystal gallium arsenide layer had protrusions as shown in FIG. 3(b) 15, and electrodes were wired across these protrusions. Since the electrode thickness at the protrusion is thinner, there is a high probability of wire breakage, which lowers the yield of device fabrication.

シリコン単結晶の(100)面にガリウムひ素化合物を
ヘテロエピタキシャル成長させた場合ガリウムひ素の(
100)面が成長するが、同時に溝の周辺部では(10
0)面に対し25°傾斜した(311 )面の一ファセ
ットが生じ、このために単結晶ガリウムひ素層の周辺部
が厚くなる。第3図(b)+5に示した突起は、例えば
この(311)面の成長に起因しているものであり、他
の■−■族化合物についても、同様にシリコン単結晶基
板上に選択成長を行うと同じような突起を生じるため、
シリコン単結晶を基板としこの上に複数の+n−v族化
合物半導体素子とシリコン半導体素子を集積した半導体
装置を作ろうとする場合には解決しておかなければなら
ない問題となっている。
When a gallium arsenide compound is grown heteroepitaxially on the (100) plane of a silicon single crystal, the (
100) plane grows, but at the same time the (100) plane grows at the periphery of the groove.
One facet of the (311) plane inclined by 25° with respect to the 0) plane is created, which makes the peripheral part of the single-crystal gallium arsenide layer thicker. The protrusion shown in Figure 3(b) +5 is caused by the growth of this (311) plane, for example, and other ■-■ group compounds are similarly grown selectively on a silicon single crystal substrate. If you do this, similar protrusions will occur, so
This is a problem that must be solved when attempting to manufacture a semiconductor device in which a plurality of +nv group compound semiconductor elements and silicon semiconductor elements are integrated on a silicon single crystal substrate.

このような突起はエツチング等の方法で除去することも
可能であるが、新たな工程が加わる事等から好ましくな
く、成長過程において突起が発生れた窪みにtn −v
族化合物を成長させる際の突起の発生を防止することを
目的とする。
Such protrusions can be removed by etching or other methods, but this is undesirable as it adds a new process, and it is not preferable to remove tn -v in the depressions where protrusions have occurred during the growth process.
The purpose is to prevent the formation of protrusions when growing group compounds.

〈課題を解決するための手段〉 本発明では上記課題を解決するために、シリコン単結晶
基板上に設けられた窪み部分に[[−V族化合物を選択
成長させる際に窪みの形状に工夫を加え、該基板主表面
と該窪み側面とのなす角が両面の接するところで鋭角と
なるように窪みを形成する。
<Means for Solving the Problems> In the present invention, in order to solve the above problems, the shape of the depressions is devised when selectively growing [[-V group compound] in the depressions provided on the silicon single crystal substrate. In addition, the recess is formed so that the angle between the main surface of the substrate and the side surface of the recess becomes an acute angle where both surfaces meet.

く作 用〉 シリコン単結晶基板上に■−v族化合物をヘテロエピタ
キシャル成長させた場合には、成長部位のシリコン単結
晶面に応じて特定の結晶面が成長する。成長した結晶の
端部でも同様に特定の結晶面が現われ、+n−v族化合
物の場合多くは1fll(メサ状の形状を有する結晶と
なる。このような性質があるために、本発明のような形
状の窪みを用いることによって余分な結晶成長がなくな
り突起の発生を防げる。
Effect> When a ■-v group compound is heteroepitaxially grown on a silicon single crystal substrate, a specific crystal plane grows depending on the silicon single crystal plane of the growth site. Similarly, specific crystal planes appear at the ends of the grown crystals, and in the case of +n-v group compounds, the crystals often have a 1 flll (mesa-like shape). By using a concave shape, excessive crystal growth can be eliminated and the formation of protrusions can be prevented.

〈実施例〉 以下、実施例により本発明をさらに詳しく説明する。<Example> Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1゜ 第1図に面方位(100)を有するシリコン基板上にシ
リコンMO8FETとガリウムひ素MESFETを形成
した場合の実施例を示す。
Example 1 FIG. 1 shows an example in which a silicon MO8FET and a gallium arsenide MESFET are formed on a silicon substrate having a plane orientation (100).

