JPH0350407A - Extremely low nox combustion method - Google Patents

Extremely low nox combustion method

Info

Publication number
JPH0350407A
JPH0350407A JP18218289A JP18218289A JPH0350407A JP H0350407 A JPH0350407 A JP H0350407A JP 18218289 A JP18218289 A JP 18218289A JP 18218289 A JP18218289 A JP 18218289A JP H0350407 A JPH0350407 A JP H0350407A
Authority
JP
Japan
Prior art keywords
combustion
air
mixing
alcohol
air port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18218289A
Other languages
Japanese (ja)
Other versions
JP2789041B2 (en
Inventor
Shigeki Morita
茂樹 森田
Shigeto Nakashita
中下 茂人
Kimihiro Kuramasu
倉増 公浩
Tadashi Jinbo
神保 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP1182182A priority Critical patent/JP2789041B2/en
Publication of JPH0350407A publication Critical patent/JPH0350407A/en
Application granted granted Critical
Publication of JP2789041B2 publication Critical patent/JP2789041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce causes of regeneration of NOx by mixing an alcoholic oxygen-containing fuel into air at an air port, thereby adding a function of positively decomposing by-produced nitrogen-containing compounds in an upper space of a burner. CONSTITUTION:In a boiler device, an incomplete combustion condition exists in a burner zone on the lower side of a boiler. Even if combustion air in only charged in a multistep manner, under this condition, a large quantity of NOx is regenerated because the mixing of the combustion air takes place through diffusion. On the other hand, when a fluid jet from a lower after air port 31, which has an oxygen partial pressure controlled by an exhaust gas from a recirculating gas system 300 and a stoichiometric oxygen ratio restricted to or below 1 by mixing an alcohol and a combustion gas from an alcohol mixing system 200, is mixed with a combustion gas from an upper burner zone, nitrogen-containing compounds such as NH3 and HCN are decomposed easily by the oxygen contained in the alcohol, so that conversion of these compounds to NO is suppressed to a low level. Thus, causes of regeneration of NOx at the final stage, namely, in a complete combustion region in the vicinity an upper after air port 32 are removed.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は超低N OX燃焼方法に係り、特に微粉炭等を
燃料とするボイラ装置等の排ガス中の窒素化合物を低減
するのに好適な燃焼方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an ultra-low NOx combustion method, and is particularly suitable for reducing nitrogen compounds in the exhaust gas of boiler equipment using pulverized coal as fuel. Concerning combustion methods.

〔従来の技術] 微粉炭等の有機窒素化合物を含有する燃料の燃焼におい
ては、世論空気比を1以上(すなわち空気過剰)として
燃焼させると、燃料中窒素のNOxへの転換率が増大す
る。このため、先ず一段目を不完全燃焼させ、完全燃焼
に必要な残余の空気を、バーナゾーンより分岐し、その
後段で投入する所謂、二段燃焼法が広く用いられている
。その代表的な構造上の特徴例を事業用ボイラを例に第
2図に示す。
[Prior Art] In the combustion of fuel containing organic nitrogen compounds such as pulverized coal, when the combustion is performed with an air ratio of 1 or more (ie, excess air), the conversion rate of nitrogen in the fuel to NOx increases. For this reason, the so-called two-stage combustion method is widely used, in which the first stage is first subjected to incomplete combustion, and the remaining air necessary for complete combustion is branched from the burner zone and introduced at the subsequent stage. An example of typical structural characteristics is shown in FIG. 2 using a commercial boiler as an example.

第2図において、バーナ群20はボイラ火炉10の下部
に配置され、燃焼用空気と例えば微粉炭によって主燃焼
領域を形成する。その上方へ完全燃焼用の空気注入ポー
ト30(以下アフターエアポートと称す。)を配置して
いる。
In FIG. 2, a burner group 20 is arranged in the lower part of the boiler furnace 10 and forms a main combustion area with combustion air and, for example, pulverized coal. An air injection port 30 for complete combustion (hereinafter referred to as an after air port) is arranged above it.