まず、面方位(+00)シリコン基板上に通常のプロセ
スによりシリコンMO8FETを形成する。次に、単結
晶ガリウムひ素層を形成する領域の5iOz層23、シ
リコン基板20を(110>方向に長方形にエツチング
する。この時、従来は垂直に、すなわちエツチングによ
り形成される溝のシリコン(+00)面に垂直な方向の
断面形状が長方形になるように、堀り込んでいたのであ
るが、本実施例では該断面が第1図(a)に示すように
基板主表面と窪み側面とのなす角αが55°となるよう
に方向性エツチングが可能であるイオンゴムエツチング
法により3μm堀り込んだ。シリコン単結晶基板(10
0)面に成長する単結晶がリウムひ素層は表面に(10
0)のファセノ)を形成し、その端部では(100)面
に対し55゜傾いた(III)面が成長する。本実施例
でα=55°としたのは溝の側壁と(Ill)面とがぴ
ったりと接触しながらガリウムひ索車結晶が成長するよ
うにし、(311)のファセット発生を防ぐためである
。この後、第1図(b)に示すようにMOCVD装置を
用いた2段階成長法により先に形成した溝35内に70
0℃でガリウムひ素単結晶層を3μm成長させる。この
時5iOz層23上には多結晶ガリウムひ素層25が成
長している3さらに、成長したガリウムひ索車結晶上層
にドナユ゛7 一不純物を添加しn型ガリウムひ素層字#を形成した後
、この部分にレジヌト保護層を設は余分なガリウムひ素
多結晶層25を化学エツチング法(でより除去した。エ
ツチング終了直前にエツチング液が単結晶ガリウムひ素
層27の端部に触れるが、単結晶ガリウムひ素は多結晶
ガリウムひ素に比べてエツチング速度が遅いため、端部
のエンチングによる実用上の問題は生じなかった。以上
の工程により、図1(b)に示す高抵抗ガリウムひ素5
W26とチャネ/I/層となるn型ガリウムひ素層27
が図1、(a)35に示す溝の中に形成され、また、ガ
リウムひ素層27の主表面とシリコン基板上のSi02
層23の主表面とは同一高さになっており突起な存在し
なかった。
First, a silicon MO8FET is formed on a (+00) silicon substrate by a normal process. Next, the 5iOz layer 23 and the silicon substrate 20 in the region where the single-crystal gallium arsenide layer is to be formed are etched into a rectangular shape in the (110> direction.At this time, conventionally, the silicon (+00 ), the cross section in the direction perpendicular to the surface is rectangular, but in this example, the cross section is between the main surface of the substrate and the side surface of the recess, as shown in Figure 1(a). A 3 μm trench was dug using the ion rubber etching method, which allows directional etching, so that the angle α was 55°.
The lithium arsenide layer grows on the (10) surface.
0) faceno) is formed, and a (III) plane inclined at 55° with respect to the (100) plane grows at its end. The reason why α=55° in this example is to allow the gallium sheave crystal to grow while closely contacting the side wall of the groove with the (Ill) plane, and to prevent the occurrence of (311) facets. After this, as shown in FIG. 1(b), a 700 mm diameter is grown in the groove 35 previously formed by a two-step growth method using an MOCVD apparatus.
A gallium arsenide single crystal layer is grown to a thickness of 3 μm at 0°C. At this time, a polycrystalline gallium arsenide layer 25 is grown on the 5iOz layer 23.Furthermore, an impurity is added to the grown gallium sheave crystal upper layer to form an n-type gallium arsenide layer. In order to provide a resin protective layer in this area, the excess gallium arsenide polycrystalline layer 25 was removed by a chemical etching method (just before the end of etching, the etching solution touched the edge of the single crystal gallium arsenide layer 27, but the single crystal gallium arsenide polycrystal layer 25 Since the etching speed of gallium arsenide is slower than that of polycrystalline gallium arsenide, there was no practical problem due to etching of the edges. Through the above process, the high-resistance gallium arsenide 5 shown in FIG.
W26 and n-type gallium arsenide layer 27 which becomes channel/I/layer
is formed in the groove shown in FIG. 1, (a) 35, and the Si02
It was at the same height as the main surface of layer 23, and no protrusions were present.

次に、1図(c)に示すようにn型ガリウムひ素層27
上にゲート電極28、ソース電極29、ドレイン電極3
0を形成し、ガリウムひ素MESFETを完成させた。
Next, as shown in FIG. 1(c), the n-type gallium arsenide layer 27 is
Gate electrode 28, source electrode 29, drain electrode 3 on top
0 was formed and a gallium arsenide MESFET was completed.

最後に、1図(d)に示すように絶縁XΔ34を形成し
ガリウムひ素MESFET3]とシリコンMO3FET
32を配線電極33により接続し目的の素子を完成した
。配線電極33で2つの素子を接続する際に、従来はガ
リウムひ素MESFET端部に存在する突起の為に断線
を起こしやすかったが、本実施例では突起が存在しない
ため断線は起こらなかった。
Finally, as shown in Figure 1(d), an insulator XΔ34 is formed and the gallium arsenide MESFET3] and silicon MO3
32 were connected by wiring electrodes 33 to complete the desired device. Conventionally, when connecting two elements with the wiring electrode 33, disconnection was likely to occur due to the protrusions present at the ends of the gallium arsenide MESFET, but in this embodiment, since there were no protrusions, disconnection did not occur.

実施例2゜ しt 本発明を発光ダイオード牟適用した実施例を第2図に示
す。
Embodiment 2 An embodiment in which the present invention is applied to a light emitting diode is shown in FIG.

まず、シリコン単結晶基板上に通常のプロセスによりシ
リコンMO8FET40を形成した。次(て、実施例I
と同様の方法で形成した窪みにMOCVD法による2段
階成長法により、700°Cでn型ガリウムひ素層41
を、次いでn型ガリウムひ素層42を形成した。成長終
了後、実施例1と同様にして多結晶ガリウムひ素層を選
択的に除去し、n型電極43をn型ガリウムひ素層42
に、p型電極44を前もってイオン注入により形成し+ たp シリコン領域45に形成する。最後に、電極43
とシリコンM OS F E Tを配線下tア・16;
てより接続した。この場合に於ても、従来みられたよう
なガリウムひ素、響上面端部に存在した突起による断線
は、突起が存在しないために全く起こらなかった。
First, a silicon MO8FET 40 was formed on a silicon single crystal substrate by a normal process. Next (Example I
An n-type gallium arsenide layer 41 was grown at 700°C in a depression formed in the same manner as above by a two-step MOCVD growth method.
Then, an n-type gallium arsenide layer 42 was formed. After the growth is completed, the polycrystalline gallium arsenide layer is selectively removed in the same manner as in Example 1, and the n-type electrode 43 is replaced with the n-type gallium arsenide layer 42.
Next, a p-type electrode 44 is formed in the p silicon region 45 previously formed by ion implantation. Finally, the electrode 43
and silicon MOS FET under the wiring tA・16;
I connected it better. In this case as well, the disconnection caused by the protrusions existing on the end of the upper surface of the gallium arsenide, which has been observed in the past, did not occur at all because there were no protrusions.

以上、実施例1及び2ではガリウムひ素化合物について
述べたが、本発明ばGaAsP、InP等の他の+n−
v族化合物の場合も有効である。また、実施例1及び2
では、窪み側面と基板主表面とのなす角が両面の接する
ところで55°としたが、本実施例においてはこの角度
は55° 以下であれば有効であり、実施例以外の場合
には、ここに述べた角度以外の角度も有効であり55°
 または55°以下に限るものではない。また、該窪み
の基板に平行な断面での形状または窪み側面の方向は実
施例に示された長方形または(110>に限られるもの
ではなく、側面の傾きについても必ずしも窪み全周にわ
たって鋭角とする必要はなく、配線部のみで十分である
Above, in Examples 1 and 2, gallium arsenide compounds have been described, but the present invention can also be applied to other +n-
It is also effective for V group compounds. In addition, Examples 1 and 2
In this example, the angle between the side surface of the recess and the main surface of the substrate was set to 55° at the point where both surfaces touched, but in this example, this angle is valid as long as it is 55° or less, and in cases other than this example, Angles other than those mentioned in 55° are also valid.
Or, it is not limited to 55 degrees or less. Further, the shape of the recess in a cross section parallel to the substrate or the direction of the recess side surface is not limited to the rectangle or (110>) shown in the embodiment, and the inclination of the side surface is not necessarily an acute angle over the entire circumference of the recess. It is not necessary, and only the wiring part is sufficient.

〈発明の効果〉 以上のように本発明によれば、シリコン単結晶基板上に
選択的に1■−V族化合物を形成する場合に、従来l1
1−V族化合物成長層表面に生じていた突起を成長過程
でなくすことが可能であり、素子間を接続する電極の段
差による断線をなくすことができ、1つのシリコン単結
晶基板上に複数の1[−V族化合物半導体素子とシリコ
ン半導体素子を集積して作製される半導体装置の歩留り
を大きく上げることができるようになった。
<Effects of the Invention> As described above, according to the present invention, when selectively forming a 1■-V group compound on a silicon single crystal substrate, conventional l1
It is possible to eliminate the protrusions that occur on the surface of the 1-V group compound growth layer during the growth process, and it is possible to eliminate disconnections due to differences in the electrodes that connect elements, and it is possible to It has become possible to greatly increase the yield of semiconductor devices manufactured by integrating 1[-V group compound semiconductor elements and silicon semiconductor elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の詳細な説明するための半導
体装置断面図、第3図は従来の半導体装置断面図である
。 20:Si  基板 21:ソーヌ領域 22ニドレイン領域 23:ゲート酸化膜 24:ゲート電極 25:多結晶GaAsJfJ 26:高抵抗GaAs層 27:n型GaAs層 28:ゲート電極 29:ソーヌ電極 30ニドレイン電極 31 : GaAs MES FET 32、 40 : S i MO8FET33.46:
配線電極 34.47:絶縁層 41:p型GaAs層 42:n型GaAs層 43二n側電極 44:9wl電極
1 and 2 are cross-sectional views of a semiconductor device for explaining the present invention in detail, and FIG. 3 is a cross-sectional view of a conventional semiconductor device. 20: Si substrate 21: Sone region 22 Nidrain region 23: Gate oxide film 24: Gate electrode 25: Polycrystalline GaAsJfJ 26: High resistance GaAs layer 27: N-type GaAs layer 28: Gate electrode 29: Saone electrode 30 Nidrain electrode 31: GaAs MES FET 32, 40: Si MO8FET 33.46:
Wiring electrode 34.47: Insulating layer 41: P-type GaAs layer 42: N-type GaAs layer 43 2nd n-side electrode 44: 9wl electrode