この方法では、バーナゾーンが一旦不完全燃焼の状態に
維持されるため、燃料中N分に起因するN0x(以下、
Fuel  NOXと称す。)の発生は相当に少な(抑
えられる。しかし、この方法においては、バーナゾーン
で同時に発生するN HxやHCN等のNoの前駆物質
がアフターエアポートからの空気によってNOXを再生
成させることを抑制することは極めて難しく、唯一、バ
ーナ上部空間■0を拡大することによってこれらN01
1の前駆物質の漸減に錬るしかない。しかし、言うまで
もなく、この手法には、ボイラ火炉高さをコンパクト化
するという観点からは、自ら限界が生ずる。
In this method, the burner zone is temporarily maintained in a state of incomplete combustion, so NOx (hereinafter referred to as
It is called Fuel NOX. ) generation is considerably small (can be suppressed. However, in this method, NO precursors such as NHx and HCN, which are simultaneously generated in the burner zone, are suppressed from regenerating NOX by air from the after-air port. It is extremely difficult to do this, and the only way to solve these problems is to expand the space above the burner ■0.
The only option is to gradually reduce the number of precursors. However, needless to say, this method has its own limitations from the viewpoint of making the height of the boiler furnace more compact.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

換言すれば、前記の従来燃焼方法は、NOXの前駆物質
であるNH,、HCN等の副生成物を積極的に分解する
機能を有していないものであった。
In other words, the conventional combustion method described above does not have a function of actively decomposing byproducts such as NH, HCN, etc., which are precursors of NOX.

本発明の目的は、上記した従来技術の課題を解決し、ボ
イラ火炉等の燃焼装置の大型化を要することなく、排ガ
ス中のNOxを低減することができる燃焼方法を提供す
ることにある。
An object of the present invention is to provide a combustion method capable of solving the problems of the prior art described above and reducing NOx in exhaust gas without requiring an increase in the size of a combustion device such as a boiler furnace.

〔課題を解決するための手段〕[Means to solve the problem]

上記した目的は、燃料の主燃焼領域とその燃焼ガス後流
側にガス流れに対して少な(とも二段階に完全燃焼用の
空気を投入する空気ポートを配置すると共に、該空気ボ
ートの内ガス流れ上流側に位置する空気ボートの空気に
対してアルコール系含酸素燃料を混入し、前記バーす上
部空間V0において、副生成含窒素化合物を積極的に分
解する機能を付加することによって達成される。
The above purpose is to place an air port in the main combustion area of the fuel and the downstream side of the combustion gas to inject air for complete combustion in a small amount (in both stages) with respect to the gas flow, and to This is achieved by mixing alcohol-based oxygen-containing fuel into the air of an air boat located on the upstream side of the flow, and adding a function to actively decompose by-product nitrogen-containing compounds in the upper space V0 of the bar. .

〔作用〕[Effect]

アルコール等の含酸素燃料は、その分子中の酸素の作用
によりNH,、HCN等を部分酸化することが可能であ
り、アルコール混入によって、上記バーナ上部空間V*
を適正な酸素分圧及びN論空気比に保つことにより、N
H,、HCN等の前駆物質は分解されて最終段での完全
燃焼領域でのNoの再生成が十分に抑制される。
Oxygen-containing fuel such as alcohol can partially oxidize NH, HCN, etc. due to the action of oxygen in its molecules, and by mixing alcohol, the space above the burner V*
By maintaining proper oxygen partial pressure and N stoichiometric air ratio, N
Precursors such as H, HCN, etc. are decomposed and the regeneration of No in the complete combustion region at the final stage is sufficiently suppressed.

〔実施例〕〔Example〕

第1図は本発明の燃焼方法を実施するためのボイラ装置
とその系統図である。第1図において、ボイラ火炉10
の下部にバーナ群20が設置さ籾燃焼空気と微粉炭等に
よる主燃焼域を形成する。
FIG. 1 is a boiler apparatus and its system diagram for carrying out the combustion method of the present invention. In FIG. 1, a boiler furnace 10
A burner group 20 is installed at the bottom of the burner, forming a main combustion area using paddy combustion air and pulverized coal.

そして、バーナ群20の上方(ガス流れ下流側)には、
下段アフターエアポート31、上段アフターエアポート
32が設置されている。すなわち、アフターエアポート
は2段に多段化されている。
Above the burner group 20 (on the downstream side of the gas flow),
A lower after air port 31 and an upper after air port 32 are installed. That is, the after air port is multi-staged into two stages.

これらの下段アフターエアポート31、上段アフターエ
アポート32には、それぞれ空気系統100から燃焼用
空気が導入され、下段アフターエアポート31には、ア
ルコール混入系統200から含酸素アルコール系燃料が
供給され、また、再循環ガス系統300から再循環排ガ
スが供給されるようになっている。
Combustion air is introduced from the air system 100 into the lower after-air port 31 and the upper after-air port 32, and oxygen-containing alcohol fuel is supplied to the lower after-air port 31 from the alcohol mixing system 200. Recirculated exhaust gas is supplied from a circulating gas system 300.