Claims (1)

【特許請求の範囲】 1、シリコン単結晶基板内に設けられた窪み部分にIII
−V族化合物を選択成長させる半導体装置の製造方法に
おいて、 該基板主表面と該窪み側面とのなす角が両面の接すると
ころで鋭角となっていることを特徴とする半導体装置の
製造方法。
[Claims] 1. III in the recessed portion provided in the silicon single crystal substrate
- A method for manufacturing a semiconductor device in which a Group V compound is selectively grown, characterized in that an angle between the main surface of the substrate and a side surface of the recess is an acute angle where both surfaces meet.
JP1188283A 1989-07-19 1989-07-19 Manufacture of semiconductor device Pending JPH0350822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1188283A JPH0350822A (en) 1989-07-19 1989-07-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1188283A JPH0350822A (en) 1989-07-19 1989-07-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0350822A true JPH0350822A (en) 1991-03-05

Family

ID=16220933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1188283A Pending JPH0350822A (en) 1989-07-19 1989-07-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0350822A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06232126A (en) * 1993-02-03 1994-08-19 Nippon Telegr & Teleph Corp <Ntt> Composite semiconductor circuit device and manufacture thereof
US5416041A (en) * 1993-09-27 1995-05-16 Siemens Aktiengesellschaft Method for producing an insulating trench in an SOI substrate
US5668023A (en) * 1993-11-01 1997-09-16 Lucent Technologies Inc. Composition for off-axis growth sites on non-polar substrates
JP2010002314A (en) * 2008-06-20 2010-01-07 Bridgestone Corp Deformation behavior predicting device of rubber material and deformation behavior predicting method of rubber material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06232126A (en) * 1993-02-03 1994-08-19 Nippon Telegr & Teleph Corp <Ntt> Composite semiconductor circuit device and manufacture thereof
US5416041A (en) * 1993-09-27 1995-05-16 Siemens Aktiengesellschaft Method for producing an insulating trench in an SOI substrate
US5668023A (en) * 1993-11-01 1997-09-16 Lucent Technologies Inc. Composition for off-axis growth sites on non-polar substrates
JP2010002314A (en) * 2008-06-20 2010-01-07 Bridgestone Corp Deformation behavior predicting device of rubber material and deformation behavior predicting method of rubber material

Similar Documents

Publication Publication Date Title
US4910164A (en) Method of making planarized heterostructures using selective epitaxial growth
US4472729A (en) Recrystallized three dimensional integrated circuit
JPH03114233A (en) Vertical type mos fet and its manufacture
JPH0350822A (en) Manufacture of semiconductor device
JPH0294663A (en) Semiconductor device and manufacture thereof
JPS6273667A (en) Manufacturing semiconductor element
JPS61216320A (en) Manufacture of semiconductor device
JP3144527B2 (en) Method for manufacturing semiconductor device having high concentration pn junction surface
JPH01241867A (en) Heterojunction bipolar transistor and manufacture thereof
EP0243609A1 (en) Complementary semiconductor device structure and its production
KR100437775B1 (en) Fabrication Method for Nitride Semiconductor Substrate
JP3143188B2 (en) Epitaxial growth method
JPS6329569A (en) Manufacture of semiconductor device and substrate thereof
US20030189240A1 (en) Semiconductor device
JP2592929B2 (en) Optoelectronic integrated circuit manufacturing method
JPS59165435A (en) Manufacture of semiconductor device
JPH01179453A (en) Heterojunction semiconductor device and manufacture thereof
JPH07263643A (en) Semiconductor device and its manufacturing method
JPS5984543A (en) Bipolar integrated circuit device and its manufacture
JPS6015975A (en) Method of producing mosfet
JPS5951545A (en) Semiconductor device
JPH01241868A (en) Semiconductor device
JPH0410573A (en) Semiconductor device and manufacture thereof
JPH0278226A (en) Heterojunction bipolar transistor and its manufacture
JPS63229856A (en) Production of semiconductor device