このボイラ装置では、ボイラ下部のバーナゾーンでは、
不完全燃焼状態であり、CH4等の炭化水素系ガス、C
o、H,、及び微粉炭の場合にはチャー等の固形分で構
成される、所謂、不完全燃焼成分と含窒素化合物、及び
H乏oとCo2が含まれる。
In this boiler equipment, in the burner zone at the bottom of the boiler,
It is in an incomplete combustion state, and hydrocarbon gas such as CH4, C
In the case of pulverized coal, the so-called incomplete combustion components and nitrogen-containing compounds, which are composed of solids such as char, and H-poor o and Co2 are included.

この状態で燃焼用空気のみを多段化して投入しても、そ
の混合形態は拡散混合であるため、局部的には高濃度酸
素と含窒素ガス(NH3,HCN)との反応により多量
のN0X(主としてNO)が再生成する。
Even if only combustion air is introduced in multiple stages in this state, the mixing form is diffusion mixing, so a large amount of NOX ( Mainly NO) is regenerated.

これに対し、再循環ガス系統300からの排ガスによっ
て酸素分圧を調整され、更にアルコール混入系統200
からのアルコールと燃焼ガスの混入によって量論酸素比
が1以下に抑えられた下段アフターエアポート31がら
の流体噴流と、上部バーナゾーンからの燃焼ガスの混合
においては、アルコール中の含酸素によって、NH,、
HCN等の含窒素化合物は容易に分解され、Noへの移
行は少なく抑えられる。これにより、最終段、すなわち
、上段アフターエアポート32付近での完全燃焼領域で
のNO0再生成要因が消去される。
On the other hand, the oxygen partial pressure is adjusted by the exhaust gas from the recirculating gas system 300, and the alcohol mixing system 200
In the mixing of the fluid jet from the lower after-air port 31, where the stoichiometric oxygen ratio is suppressed to 1 or less due to the mixing of alcohol and combustion gas from the upper burner zone, and the combustion gas from the upper burner zone, NH ,,
Nitrogen-containing compounds such as HCN are easily decomposed, and migration to No can be suppressed to a low level. This eliminates the NO0 regeneration factor in the complete combustion region near the final stage, that is, the upper stage after-air port 32.

本発明におけるアルコール系含酸素燃料としては、コス
ト面、燃焼効果等からメチルアルコールが最適である。
As the alcohol-based oxygen-containing fuel in the present invention, methyl alcohol is most suitable from the viewpoint of cost and combustion efficiency.

本発明による燃焼方法では、反応空間V0の大きさは、
従来例と同程度のものが必要であり、ボイラ火炉容積は
必ずしも、従来例より小さくはならないが、反応空間V
“でのNH,、HCN等の含窒素化合物が有効に分解さ
れる分だ・け、従来法に比べて有利である。
In the combustion method according to the present invention, the size of the reaction space V0 is
The same level as the conventional example is required, and the boiler furnace volume is not necessarily smaller than the conventional example, but the reaction space V
This method is advantageous over conventional methods because nitrogen-containing compounds such as NH, HCN, etc. are effectively decomposed.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、アルコール系燃料の混入
によるNOx再生成要因が低減され、Fuel  NO
xの低減により超低N Ox燃焼が実現されると共に従
来NOX分解に要したNH。
As described above, according to the present invention, the NOx regeneration factor due to the mixing of alcohol-based fuel is reduced, and the Fuel NOx
Ultra-low NOx combustion has been achieved by reducing

等の還元剤の消費量を低減することができる。It is possible to reduce the consumption of reducing agents such as

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施するための事業用ボイラ火
炉及びその主要系統図、第2図は従来例なる二段燃焼法
の代表例を示す事業用ボイラ火炉及びその主要系統図で
ある。 10・・・・・・ボイラ火炉、20・・・・・・バーナ
群、30・・・・・・アフターエアポート、31・・・
・・・下段アフターエアポート、32・・・・・・上段
アフターエアポート、100・・・・・・空気系統、2
00・・・・・・アルコール混入系統、300・・・・
・・再循環排ガス系統。
Fig. 1 is a commercial boiler furnace and its main system diagram for implementing the method of the present invention, and Fig. 2 is a commercial boiler furnace and its main system diagram showing a typical example of the conventional two-stage combustion method. . 10... Boiler furnace, 20... Burner group, 30... After airport, 31...
...Lower after air port, 32...Upper after air port, 100...Air system, 2
00...Alcohol-containing strain, 300...
...Recirculating exhaust gas system.

Claims (1)

【特許請求の範囲】[Claims] (1)微粉炭等の有機窒素化合物を含有する炭化水素系
燃料を燃焼させるものにおいて、該燃料の主燃焼領域と
その燃焼ガス後流側にガス流れに対して少なくとも二段
階に完全燃焼用の空気を投入する空気ポートを配置する
と共に、該空気ポートの内ガス流れ上流側に位置する空
気ポートの空気に対してアルコール系含酸素燃料を混入
することを特徴とする燃焼方法。
(1) In a device that burns hydrocarbon fuel containing organic nitrogen compounds such as pulverized coal, there is at least two stages of complete combustion in the main combustion region of the fuel and the downstream side of the combustion gas with respect to the gas flow. A combustion method characterized by arranging an air port for introducing air and mixing an alcohol-based oxygen-containing fuel into the air in the air port located upstream of the air port in the gas flow direction.
JP1182182A 1989-07-14 1989-07-14 Ultra-low NOx combustion method Expired - Fee Related JP2789041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1182182A JP2789041B2 (en) 1989-07-14 1989-07-14 Ultra-low NOx combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1182182A JP2789041B2 (en) 1989-07-14 1989-07-14 Ultra-low NOx combustion method

Publications (2)

Publication Number Publication Date
JPH0350407A true JPH0350407A (en) 1991-03-05
JP2789041B2 JP2789041B2 (en) 1998-08-20

Family

ID=16113775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1182182A Expired - Fee Related JP2789041B2 (en) 1989-07-14 1989-07-14 Ultra-low NOx combustion method

Country Status (1)

Country Link
JP (1) JP2789041B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7168947B2 (en) * 2004-07-06 2007-01-30 General Electric Company Methods and systems for operating combustion systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109956537B (en) * 2019-03-26 2021-10-15 河北科技大学 Treatment method of acetone-containing cyanohydrin wastewater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174409A (en) * 1984-02-20 1985-09-07 Hitachi Zosen Corp Nox-reduced burning procedure of pulverized coal
JPS60185004A (en) * 1984-02-29 1985-09-20 Hitachi Zosen Corp Three-stage burner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174409A (en) * 1984-02-20 1985-09-07 Hitachi Zosen Corp Nox-reduced burning procedure of pulverized coal
JPS60185004A (en) * 1984-02-29 1985-09-20 Hitachi Zosen Corp Three-stage burner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7168947B2 (en) * 2004-07-06 2007-01-30 General Electric Company Methods and systems for operating combustion systems

Also Published As

Publication number Publication date
JP2789041B2 (en) 1998-08-20

Similar Documents

Publication Publication Date Title
JP5674281B2 (en) Dry three-way catalytic reduction method for gas turbine NOx
US5419286A (en) System for lowering emissions of nitrogen oxides
US6878471B1 (en) Process for the regeneration of reforming catalysts
HU213482B (en) Method and apparatus for decreasing the emission of n2o in the flue gases of fuel having nitrogen burnt in fluidization reactor
US4297319A (en) Apparatus for removing nitrogen oxides from flue gas
JPH0350407A (en) Extremely low nox combustion method
GB1384342A (en) Treatment of gaseous effluent
KR20080017570A (en) Fuel suppling and exhaust gas purified system in gasoline engine
JP2002066230A (en) Ammonia decompsotion processing device of gasified fuel and ammonia decomposition processing system provided with the same
KR20170099110A (en) Lp scr system and control method thereof
JP2001073744A (en) Nitrogen oxides purifier
KR20200114802A (en) method for recycling of desulfurization process water
JPH09126412A (en) Low nox boiler
JPS5813906A (en) Combustion method for generating low nitrogen oxide exhaust
FI130561B (en) A method for removing nitrogen oxides from flue gas
JPS5833019A (en) Method of reducing nitrogen oxides in combustion exhaust gas
JPS62134405A (en) Multi-stage dust coal combustion process in furnace
JP2582139B2 (en) NOx reduction treatment method for coal gasified fuel
JPH03194111A (en) Super low-pollution methanol engine
JPH0368286B2 (en)
EP4303488A1 (en) Method for combusting carbonaceous fuel in a fluidized bed reactor and fluidized bed apparatus
JP4141350B2 (en) Combustion device
JPS6362646B2 (en)
JPS61135920A (en) Nox reduction method in diesel engine
JPS58182003A (en) Combustion method for pulverized coal and burner for pulverized coal combustion

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees